

Characteristics of SEs in T_{reg} and T_{conv} cells.

(a) Patterns of indicated transcription factor-binding at SEs and surrounding regions in T_{reg} and T_{conv} cells. Average normalized ChIP-seq signals of global T_{reg} -SEs, common-SEs or T_{conv} -SEs were plotted for merged SE regions \pm 20 kb. Merged ends of SEs are marked as S (start) and E (end). (b) Frequency of sites co-occupied by Smc1a and Med1 within indicated regions in T_{reg} and T_{conv} cells. (c) H3K27ac, H3K4me1 and H3K27me3, ATAC-seq, and MBD-seq signals at global common-SE and T_{conv} -SE regions and H3K4me3 signal around transcription start sites (TSS) of common- or T_{conv} -SE-associated genes in T_{reg} and T_{conv} cells. Average normalized ChIP-seq density of common- or T_{conv} -SEs is plotted for merged SE regions \pm 20 kb or TSS \pm 5 kb. Merged ends of SEs are marked as S (start) and E (end). (d) Heatmap showing the expression of genes associated with T_{reg} -SE, common-SE or T_{conv} -SE in indicated immune cells. LT-HSC: long-term hematopoietic stem cell, ST-HSC: short-term hematopoietic stem cell, MPP: multipotent progenitor, CMP: common myeloid progenitor, MEP: megakaryocyte-erythrocyte progenitor, GMP: granulocyte-monocyte progenitor, and CLP: common lymphoid progenitor. (e) Expression of genes associated with common-SEs (334 genes) or -TEs (3516 genes) (left) and with T_{conv} -SEs (19 genes) or -TEs (146 genes) (right) in T_{reg} and T_{conv} cells. Average of two independent RNA-seq experiments are plotted in box-and-whisker plot (median and 10-90 percentiles are shown). ns P > 0.05, * $P \le 0.1$, *** $P \le 0.001$, and **** $P \le 0.0001$ (Kruskal-Wallis test, followed by Dunn's multiple comparisons test). Data are from one experiment (transcription factor ChIP-seq, ATAC-seq, H3K4me1 and H3K27me3 ChIP-seq), representative of two independent experiments (H3K27ac ChIP-seq, H3K4me3 ChIP-seq and MBD-seq) (a-c), or are average of two independent experiments (RNA-seq) (d,e).

Chromatin configuration changes at SE regions in developing tT_{reg} cells.

(a) Heatmaps showing various epigenetic modifications at individual T_{reg} -SE regions in DP, immature CD4SP (imCD4SP), tT_{reg} precursor (pre-t T_{reg}), thymic T_{reg} (thy T_{reg}) and peripheral T_{reg} cells. Individual T_{reg} -SEs (row) are listed in the same order in all sections and normalized ChIP-seq signals are shown for T_{reg} -SE regions with merged ends ± 20 kb. Overall status of T_{reg} -SEs suggested by combination of histone marks is indicated (right). (b) H3K27ac signals at T_{reg} -SE and T_{reg} -TE regions and associated gene expression during T_{reg} cell development. Average of normalized ChIP-seq signals per kb at 66 T_{reg} -SEs or average FPKM of associated genes (± SEM) are plotted. (c) H3K27ac, H3K4me1 and H3K27me3, ATAC-seq, and MBD-seq signals at global common-SE and T_{conv} -SE regions and H3K4me3 signal around transcription start sites (TSS) of common- or T_{conv} -SE-associated genes in indicated cells. Average normalized ChIP-seq density of common- or T_{conv} -SE is plotted for merged SE regions ± 20 kb or TSS ± 5 kb. Merged ends of SEs are marked as S (start) and E (end). Data in **a**-**c** are from one experiment (ATAC-seq, H3K4me1 and H3K27me3 ChIP-seq), representative of two independent experiments (H3K27ac ChIP-seq, H3K4me3 ChIP-seq and MBD-seq), or average of two independent experiments (RNA-seq).

Establishment of individual SEs in developing tT_{reg} cells.

