Supporting Information to the manuscript:

Key aromatic/hydrophobic amino acids controlling a cross-amyloid peptide interaction versus amyloid self-assembly

Maria Bakou, Kathleen Hille, Michael Kracklauer, Anna Spanopoulou, Christina V. Frost, Eleni Malideli, Li-Mei Yan, Andrea Caporale, Martin Zacharias and Aphrodite Kapurniotu

Table of contents

Title and authors	S-1
Table of contents	S-2
Supporting Tables	
Supporting Table 1: Average RMSD and SASA values from MD simulation.	S-3
Supporting Figures	S-4 – S-9
Supporting Figure S1. Determination of app. K_ds of interactions of IAPP and selected	
mutants with A β 42 via fluorescence spectroscopic titrations.	S-4
Supporting Figure S2. Determination of app. K _d s of of interactions of IAPP and selected	
mutants with IAPP via fluorescence spectroscopic titrations.	S-5
Supporting Figure S3. Pull-down assays of Biotin-4A-Aβ42 and Biotin-IAPP-Aβ42	
hetero-assemblies.	S-6
Supporting Figure S4. Effects of IAPP-GI and its Ala mutants on amyloidogenesis of	
Aβ40, Aβ42 and IAPP.	S-7
Supporting Figure S5. Solubilities of A15,23 and single Ala mutants at 50 and 20 μ M,	
respectively (aq. buffer, pH 7.4).	S-8
Supporting Figure S6. Calculated secondary structure contents of IAPP and its mutants at	
peptide concentrations 5-50 µM via deconvolutions of CD spectra.	S-9

Supporting Tables

IAPP &	Ca-RMSD (Å)	SASA (Å ²)
mutants		
IAPP	1.31 (±0.1)	205 (±57)
A23	1.13 (±0.1)	318 (±103)
A26	1.44 (±0.2)	159 (±73)
A15,23	1.15 (±0.1)	282 (±87)
4A	2.68 (±0.2)	568 (±145)

Supporting Table 1. Mean value (\pm SD) of C α -atom root-mean-square deviation (RMSD) and solvent-accessible surface area (SASA) calculated from MD simulation (3 μ s).

Supporting Figures

Supporting Figure S1. Determination of app. K_ds of interactions of IAPP and selected Ala mutants (5 nM) with A β 42 by fluorescence spectroscopic titrations. Fluorescence emission spectra of N^{α}-terminal fluorescein-labeled IAPP or mutants (Fluos-peptide) alone and after titration with A β 42 (Fluos-peptide/A β 42 as indicated) are shown for the following peptides: (A) IAPP; (B) 8A; (C) 4A; (D) A15,23,26; (E) A15,23; (F) A23,26; (G) A23; (H) A26; (I) A16. In the insets, the binding curves are shown; data are means (±SD) from three binding curves. Calculated app. K_ds are in Table 2.

Supporting Figure S2. Determination of app. K_ds of interactions of IAPP and selected Ala mutants (5 nM) with IAPP by fluorescence spectroscopic titrations. Fluorescence emission spectra of N^{α}-terminal fluorescein-labeled IAPP or mutants (Fluos-peptide) alone and after titration with IAPP ((molar ratios Fluos-peptide/IAPP as indicated)) are shown for the following peptides: (A) IAPP; (B) 8A; (C) 4A; (D) A15,23,26; (E) A15,23; (F) A23,26; (G) A23; (H) A26; (I) A16. In the insets, the binding curves are shown; data are means (±SD) from three binding curves. Calculated app. K_ds are in Table 2.

Supporting Figure S3. Pull-down assay of Biotin-4A- and Biotin-IAPP-A β 42 hetero-assemblies. Top: Anti-A β 42 Western blot (WB) analysis of a mixture of A β 42 (5 μ M) + Biotin-IAPP (2.5 μ M), a mixture of A β 42 (5 μ M) + Biotin-4A (2.5 μ M), A β 42 (5 μ M) alone, and Biotin-IAPP or Biotin-4A (2.5 μ M) alone as indicated following biotin pull-down and peptide dissociation from beads. Lane "A β 42 control", A β 42 not incubated with beads. Bottom: Anti-Biotin WB of same incubations as in upper panel. Results shown are representative of 3 assays.

Supporting Figure S4. Effects of IAPP-GI and its Ala mutants on amyloidogenesis of A β 40, A β 42 and IAPP. (**A**) Effects on A β 40 fibrillogenesis. Fibrillogenesis of A β 40 (16.5 μ M) alone or with IAPP-GI, 4A-GI or A23-GI (1/1) were determined by the ThT binding assay. (**B**) Effects on A β 42 fibrillogenesis. Fibrillogenesis of A β 42 (16.5 μ M) alone or with IAPP-GI, 4A-GI or A15,23-GI (1/1) were determined by the ThT binding assay. (**C**) Effects on amyloidogenesis of IAPP. Fibrillogenesis of IAPP-GI or 4A-GI (1/1) was followed by the ThT binding assay. All data shown in (**A-C**) are means (±SD) from 3 assays.

Supporting Figure S5. Solubilities of A15,23 and single Ala mutants at 50 and 20 μ M, respectively (aq. buffer, pH 7.4). Mutants were incubated for 7 days and solubilities were determined by a sedimentation assay (means (±SD), 3 assays). Peptide amounts (% of total) in supernatants at 7 days of incubation are shown; a mutant is judged as soluble when \geq 80% is found in supernatant (indicated by a dotted red line).

Supporting Figure S6. Calculated secondary structure contents of IAPP and mutants via deconvolutions of CD spectra at peptide concentrations of 5 μ M (**A**), 10 μ M (**B**) and 50 μ M (**C**).