Supplemental Information

The non-homologous end-joining factor Nej1 inhibits resection mediated by Dna2-Sgs1 at DNA double strand breaks

Kyle S. Sorenson, Brandi L. Mahaney, Susan P. Lees-Miller, and Jennifer A. Cobb*

Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine; University of Calgary; 3330 Hospital Drive N.W., Calgary, AB T2N 4N1, Canada

Supplemental Figure S1. Chromatin immunoprecipitation (ChIP) in non-tagged controls.

Supplemental Figure S2. Resection in $exo1\Delta$ rad50 Δ and in combination with other mutations.

Supplemental Figure S3. Mating types of all survivors in Fig 5D-F.

Supplemental Table S1: % G1 arrested cells following alpha-factor treatment vs asynchronous cells

Supplemental Table S2: Strains used in this study

Supplemental Table S3: Primers and probes used in this study

Figure S1. Chromatin immunoprecipitation (ChIP) in non-tagged controls. (A-B) ChIP with α -Myc and α -HA was performed on non-tagged control wild type (JC727), $nejl\Delta$ (JC1342) and nejl-V338A (JC2659) cells in parallel with the ChIP experiments described in Figs. 1G-H and Fig. 2G. The inclusion of the Myc-epitope tag was previously shown to not compromise Nejl functionality (16) and (C) Drop assays with wild type (JC727), $lifl\Delta$ (JC1343), Lifl-3HA (JC2665), $rad50\Delta$ (JC3313) and Rad50-6HA (JC3306) show that the HA- epitope tagged fusions do not compromise sensitivity to genotoxic stress as the survival of the fusion are similar to wild type.

Figure S2. Resection in *exo1* Δ *rad50* Δ and in combination with other mutations. Resection of DNA 0.15kb and 4.8kb away from the HO DSB, as measured by % ssDNA at 0 and 6 hrs. post DSB induction in G1 cells in (A-B) wild type (JC3585), *exo1* Δ *rad50* Δ (JC3881), *exo1* Δ *rad50* Δ *nej1* Δ (JC3889), *exo1* Δ *rad50* Δ *yku70* Δ (JC3880) and *exo1* Δ *rad50* Δ nej1-V338A (JC3901). Error bars represent standard error of three replicates. Error bars represent standard error of three replicates. Significance was determined using 1-tailed, unpaired Student's t test where mutants were compared with wild type cells for changes in resection levels (P<0.01**). # indicates statistical difference compared to *rad50* Δ *yku70* Δ at P<0.01.

Figure S3. Mating types of all survivors in Fig 5D-F. (A-C) Mating type analysis of survivors of chronic DSB induction assays as in Fig 5D-F. Mating type of survivors was determined and interpreted as follows: α survivors, (mutated HO endonuclease), sterile survivors (small insertions and deletions) and "a-like" survivors (>700bps deletion) in (A) wild type (JC727), *lif1* Δ (JC1343), *nej1* Δ (JC1342), nej1-V338A (JC2659), *yku70* Δ (JC3848), *rad50* Δ (JC3313), *nej1* Δ *rad50* Δ (JC3314) and nej1-V338A *rad50* Δ (JC3833). (B) *sgs1* Δ (JC3757), *rad50* Δ *nej1* Δ *sgs1* Δ (JC3761), *rad50* Δ *yku70* Δ (JC3840) and *rad50* Δ nej1-V338A *sgs1* Δ (JC3846). (C) *exo1* Δ (JC3767), *rad50* Δ (JC3313), *rad50* Δ *nej1* Δ *exo1* Δ (JC3774). (D) PCR with deletion validation (DV) primers to detect the presence or loss of gDNA surrounding the HO cut site following the repair of a chronic DSB in *nej1*-V338A (JC2659) alpha, sterile and a-like survivors, with Pre1 serving as a control. Loss of PCR product signifies the deletion of a large region of gDNA on either side of the HO DSB during repair.

Strain	G1 arrested Cells (%G1)	asynchronous cells (%G1)
wt	89.42	39.34
nej1 Δ	95.01	44.40
nej1-V338A	99.16	32.50
yku70∆	93.13	35.14
$lifl\Delta$	90.60	33.83
$exol\Delta$	98.46	28.86
$sgs1\Delta$	100.0	37.52
$rad50\Delta$	100.0	34.35
$nejl\Delta \ exol\Delta$	93.96	26.08
$nejl\Delta sgsl\Delta$	97.61	34.19
nej 1Δ rad 50Δ	82.78	32.84
$nej1$ -V338A $exo1\Delta$	89.28	32.51
nej1-V338A sgs $l\Delta$	87.47	39.47
nej1-V338A rad 50Δ	95.19	35.02
yku70 Δ exo1 Δ	85.09	24.02
yku70 Δ sgs1 Δ	95.96	32.97
yku70 Δ rad50 Δ	97.94	30.10

Table S1: % G1 arrested cells following alpha-factor treatment vs asynchronous cells

