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Figure S1: Functional positions excluded from mutation. Residues expected to bind           
carbohydrate (cyan) or sodium (yellow) binding are shown as sticks. The sodium ligand is              
shown as a yellow sphere and the carbohydrate mimetic ligand, bis-tris, is shown as              
magenta sticks. For sodium binding, the coordinating residues from the first/second/third           
symmetric subdomains are: asparagine (N28/N75/N122) and the backbone of valine          
(V29/76/123). In the case of bis-tris binding in the known carbohydrate binding site (56), the               
coordinating residues from the first/second/third symmetric subdomains are: D17/64/111,         
I30/77/124, Y32/79/126, S35/82/129, N39/86/133, and Q40/87/134. Shown using PDB:         
3PG0. 
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Figure S2: Kinetics of individual ThreeFoil mutants. Chevron plot of wild-type and            
mutant ThreeFoil kinetics. Coloring as in Figure 3b. Extrapolation of the folding and             
unfolding branches to 0 M denaturant is used to estimate folding and unfolding rates in water                
and thus thermodynamic stability (given in Table 2, also see Experimental Procedures). 
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Figure S3: Stabilizing mutations do not affect sugar binding. Binding of lactose as             
measured by change in intrinsic fluorescence, shown for WT and selected mutants. The             
bottom right-hand panel shows a comparison of the ΔG​binding values (more -ve, stronger             
binding) for lactose. There is negligible change in binding across the mutants. Note that the               
highly destabilizing mutation Q78I, as well as the highly stabilizing multi-mutants were not             
tested owing to poor solubility. 
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Figure S4: Stability prediction of individual tools on the 10 characterized ThreeFoil            
mutations. Comparing the predicted with experimentally determined change in stability for           
the 10 mutations to ThreeFoil shows that none of the individual tools were particularly              
accurate. Notably, the majority of tools predicted Q78I to be highly stabilizing, and those              
that did not: Hunter, IMutant3, and MuPro, were generally pessimistic, missing the truly             
stabilizing mutations. Note that EGAD does not give predictions for mutations to or from              
glycine and proline, or when more than 2 clashes in VDW volumes are detected (2), thus                
there are only 3 predictions given here for EGAD. 
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Table S2: Estimating outcomes of random mutagenesis 

Publication Stabilizing (%) Destabilizing 
(%) 

Protein Used Protein Size 
(structure class) 

Araya et al. (3)​1 2.3 ND WW domain 34 amino acids 
(beta) 

Foit et al. (4)​2 1.9 ND Im7 87 amino acids 
(alpha) 

Deng et al. (5)​3 2.2 94.9 TEM 
β-lactamase 

263 amino 
acids 
(mixed) 

Klesmith et al. 
(6)​4 

3.6 82.1 Levoglucosan 
kinase 

447 amino 
acids  
(mixed) 

Average 2.5 88.5   

The average % stabilizing across the four publications reporting this value is 2.5%.  For the 
two publications reporting % destabilizing the average is 88.5%, leaving 9.0% as 
approximately neutral.  
Note that the first two publications only determine the number of stabilizing mutations, and 
do not discriminate between destabilizing and neutral. 
1​of the 646 possible mutations to the 34-residue protein, 15 were found to be stabilizing.  
2​of the 1653 possible mutations to the 87-residue protein, 31 were found to be stabilizing. 
3​a cutoff of > 0.2 ΔΔG​stat​ from the publication was used to count a mutation as stabilizing and 
< -0.2 for destabilizing in order to match our experimental cutoff of 0.2 kcal/mol.  Otherwise 
the mutation is considered neutral.  Note that in this study the screen being used gives a 
combined measure of stability, solubility, and function. 
4​a cutoff of > 0.15 for the score reported in this publication was used to count a mutation as 
stabilizing and < -0.15 as destabilizing, as recommended by the authors.  In this study the 
screen being used gives a combined measure of solubility and stability. 
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Table S3: Tool performance against mutations used in training 

Tool MCC R Precision Accuracy Standard Error  
(kcal/mol) 

EGAD 0.30 0.53 28% 78% 1.66 

FoldX 0.33 0.57 41% 85% 1.67 

Rosetta-ddG 0.29 0.53 28% 82% 2.45 

CUPSAT 0.32 0.50 41% 86% 1.67 

DFire 0.32 0.49 30% 79% 1.95 

Hunter 0.25 0.43 30% 82% 2.05 

MultiMutate 0.17 0.41 20% 63% 2.54 

SDM 0.25 0.42 24% 70% 2.06 

PoPMuSiC 0.27 0.60 44% 90% 1.45 

IMutant3 0.15 0.51 29% 88% 1.57 

MuPro​a 0.40 0.57 85% 92% 1.46 

Meta-Predictor 0.48 0.63 47% 88% 1.45 
The best score for each metric is highlighted in bold. 
For MCC, Precision and Accuracy, mutations predicted or experimentally determined to have an             
effect less than 0.2 kcal/mol were not included, thus eliminating a significant source of noise due to                 
the uncertainty in small ΔΔG values. 
Values for each metric were determined by randomly sampling 50% of the dataset, computing the               
metric, repeating this process 1000 times, and reporting the average. 
a​This dataset of 1058 mutations contains mutations used in some of the tool’s training sets. Notably                
for instance, MuPro’s training set contained 296 of the mutations tested here. Thus, the anomalously               
large improvement in MuPro’s performance (especially MCC and precision) compared with testing            
against our primary dataset containing no mutations used for tool training (Table 1), may result from                
overfitting to the training data. 
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Table S4: Meta-predictor weight coefficients 
Tool Category Mutation Type Weight Coefficient 

