SUPPLEMENTARY MATERIAL

Parameterization method

An iterative process of refinement was used to optimize parameters for the phosphoramidate backbone while keeping them compatible with regular DNA parameters using previously established protocols for the CHARMM force field (1,2). The interaction parameters optimized were the partial charges on the new modified atoms and adjacent atoms. The partial atomic charges were optimized to reproduce the ab initio water interaction energies and distances. Ab initio goal data for these interactions were obtained by HF/6-31G* calculations scaled appropriately (3) and performed with compound A interacting with one water molecule at a time in different orientations. Water interactions were calculated using the TIP3P water model implemented in CHARMM (4,5). A fixed HF/6-31G* optimized gaucheltrans geometry of compound A and a fixed water TIP3P geometry was used for these water interaction calculations. The different interaction geometries studied are shown in Figure S1 and the water interaction energies and distances are shown in Table S1.

Bond, angle and dihedral force constants were optimized using frequency calculations to reproduce the *ab initio* vibrational spectra calculated at the MP2/6-31G* level. Analysis of the normal modes of compound **A** was done using the MOLVIB program (6) within CHARMM. Bond and angle equilibrium values were also optimized to reproduce *ab initio* optimized geometries (Table S2). The behavior of the dihedral parameters has the greatest influence on conformational properties of the molecules. The dihedral parameters for the dihedrals near the N3'-H substitution (α , ε and z) were therefore carefully optimized to reproduce both the *ab initio* vibrational frequencies and the *ab initio* dihedral surfaces. Parameters

Figure S1. Water interaction geometries studied to develop partial atomic charges in model compound **A** in the *gaucheltrans* orientation. Distances or hydrogen bonds along which interactions were optimized are indicated by dashed lines. In interaction 5, the plane of the water molecule is parallel to the O1–P–O2 plane. In interaction 6, the plane of the water molecule is perpendicular to the O1–P–O2 plane.

developed for the smaller model compounds were transferred to the larger model compounds and the additional new parameters specific to these compounds were optimized by similar procedures. A detailed description of our nucleic acid parameterization philosophy and its motivations are described elsewhere (1-3,7). The final parameters used in the present study are shown in Table S4.

REFERENCES

- Foloppe,N. and MacKerell,A.D.Jr (2000) All-atom empirical force field for nucleic acids: 1) Parameter optimization based on small molecule and condensed phase macromolecular target data. J. Comp. Chem., 21, 86–104.
- MacKerell,A.D.Jr and Banavali,N. (2000) All-atom empirical force field for nucleic acids: 2) Application to molecular dynamics simulations of DNA and RNA in solution. J. Comp. Chem., 21, 105–120.
- MacKerell,A.D.Jr, Wiórkiewicz-Kuczera,J. and Karplus,M. (1995) An all-atom empirical energy function for the simulation of nucleic acids. *J. Am. Chem. Soc.*, **117**, 11946–11975.
- Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W. and Klein, M.L. (1983) Comparison of simple potential functions for simulating liquid water. J. Chem. Phys., 79, 926–935.
- 5. Reiher,W.E. (1985) Theoretical studies of hydrogen bonding, PhD thesis, Harvard University, Cambridge, MA.
- Kuczera, K., Wiorkiewicz, J.K. and Karplus, M. (1993) CHARMM. Harvard University, Cambridge, MA.
- MacKerell,J.A.D., Bashford,D., Bellott,M., Dunbrack,R.L.Jr, Evanseck,J., Field,M.J., Fischer,S., Gao,J., Guo,H., Ha,S., Joseph,D., Kuchnir,L., Kuczera,K., Lau,F.T.K., Mattos,C., Michnick,S., Ngo,T., Nguyen,D.T., Prodhom,B., Reiher,I.W.E., Roux,B., Schlenkrich,M., Smith,J., Stote,R., Straub,J., Watanabe,M., Wiorkiewicz-Kuczera,J., Yin,D. and Karplus,M. (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. *J. Phys. Chem. B*, **102**, 3586–3616.
- Florián, J. and Johnson, B.G. (1994) Comparison and scaling of Hartree-Fock and density functional harmonic force fields. 1. Formamide monomer. J. Phys. Chem., 98, 3681–3687.