(**a-c**) Changes in various epigenetic modifications, mRNA transcription and transcription factor binding during T_{reg} cell development around representative T_{reg} -SE regions at the *Ctla4*, *II2ra* and *Ikzf2* loci (**a**), common-SE region at the *Ets1* locus (**b**) and T_{conv} -SE region at the *Tcf7* locus (**c**). H3K27ac, H3K4me1, H3K27me3, ATAC-seq, MBD-seq and RNA-seq signals in DP, immature CD4SP (imCD4SP), tT_{reg} precursor (pre-tT_{reg}), thymic T_{reg} (thy T_{reg}) and peripheral T_{reg} cells, binding of various transcription factors in DP and T_{reg} cells, and vertebrate conservation score are shown. Bars indicate 25 kb. Data are from one experiment (ATAC-seq, H3K4me1 and H3K27me3 ChIP-seq), representative of two independent experiments (H3K27ac ChIP-seq, H3K4me3 ChIP-seq and MBD-seq), or average of two independent experiments (RNA-seq).

Satb1 binding to SEs and transcription factor binding motifs of Satb1-binding sites at the DP stage.

(a) Percentage of common-SEs and T_{conv} -SEs occupied by Satb1 in indicated cell populations. (b) Enrichment of transcription factorbinding motifs in Satb1-binding sites at open chromatin (left) and at closed chromatin (right) within T_{reg} -SEs at the DP stage. Data are from one experiment (a,b).

Effects of T cell-specific Satb1 deletion on characteristics of T_{reg} cells and on thymic negative selection.

(a) Suppressive function of peripheral CD4⁺CD25⁺GFP⁺ cells from *Satb* 1^{II/+}*Cd4*Cre⁺*Foxp3*^{GFP} and CD4⁺CD25⁺GFP⁺ and CD4⁺CD25⁻GFP⁺ cells from *Satb* 1^{II/+}*Cd4*Cre⁺*Foxp3*^{GFP} mice. Percentages of divided naive CD4⁺ T cells when cultured at indicated ratio with T_{reg} cells are shown (mean ± SEM). (b) Scatter plot displaying global gene expression in CD4⁺CD25⁺GFP⁺ cells from *Satb* 1^{II/+}*Cd4*Cre⁺*Foxp3*^{GFP} and *Satb* 1^{II/+}*Cd4*Cre⁺*Foxp3*^{GFP} mice. Average normalized fragments per kilobase of transcript per million reads mapped (FPKM) values from two independent RNA-seq experiments are plotted and T_{reg} up and down signature genes are highlighted. (c) Flow cytometry of indicated cells after *in vitro* culture with TCR stimulation, with or without IL-2, for the expression of Foxp3. Numbers indicate percentages of Foxp3⁺ cells from *Satb* 1^{II/+}*Cd4*Cre⁺ and *Satb* 1^{II/+}*Cd4*Cre⁺ mice, and peripheral CD4⁺CD25⁺Foxp3⁺ T cells from *Satb* 1^{II/+}*Cd4*Cre⁺ and *Satb* 1^{II/+}*Cd4*C

Effects of mature CD4⁺ T cell–specific and T_{reg} -specific *Satb1* deletion on T_{reg} development, phenotype and T_{reg} -type DNA hypomethylation.

