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1 Preliminary analysis of the ADNI Study

In this preliminary analysis, we simultaneously model the longitudinal ADAS-Cog 11 score and time

to AD diagnosis in a joint modeling framework, with the baseline hippocampal volume (bHV ) as

a scalar covariate, because degree of atrophy within the medial temporal lobe structures, especially

within the hippocampus, was reported to be sensitive to the disease progression.

Model 1 (refer to as JM1) includes baseline age (bAge), gender (gender), years of education (Edu),

and presence of the apolipoprotein E allele (APOE–ε4) as scalar covariates given their potential effects

on disease progression in AD [1–3].

ADAS–Cogi(tij) = mi(tij) + εij

mi(tij) = β0 + β1tij + β2bAgei + ui

h(t) = h0(t) exp{γ1genderi + γ2bAgei + γ3Edui + γ4APOE–ε4 + αmi(t)},

where random effects ui ∼ N(0, σ2
u). Model 2 (referred to as JM2) and Model 3 (referred to as

JM3) are similar to model JM1, but include variable bHV in the longitudinal submodel and survival

submodel, respectively. Model 4 (referred to as JM4) is similar to model JM1, but includes variable

bHV in both the longitudinal and survival submodels.
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JM1 JM2 JM3 JM4

AIC 10525 10472 10514 10454

Table 1: Akaike information criterion (AIC) from four joint models for the ADNI study.

Table 1 displays the values of AIC from these four models. All three joint models with baseline

hippocampal volume (bHV ) as a covariate (models JM2, JM3, and JM4) have smaller AIC values

than model JM1, indicating that incorporating hippocampal volume information, in addition to

clinical and genetic characteristics, can improve the joint model fit. Model JM4 yields the smallest

AIC value of 10454, suggesting that the baseline hippocampal volume is associated with both ADAS-

Cog 11 score and time to AD diagnosis. The results from model JM4 are presented in Table 2.

Parameters MLE SE p
For longitudinal outcome
ADAS-Cog 11 Time (Years) 0.425 0.047 <0.001

bAge −0.389 0.254 0.125
bHV (mm3) −1.878 0.221 <0.001

For survival process
MCI to AD Female −0.161 0.167 0.331

bAge −0.181 0.0867 0.037
Edu (years) −0.004 0.026 0.866
APOE -ε 0.397 0.167 0.018
bHV (mm3) −3.559 0.928 <0.001
α 0.108 0.019 <0.001

Table 2: ADNI data analysis results from model JM4 with baseline hippocampal volume (bHV ) as
covariates in both longitudinal and survival submodels. Parameter α is the association parameter
which measures the strength of the association between the trajectory of ADAS-Cog 11 and time to
AD diagnosis.
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2 Hippocampus Image Processing

For image processing, we adopt a surface fluid registration package [4] which has been used in various

studies [5–8]. The original imaging data, 3D brain MRI scans, are downloaded from

www.loni.ucla.edu/ADNI. The hippocampal surfaces are automatically segmented using FMRIB’s

Integrated Registration and Segmentation Tool) (FIRST) [9], an integrated surface analysis tool

developed as part of the FSL library [10]. After the segmentation, the cortical surface of left and

right hippocampi are extracted. The surface is the outer layer of the brain region and has an inherent

2D structure. Then the surface is modeled as a mesh of triangles for each side of the hippocampi.

Each triangle is know as a face. The place where the corners of the triangles meet is called a

vertex. The coordinates (i.e., the X, Y, and Z) at each vertex are determined from the MRI during

the extraction process. In order to do the registration, the surfaces are first conformally mapped

to a rectangle plane using holomorphic 1-forms. This process is similar to unfolding a paper bag

with edges being sealed together. A feature images of the surfaces is computed from this conformal

representation, and are registered to a chosen template image via inverse consistent surface fluid

registration. Using conformal mapping, the surface registration problem is essentially converted into

an image registration problem. Because of the one-to-one correspondence of points on the feature

image and the vertices on the surface mesh, the registered feature image can be recovered in the

original hippocampal surfaces. Detailed image processing and registration procedure can be found

in Shi et al [4].
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Figure 1: The top and bottom views of one MCI patient’s hippocampal radial distance denoted by
colors.

Each registered surface corresponding to the either left or right hippocampal surfaces contains

15,000 vertices. Knowledge of the coordinates of the vertices allows us to compute several surface

statistics, including radial distance, multivariate tensor-based morphometry (mTBM), determinant

of the Jacobian matrix, and two eigenvalues of the Jacobian matrix. Specifically, we adopt radial

distance as our target measurement. Figure 1 displays the hippocampus surface morphology of one

patient with radial distance being coded in colors. We align the points on the two-dimensional feature

image to a one-dimensional domain (denoted by S) in a particular order, where the order is preserved

across all vertices. The corresponding radial distances of vertices are thus vectorized to form a one-

dimensional functional predictor denoted by g
(x)
i (s). The coefficient function B(x)(s) is defined on

the same domain as g
(x)
i (s). The one-to-one correspondence between the points on domain S and the

vertices on surfaces allows us to map g
(x)
i (s) and B(x)(s) to the hippocampal surface easily. Figure 2

displays the data processing procedure along with an illustration of a functional joint model.
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Figure 2: Hippocampus image processing procedure along with an illustration of a functional joint
model.