Table S1. Empirical and ab initio water interaction energies and distances for compound A in gauche/trans orientation

	Ab initio		Empirical		Differences	
Interaction	E _{min}	R _{min}	E _{min}	R _{min}	ΔE	ΔR
(1) N-HOHH	2.82	2.44	2.69	2.05	-0.13	-0.39
(2) OHOH	-6.73	2.04	-7.35	2.05	-0.62	0.01
(3) O1HOH	-14.01	1.84	-13.96	1.65	0.05	-0.19
(4) O2HOH	-14.05	1.84	-13.96	1.65	0.09	-0.19
(5) P0OHH	-17.29	3.38	-17.03	3.27	0.26	-0.11
(6) P90OHH	-10.58	3.74	-11.07	3.59	-0.49	-0.15

Energies are in kcal/mol and distances are in Å. Interaction 5 has the O-P-O plane co-planar with the plane of the water molecule while in interaction 6 the planes are perpendicular. Ab initio calculations done at the HF/6-31G^{$\hat{*}$} level of theory.

Table S2. Comparison of the minimized ab initio and CHARMM geometries for model compound A in the gaucheltrans conformation

	CHARMM	Ab initio	Difference
Bonds (in Å)			
1) N-C	1.457	1.457	0.000
2) N-P	1.715	1.717	0.002
3) N-H	1.017	1.017	0.000
Angles (in degree	s)		
4) H-N-C	114.2	112.2	2.1
5) N-C-H1	110.5	113.9	-3.5
6) N-C-H2	111.7	107.2	4.5
7) N-C-H3	111.1	110.4	0.7
8) C-N-P	117.1	116.5	0.6
9) H-N-P	110.2	109.4	0.8
10)N-P-O	97.7	97.2	0.6
11)N-P-O1	109.4	109.2	0.2
12)N-P-O2	107.3	107.8	-0.5

Ab initio calculations done at the MP2/6-31+G* level.

(Opposite) Stretching modes are represented by an s followed by the atoms in the bond stretch, for example, sN-H is the stretching mode of the hydrogen attached to the N atom. Angle deformations are represented by d and a descriptor, as in dNPO, which is the N-P-O angle deformation. Wagging is represented by wag and a descriptor, as in wagNH, which is the wagging mode of the hydrogen attached to the nitrogen. Other abbreviations: tor, dihedral torsion; r, rocking; s, symmetrical at the end; as, asymmetrical at the end. Ab initio frequencies, at the MP2/6-31G* level, have been scaled by 0.94 as previously described (8).