(a) Schematic diagram illustrating the timing of Satb1 deletion in *Satb1^{fl/fl}Cd4*Cre⁺, *Satb1^{fl/fl}Thpok*Cre⁺, and *Satb1^{fl/fl}Foxp3*Cre⁺ mice. Satb1 expression level is indicated by color code. (b) Flow cytometry of peripheral CD4⁺CD25⁺Foxp3⁺ T cells from *Satb1^{fl/+}Thpok*Cre⁺ and $Satb1^{tl/fl}ThpokCre^+$ mice, and CD4⁺CD25⁻Foxp3⁺ T cells from $Satb1^{tl/fl}ThpokCre^+$ mice, for the expression of T_{reg} cell signature molecules. (c) Scatter plot displaying global gene expression in CD4⁺CD25⁻ cells from wild-type (WT) and Satb1^{tl/fl}ThpokCre⁺ mice. Average normalized fragments per kilobase of transcript per million reads mapped (FPKM) values from two independent RNA-seq experiments are plotted and T_{reg} up and down signature genes are highlighted. (d) DNA methylation status of the Foxp3 CNS2 region in peripheral CD4⁺CD25⁻Foxp3⁻, CD4⁺CD25⁺Foxp3⁺Nrp1⁺ and CD4⁺CD25⁺Foxp3⁺Nrp1⁻ cells from Satb1^{t/+}ThpokCre⁺ and Satb1^{t/t/1}ThpokCre⁺ mice, and CD4⁺CD25⁻Foxp3⁺ from Satb1^{t/t/1}ThpokCre⁺ mice. Each block indicates CpG residues within amplicons. (e) H3K27ac modification in indicated cell types and Satb1 binding in WT T_{conv} cells at the *Foxp3* locus. Vertebrate conservation score and CNS0 region are shown. Bar indicates 5 kb. (f) Flow cytometry of peripheral CD25⁺Foxp3⁺ T cells in Satb1^{fl/+}ThpokCre⁺ and Satb1^{fl/+}ThpokCre⁺ mice, for the expression of Nrp1 and Helios, and summary data showing the percentages of Nrp1⁺ tT_{reg} and Nrp1⁻ pT_{reg} cells in peripheral CD4⁺ T cells (mean ± SEM, n = 6). ns P > 0.05 and **** P ≤ 0.0001 (two-way ANOVA, followed by Holm-Sidak's multiple comparison test). (g) Flow cytometry of CD45.1⁺ and CD45.2⁺ CD4⁺ T cells from *Rag2^{-/-}* mice, which received CD4⁺CD25⁻ CD45RB^{hi} T cells from WT (CD45.1⁺) and *Satb1^{fl/fl}Thpok*Cre⁺ (CD45.2⁺) mice, for identification of T_{reg} cells by CD25 and Foxp3 expression. Summary graph shows percentages of Foxp3⁺ cells among CD45.1⁺ or CD45.2⁺ T cells (n = 6, mean ± SEM). **** $P \le$ 0.0001 (two-tailed t-test). (h) DNA methylation status of 6 CpG residues within the Foxp3 CNS2 in WT and Satb1-deficient CD4⁺ T cells isolated on day 17 in the experiment described in g. CpGs from 5' end are numbered as 1-6 (column) and amplicons are ordered from the most demethylated ones (row). Demethylated or methylated status is indicated by color code. 0-50% of fully methylated amplicons are omitted for presentation, as the wavy lines indicate (upper panel). Top 3.75% of total reads, when ordered from the most demethylated clones, are zoomed in (bottom). Summary data of two independent experiments, showing the percentage of fully demethylated amplicons, are also shown (right). (i) Flow cytometry of CD4SP thymocytes and CD4⁺ splenocytes from 4-day-old Satb1^{fl/+} Foxp3Cre⁺ and Satb1^{fl/fl} Foxp3Cre⁺ mice, for identification of T_{reg} cells by the expression of Foxp3 and CD25. (j) Percentages of

 $CD25^{+}Foxp3^{+}$ T_{reg} cells among CD4SP thymocytes and CD4⁺ splenocytes in 4-day-old *Satb1*^{tl/+}*Foxp3*Cre⁺ (n = 5) and *Satb1*^{tl/fl}*Foxp3*Cre⁺ mice (n = 8). Horizontal line indicates mean. ns *P* > 0.05 (two-tailed t-test). (**k**) Flow cytometry of peripheral CD4⁺CD25⁺Foxp3⁺ T_{reg} cells from 4-week-old *Satb1*^{tl/+}*Foxp3*Cre⁺ and *Satb1*^{tl/fl}*Foxp3*Cre⁺ mice, for T_{reg} cell signature molecule expression. Data are representative or summary of three independent experiments with three or more mice (**b,d,f,g,i-k**), average of two independent RNA-seq experiments (**c**), representative of two independent experiments (**e**), or representative and summary of two independent experiments (**b**).

Phenotypic and epigenetic characteristics of Satb1-deficient tT_{req} precursor cells.