EGAD Polarity Less 0.29 

Same 0.13 

More  0.21 

Size Smaller 0.18 

Same 0.29 

Larger 0.32 

SASA Buried 0.36 

Partially Exposed 0.18 

Exposed 0.32 

Secondary Structure Helical 0.27 

Strand 0.50 

Turn 0.27 

Unstructured 0.26 

Glycine/non-Glycine Glycine 0.00 

Non-Glycine 0.34 

FoldX Polarity Less 0.41 

Same 0.23 

More 0.16 

Size Smaller 0.32 

Same 0.24 

Larger 0.36 

SASA Buried 0.46 

Partially Exposed 0.22 

Exposed 0.40 

Secondary Structure Helical 0.44 

Strand 0.31 

Turn 0.36 

Unstructured 0.38 
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Glycine/non-Glycine Glycine 0.27 

Non-Glycine 0.37 

Rosetta-ddG Polarity Less 0.26 

Same 0.19 

More 0.18 

Size Smaller 0.26 

Same 0.16 

Larger 0.33 

SASA Buried 0.45 

Partially Exposed 0.19 

Exposed 0.26 

Secondary Structure Helical 0.36 

Strand 0.44 

Turn 0.18 

Unstructured 0.10 

Glycine/non-Glycine Glycine 0.23 

Non-Glycine 0.30 

CUPSAT Polarity Less 0.12 

Same 0.25 

More 0.29 

Size Smaller 0.31 

Same 0.04 

Larger 0.15 

SASA Buried 0.28 

Partially Exposed 0.32 

Exposed 0.14 

Secondary Structure Helical 0.13 

Strand 0.29 

Turn 0.39 
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Unstructured 0.14 

Glycine/non-Glycine Glycine 0.11 

Non-Glycine 0.24 

DFire Polarity Less 0.32 

Same 0.43 

More 0.19 

Size Smaller 0.36 

Same 0.31 

Larger 0.34 

SASA Buried 0.61 

Partially Exposed 0.39 

Exposed 0.29 

Secondary Structure Helical 0.51 

Strand 0.50 

Turn 0.16 

Unstructured 0.41 

Glycine/non-Glycine Glycine 0.01 

Non-Glycine 0.45 

Hunter Polarity Less 0.12 

Same 0.02 

More 0.05 

Size Smaller 0.01 

Same 0.08 

Larger 0.23 

SASA Buried 0.25 

Partially Exposed 0.04 

Exposed 0.13 

Secondary Structure Helical 0.19 

Strand 0.16 
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Turn 0.20 

Unstructured 0.03 

Glycine/non-Glycine Glycine 0.13 

Non-Glycine 0.15 

MultiMutate Polarity Less 0.06 

Same 0.02 

More 0.01 

Size Smaller 0.17 

Same 0.06 

Larger 0.12 

SASA Buried 0.40 

Partially Exposed 0.13 

Exposed 0.01 

Secondary Structure Helical 0.30 

Strand 0.17 

Turn 0.00 

Unstructured 0.17 

Glycine/non-Glycine Glycine 0.08 

Non-Glycine 0.19 

SDM Polarity Less 0.09 

Same 0.09 

More 0.08 

Size Smaller 0.22 

Same 0.08 

Larger 0.16 

SASA Buried 0.38 

Partially Exposed 0.20 

Exposed 0.10 

Secondary Structure Helical 0.28 
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Strand 0.31 

Turn 0.05 

Unstructured 0.09 

Glycine/non-Glycine Glycine 0.01 

Non-Glycine 0.21 

PoPMuSiC Polarity Less 0.28 

Same 0.18 

More 0.40 

Size Smaller 0.32 

Same 0.08 

Larger 0.37 

SASA Buried 0.42 

Partially Exposed 0.25 

Exposed 0.29 

Secondary Structure Helical 0.23 

Strand 0.44 

Turn 0.29 

Unstructured 0.37 

Glycine/non-Glycine Glycine 0.39 

Non-Glycine 0.31 

IMutant3 Polarity Less 0.06 

Same 0.07 

More 0.03 

Size Smaller 0.08 

Same 0.10 

Larger 0.08 

SASA Buried 0.26 

Partially Exposed 0.22 

Exposed 0.02 
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Secondary Structure Helical 0.13 

Strand 0.27 

Turn 0.01 

Unstructured 0.07 

Glycine/non-Glycine Glycine 0.04 

Non-Glycine 0.13 

MuPro Polarity Less 0.12 

Same 0.13 

More 0.23 

Size Smaller 0.21 

Same 0.03 

Larger 0.11 

SASA Buried 0.26 

Partially Exposed 0.24 

Exposed 0.12 

Secondary Structure Helical 0.08 

Strand 0.26 

Turn 0.21 

Unstructured 0.18 

Glycine/non-Glycine Glycine 0.00 

Non-Glycine 0.17 

The criteria for determining the mutation type, details of obtaining the weighting coefficients,             
and equation for the simple linear combination of the predictions from each tool are given in                
the Experimental Procedures. 
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