	Ab initio			CHARMM			
	Frequen	cy Mode	Contribution	Frequency	Mode	Contribution	
1	39	torNPOC	92	75	torNPOC	93	
2	103	torOPNC	82	110	torOPNC	84	
3	140	torPOCH	79	148	torPOCH	84	
4	162	dNPO	28	168	dNPO	49	
		torPNCH	25		dPOC	20	
					torPNCH	17	
5	205	torPNCH	61	210	torPNCH	70	
		dPNC	17				
6	242	dPOC	50	295	dPOC	51	
7	335	twPO2	31	369	dPNC	38	
,	555	dNPO	30	507	twPO2	24	
		unio	50		wPO2	17	
0	260	tru DO2	20	424	twpO2	17	
0	500	dDNC	39	424	rPO2	20	
		aPINC	20		rPO2	27	
~			10		sP-N	26	
9	435	wPO2	48	465	wPO2	39	
		dOPO	28		twPO2	33	
10	479	rPO2	34	499	dOPO	58	
		dOPO	24			,	
11	508	rPO2	23	566	wagNH	76	
12	642	sP-O	38	636	dPNC	36	
		wagNH	19		dOPO	19	
13	693	sP-O	40	719	sP-O	23	
	0,0	wagNH	19		sP-N	17	
		rPO2	18		dPNC	16	
		aD N	15		unc	10	
14	707	SF-IN	15	910	• D O	20	
14	/85	SP-IN	36	810	SP-O	50	
		wagNH	25		sP-N	27	
					rPO2	21	
15	1063	sP=O	64	1012	sN-C	36	
					rch3'	15	
16	1084	sO-C	26	1046	sO-C	58	
		dNH	18				
17		rch3'	18				
		sN-C	17				
18	1091	sQ-C	57	1053	rch3	73	
		sP=0	25	1000	10110		
10	1121	sN C	50	1002	roh?!	45	
17	1151	roh2!	35	1095	N C	45	
20	1140	ren3	33	1100	siv-C	19	
20	1149	rens	80	1109	sP=O	55	
21	1108	rcn3	97	1141	rch3	62	
22	1188	rch3	92	1144	rch3	54	
23	1275	sP=O	90	1261	sP=O	60	
					dNH	28	
24	1400	dNH	70	1338	dNH	52	
					sP=O	28	
25	1445	dch3s	110	1412	dch3as	90	
26	1461	dch3s	105	1431	dch3as'	60	
					dch3as	20	
					rch3	19	
27	1504	dch3as	65	1434	dch3as'	83	
- '	2001	dch3as'	22	1.154	30110 40	05	
28	1511	deh3as'	00	1463	dah2ac	50	
20	1,511	uciisas	22	1405	roh?	25	
					1-1-2!	25	
20	1524	4.1.2	0.4	15(1	uchibas	20	
29	1554	uchbas	84	1501	den3s	/0	
•••					sN-C	19	
30	1535	dch3as'	65	1610	dch3s	88	
		dch3as	33				
31	2958	sCH3s	87	2854	sCH3s	100	
32	2967	sCH3s	98	2855	sCH3s	100	
33	3017	sCH3as	72	2913	sCH3as'	52	
		sCH3as'	25		sCH3as	48	
34	3042	sCH3as'	60	2914	sCH3as	99	
~ 7	2042	sCH3ac	28	2714		20	
35	2061	CH200	50	2014	CH300	57	
55	5001	aCH2aat	02	2914	SCH3as	33	
21	2100	SCH3as	38	0010	SCH38S	46	
30	3108	SCH3as	12	2918	sCH3as	100	
		sCH3as	18				
37	3467	sN-H	100	3370	sN-H	100	

Table S3. Vibrational frequency assignments and relative contributions of the assignments to the frequency for the gauche/trans conformation of compound A

Table S4. CHARMM parameters developed in this study unique to phosphoramidate

Table S4A. Bond parameters

Bond type		K _b	b ₀	
NN1	CN7	360.0	1.462	
NN1	CN8B	360.0	1.462	
NN1	Р	180.0	1.792	
NN1	HN2	432.5	1.025	

Equilibrium bond lengths (b_0) in Å and force constants (K_b) in kcal/mol.Å

Table S4B. Angle parameters

Angle type		K _e	θ_0	K _{ub}	S ₀	
HN2	NN1	CN8B	35.0	109.0		
HN2	NN1	Р	30.0	123.6	40.0	2.35
HN2	NN1	CN7	35.0	109.0		
CN7	NN1	Р	110.0	118.3	35.0	2.33
CN8B	NN1	Р	110.0	118.3	35.0	2.33
NN1	Р	ON2	60.0	103.2		
NN1	Р	ON3	140.0	110.6		
NN1	Р	ON4	60.0	103.2		
NN1	CN8B	CN7B	43.7	110.0		
NN1	CN7	CN7	43.7	110.0		
NN1	CN7	CN7B	43.7	110.0		
NN1	CN7	CN8	43.7	110.0		
NN1	CN7	HN7	48.0	110.0		
NN1	CN8B	CN7	43.7	110.0		
NN1	CN8B	HN8	48.0	110.0		

Equilibrium bond angles (θ_0) are given in degrees and force constants $(K_{\theta}, K_{\text{UB}})$ are given in kcal/mol.Å. S_0 denotes the Urey–Bradley distance in Å.