I able 52. Strains used in this study

Strain	Genotyne	Reference
IC727	MATa: hml: ADE1 hmr: ADE1 ade3: GAL-HO ade1-100 leu2-3 112 lys5 trn1: hisG	IKM179 [36]
30727	urg3-52	JICINI / 7, [50]
IC1342	IC727 with nei1A::KanMX6	MAV015 [13]
JC1343	IC727 with <i>lif1</i> A.: <i>KanMX</i> 6	[13]
JC1687	IC727 with NF11_13Mvc ^{··} TRP1	[16]
JC2659	IC727 with neilA··KanMX6· neil-V338A··I/R 43	[16]
JC2655	IC727 with I IF1-3HA. TRP1	This study
JC2884	IC 2665 with neilA: KanMX6	This study
JC2004	IC1342 with neil-V338A-13Myc"TRPI	This study
IC3306	IC727 with R4D50-3HATRP1	This study
JC3307	IC3306 with neilA: KanMX6	This study
JC3313	IC727 with rad50A: IIR 43	This study
JC3314	IC727 with rad $50A$.: URA3 neilA.: KanMX6	This study
JC3315	IC727 with rad50A::UR43 nei1A::KanMX6	This study
JC3347	IC 3306 with neilA::KanMY6: neil-V338A::URA3	This study
JC3585	MATa: hml.: ADF1 hmr.: ADF1 ade 3::GAI_HO ade1 leu 2-3 112 lvs5 trn1: hisG ura3-52	This study
JC3632	IC 3585 with vku70A::KanMX6	This study
JC3754	IC3585 with sociA: NatRMXA	This study
JC3755	IC3585 with scalA: NatRMX4	This study
JC3757	IC727 with sos IA. NatRMX4	This study
JC3761	IC3314 with sgs1A:NatRMX4	This study
JC3767	IC727 with gro IA: NatRMX4	This study
JC3770	IC3314 with arolA: NatRMX4	This study
JC3828	IC2665 with $poilA:KanMY6: poil-V338A:UR43$	This study
JC3833	$IC2659$ with $rad50\Lambda$ $IIRA3$	This study
JC3835	$IC3848$ with $rad50\Delta$.: URA3	This study
JC3840	IC 3835 with sos 1A: Not RMX4	This study
JC3841	IC 3835 with exol ANatRMX4	This study
JC3846	IC 3833 with cost A:: NatRMX4	This study
JC3847	IC 3833 with erol A: NatRMX4	This study
IC3848	IC727 with $vku70\Lambda$.: KanMX6	This study
IC3850	IC 3632 with $sgs1A$ ··NatRMX4	This study
JC3877	IC3632 with $exo1A$. $NatRMX4$	This study
JC3878	$IC3632$ with $rad50\Lambda$. URA3	This study
JC3880	$IC3878$ with $exo1$ \land	This study
JC3881	IC3882 with $exo1A$. $NatRMX4$	This study
JC3882	$IC3585$ with $rad50\Lambda$ ·· $URA3$	This study
JC3883	JC3882 with sgs1 Δ ::NatRMX4	This study
JC3884	JC3585 with <i>nei</i> 1 A::KanMX6	This study
JC3885	JC3884 with sgs1A::NatRMX4	This study
JC3886	JC3884 with $exol\Delta$::NatRMX4	This study
JC3887	JC3884 with $rad50\Delta$::URA3	This study
JC3888	JC3887 with sgs1 Δ ::NatRMX4	This study
JC3889	JC3887 with exo1 A:: NatRMX4	This study
JC3896	JC3585 with $nej1\Delta$::KanMX6; $nej1$ -V338A::URA3	This study
JC3897	JC3896 with $rad50\Delta$::URA3	This study
JC3898	JC3896 with sgs1 Δ ::NatRMX4	This study
JC3899	JC3896 with exo1\Delta::NatRMX4	This study
JC3900	JC3897 with sgs1 Δ ::NatRMX4	This study
JC3901	JC3897 with exo1 A:: NatRMX4	This study
JC3906	JC3585 with $lifl\Delta$::KanMX6	This study
JC3907	JC3906 with $rad50\Delta$::URA3	This study
JC3928	JC3632 with $nej1\Delta$::KanMX6	This study
JC4010	JC3585 with mre11-3::URA3	[18]
JC4047	JC4010 with sgs1 Δ ::NatRMX4	This study

JC4048	JC4010 with <i>exo1</i> \Delta:: <i>NatRMX4</i>	This study
JC4049	JC4010 with $nej1\Delta$::KANMX6	This study
JC4051	JC4049 with sgs1::NATMX4	This study
JC4052	JC4049 with exo1::NATMX4	This study
JC4179	JC4010 with <i>nej1</i> -V338A:: <i>KANMX6</i>	This study
JC4180	JC4079 with sgs1::NATMX4	This study
JC4181	JC 4079 with exo1::NATMX4	This study

Table S3: Primers and probes used in this study

Primer Name	Primer Sequence (5'-3')
HO2 Forward Primer	TTGCCCACTTCTAAGCTGATTTC
HO2 Reverse Primer	GTACTTTTCTACATTGGGAAGCAATAAA
HO2 Probe	FAM-ATGATGTCTGGGTTTTGTTTGGGATGCA-TAMRA
HO6 Forward Primer	AATATGGGACTACTTCGCGCAACA
HO6 Reverse Primer	CGTCACCACGTACTTCAGCATAA
HO6 Probe	FAM-CCTGGTTTTGGTTTTGTAGAGTGGTTGACGA-TAMRA
SMC2 Forward Primer	AATTGGATTTGGCTAAGCGTAATC
SMC2 Reverse Primer	CTCCAATGTCCCTCAAAATTTCTT
SMC2 Probe	FAM-CGACGCGAATCCATCTTCCCAAATAATT-TAMRA
MAT1 Forward Primer	CCTGGTTTTGGTTTTGTAGAGTGG
MAT1 Reverse Primer	GAGCAAGACGATGGGGAGTTTC
MAT2 Forward Primer	ATTGCGACAAGGCTTCACCC
MAT2 Reverse Primer	CACATCACAGGTTTATTGGTTCC
Pre1 Forward Primer	CCCACAAGTCCTCTGATTTACATTCG
Pre1 Reverse Primer	ATTCGATTGACAGGTGCTCCCTTTTC
DV Forward Primer	CTCATCTGTGATTTGTGGAT
DV Reverse Primer	GAGGCAAGTAGATAAGGGTA