(a) Flow cytometry of tTreg precursor (pre-tT_{reg}) cells from *Satb* 1^{fl/t}*Cd4*Cre⁺ and *Satb* 1^{fl/t}*Cd4*Cre⁺ mice, for the expression of T_{reg} cell signature molecules. (b) Percentages of CD25 Foxp3⁺ CD4SP thymocytes in 4-week-old *Satb* 1^{fl/t}*Cd4*Cre⁺ and *Satb* 1^{fl/t}*Cd4*Cre⁺ mice. ** $P \le 0.01$ (two-tailed t-test). (c) Percentages of Foxp3⁺ cells after TCR and IL-2 stimulation of cells in **b**. *** $P \le 0.001$ (two-tailed t-test). (d) H3K4me1 signals at global T_{reg}-SE regions in DP and immature CD4SP (imCD4SP) thymocytes from wild-type (WT) and *Satb* 1^{fl/t}*Cd4*Cre⁺ mice. Average normalized ChIP-seq density of T_{reg}-SEs is plotted for merged T_{reg}-SE regions ± 20 kb. Merged ends of T_{reg}-SEs are marked as S (start) and E (end). (e) Categorization of T_{reg}-SEs by the chromatin state of initial Satb1 binding at the DP stage and effects of Satb1 deletion on their activation. T_{reg}-SEs are divided into those with at least one Satb1-binding sites at open chromatin only (middle), or with no Satb1 binding at the DP stage. Schematic diagram illustrating the categorization by Satb1 binding type (top panel), examples of T_{reg}-SE loci (middle panel) and H3K27ac, H3K4me1 and gene transcription at representative T_{reg}-SEs between pre-tT_{reg} cells of Satb1 deletion on T_{reg}-SEs categorized in e, shown as log2 fold-change (log2FC) of H3K27ac signal at T_{reg}-SEs between pre-tT_{reg} cells of WT and *Satb* 1^{fl/fl}Cd4Cre⁺ mice (mean ± SEM). Dots indicate individual T_{reg}-SEs. (g) Heatmap showing relative H3K27ac signals at individual T_{reg}-SE, common-SE, and T_{conv}-SE regions in DP, imCD4SP and pre-tT_{reg} cells from WT and *Satb* 1^{fl/fl}Cd4Cre⁺ mice. Average normalized ChIP-seq density of common-SEs or T_{conv}-SE is plotted for merged SE regions ± 20 kb. Merged ends of SEs are marked as S (start) and E (end). Data are representative or three independent experiments with three or more mice (a-c), from one experiment (d), or representative of two independent experiments (e-h).

Effects of Satb1-dependent Treg-SE activation on associated gene expression.

(a) Volcano plot showing the differential gene expression between wild-type (WT) and *Satb1*^{fl/fl}*Cd4*Cre⁺ CD24⁺CD25⁺GITR⁺ CD4SP thymocytes (mixture of immature thymic T_{reg} (thyT_{reg}) and tT_{reg} precursor (pre-tT_{reg}) cells). Genes associated with T_{reg}-SEs, common-SEs and T_{conv}-SEs are highlighted. (b) H3K27ac of individual T_{reg}-SE regions at the pre-tT_{reg} cell stage (top) and associated gene expression in CD24⁺CD25⁺GITR⁺ CD4SP thymocytes (bottom) in WT and *Satb1*^{fl/fl}*Cd4*Cre⁺ mice, shown as ratios to the average of two populations. T_{reg}-SEs are grouped into three categories by the effects of Satb1 deletion, as shown in Fig. 8e. (c) Hypothetical model of super-enhancer establishment and subsequent transcriptional regulation during thymic T_{reg} cell development. T_{reg}-SE regions are poised at least from the DP stage and bound by Satb1. Upon receiving the signal to direct T_{reg} cell differentiation, T_{reg}-SE regions undergo Satb1-dependent activation, likely through the recruitment of epigenetic modifying enzymes, and become T_{reg} lineage-committed precursor cells. As T_{reg} cell development proceeds, enhancer-promoter looping facilitates the expression of associated T_{reg} cell signature genes, including *Foxp3*, as well as other epigenetic modifications such as T_{reg}-specific DNA demethylation, histone modification of promoter regions and chromatin loosening of enhancer and promoter regions. Once T_{reg} cell development is complete, Foxp3 amplifies pre-established molecular features¹ and Satb1 transcription is repressed by Foxp3²; however, mediator, cohesin, and various transcription factors, including Foxp3, occupy the sites where Satb1 initially bound, maintaining the local chromatin structure. 1. Gavin, M.A. *et al.* Foxp3-dependent programme of regulatory T–cell differentiation. *Nature* **445**, 771–775 (2007). 2. Beyer, M. *et al.* Repression of the genome organizer SATB1 in regulatory T–cells is required for suppressive function and inhibition of effector dif