Dihedr	al			Kø	n	φ
р	NN1	CN7	HN7	0.15	3	0.0
P	NN1	CN8B	HNS	0.15	3	0.0
NN1	P	ON2	CN7	0.15	1	0.0
NN1	P	ON2	CN7	0.35	2	50.0
NN1	P	ON2	CN7	0.35	3	0.0
NN1	P	ON2	CN8B	0.35	1	0.0
NN1	P	ON2	CN8B	0.35	2	50.0
NN1	P	ON2	CN8B	0.35	3	0.0
ON3	P	NN1	CN7	0.35	3	0.0
ON3	P	NN1	CN7	0.40	2	120.0
ON3	P	NN1	CN7	0.50	4	0.0
ON2	P	NN1	CN7	1.50	2	0.0
ON3	P	NN1	CN8B	0.40	3	0.0
ON3	P	NN1	CN8B	0.80	2	120.0
ON3	P	NN1	CN8B	0.50	2	0.0
ON2	P	NNI	CN8B	1.50	2	0.0
HN2	NN1	CN7	HN7	0.01	3	0.0
HN2	NN1	CN8B	HN8	0.01	3	0.0
HN2	NN1	P	ON2	0.01	3	0.0
HN2	NN1	P	ON3	0.05	3	0.0
HN2	NN1	CN7	CN7	0.05	1	0.0
HN2	NN1	CN7	CN7B	0.30	1	0.00
HN2	NN1	CN7	CN8	0.30	1	0.00
HN7	CN7	CN7	NN1	0.30	3	0.00
HN7	CN7R	CN7	NN1	0.195	3	0.0
	CN9	CN7	NN1	0.195	3	0.0
ON6B	CN7	CN7	NN1	0.195	3	0.0
ON6	CN7	CN7	NNI	0.20	2	0.0
HN2	NN1	D D	ON4	0.20	3	0.0
D D	NN1	r CN7	CN7	2.4	3	180.0
D	NN1	CN7	CN7	2.4	3	180.0
D	NNI	CN7	CN7P	2.5	1	180.0
D	NN1	CN7	CN8	2.5	1	180.0
NN1	CN7	CN7B	CN7R	1.5	1	180.0
NN1	CN7	CN7B	CN7B	1.5	2	100.0
NN1	CN7	CN7B	CN7B	1.5	3	180.0
NN1	CN7	CN8	CN7B	1.1	1	180.0
NN1	CN7	CN8	CN7B	1.1	2	0.0
NN1	CN7	CN8	CN7B	0.5	3	180.0
NNI	CN7	CN7	CN8B	0.5	2	180.0
p	NN1	CN8B	CN7	0.20	1	120.0
CN7	CN7	CN8B	NN1	0.20	1	180.0
CN7	CN7	CN8B	NN1	0.20	3	180.0
CN7	CN7	CN8B	NN1	0.00	2	0.0
CN7	CN7	CN8B	NN1	2.50	2	180.0
HN7	CN7	CN8B	NN1	0.105	3	180.0
HN2	NN1	CNOD	CN7	0.195	1	0.0
ON6B	CN7	CN8B	NN1	3.4	1	180.0
ON6	CN7	CN8P	NN1	3.4	1	180.0
CN7	CN7	ON5	HN7	0.5	3	100.0
CN7	CN7	ON5	HN7	1.0	1	0.0
CN8P	CN7	ON5	HN7	0.5	2	0.0
CN8D	CN7	ON5	1111/ HN17	1.0	5	0.0
HN7	CN7	ON5	HN7	0.1	3	0.0
ON5	CN7	CN8D	NN1	3.1	1	180.0
UN9	CN8D	CN7	ONS	0.105	1	100.0
UT 10	CINOD	UN/	UNJ	0.193	T	0.0

Force constant (K_{ϕ}) is given in kcal/mol.radian, *n* is periodicity, ϕ is the phase angle.

Table S4D. Improper dihedral parameters

Improper dihedral			K _ω	ω_0	
CN7 P	NN1	HN2	1.3	180.0	
CN8B P	NN1	HN2	1.3	180.0	

Improper dihedral angle (ω_0) in degrees and force constant (K_ω) in kcal/mol.Å.

Table S4C. Dihedral parameters