3 Implementing the EM Algorithm

The estimation of the joint likelihood function L(θ) =
∏I

i=1 p(yi, Ti, δi|θ) can be achieved by using

Expectation-Maximization (EM) algorithms, where in the E-step the unknown random effects are

treated as missing values. The log-likelihood function for the observed data is

`(θ) =
I∑
i=1

{
log p(yi|θ,ui) + log p(Ti, δi, |θ,ui) + log p(ui;θ)

}
.

To simplify the notation in models (3) and (4), we let x∗i (tij) =
[
1,x>ij, (ξ

(x)
i )>

]>
as the covariates

vector recorded at time tij from the study onset, β∗ =
[
β′0,β

>, (B(x))>
]>

, zi(tij) = zij, w
∗
i =[

w>i , (ξ
(w)
i )>

]>
, and γ∗ =

[
γ>, (B(w))>

]>
. Then models (3) and (4) can be expressed as

yi(t) = mi(t) + εij, where mi(t) = x∗i (t)
>β∗ + zi(t)

>ui,

and h(t) = h∗0(t) exp{w∗>i γ∗ + αmi(t)}.
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In the E-step, the expected complete log-likelihood function given the conditional distribution of

random effect is

Q(θ|θ(m)) =
I∑
i=1

∫ {
log p(yi|θ,ui) + log p(Ti, δi, |θ,ui) + log p(ui;θ)

}
p(ui|yi, Ti, δi;θ(m))dui,

where θ(m) denotes the parameters at the current iteration. In the M-step, the residual variance and

the covariance matrix of the random effects ui in the longitudinal submodel can be updated using

closed-form expressions,

σ̂2
ε =

1∑I
i=1 Ji

I∑
i=1

(
yi −X∗iβ∗

)>(
yi −X∗iβ∗ − 2ZiE(ui|yi, Ti, δi;θ(m))

)
+tr

(
Z>i ZiV ar(ui|yi, Ti, δi;θ(m))

)
+ E(ui|yi, Ti, δi;θ(m))>Z>i ZiE(ui|yi, Ti, δi;θ(m)),

Σ̂u =
1∑I
i=1 Ji

I∑
i=1

V ar(ui|yi, Ti, δi;θ(m)) + E(ui|yi, Ti, δi;θ(m))E(ui|yi, Ti, δi;θ(m))>,

where X∗i =
[
x∗>i (ti1), · · · ,x∗>i (tiJi)

]>
, Zi =

[
zi1, · · · , ziJi

]>
, tr is the trace function of a matrix, E

denotes the expectation function, and V ar represents the variance function.

There are no closed-form solutions for the fixed effects β∗ and the parameters of the survival

submodel. The one-step Newton-Raphson algorithm can be implemented to update the parameters.

β̂
∗(m+1)

= β̂
∗(m)
− (∂S(β̂

∗(m)
)/∂β>)−1S(β̂

∗(m)
),

where β̂
∗(m)

denotes the value of β∗ at the current iteration, and the corresponding score vector is

S(β∗) =
I∑
i=1

1

σ2
ε

X∗>i
(
yi −X∗iβ∗ −ZiE(ui|yi, Ti, δi;θ(m))

)
+ δiαx

∗
i (Ti)

− exp(w∗>i γ
∗)

∫ ∫ Ti

0

h∗0(t)αx
∗
i (t) exp

(
x∗i (t)

>β∗ + zi(t)
>ui
)

×p(ui|yi, Ti, δi;θ(m))
)
dtdui.

The ∂S(β̂
∗(m)

)/∂β> denotes the corresponding blocks of the Hessian matrix, and is approximated

using forward difference methods. The integral with respect to time and the integral with respect to

random effects are evaluated via a pseudo-adoptive Gaussian-Hermit quadrature rule [11].
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Parameters in the survival submodel are updated in a similar fashion. The score vectors corre-

sponding to γ∗, α, θh∗0 are

S(γ∗) =
I∑
i=1

w∗i
[
δi − exp(w∗>i γ

∗)

∫ ∫ Ti

0

h∗0(t) exp
(
α{x∗i (t)>β∗ + zi(t)

>ui}
)

·p(ui|yi, Ti, δi;θ(m))
)
dtdui

]
,

S(α) =
I∑
i=1

δi{x∗i (Ti)>β∗ + zi(Ti)
>ui}

− exp(w∗>i γ
∗)

∫ ∫ Ti

0

h∗0(t) exp
(
α{x∗i (t)>β∗ + zi(t)

>ui}
)
p(ui|yi, Ti, δi;θ(m))dtdui,

S(θh∗0) =
I∑
i=1

δi
∂h∗0(Ti;θh∗0)

∂θ>h∗0

− exp(w∗>i γ
∗)

∫ ∫ Ti

0

∂h∗0(t;θh∗0)

∂θ>h∗0
exp

(
α{x∗i (t)>β∗ + zi(t)

>ui}
)
p(ui|yi, Ti, δi;θ(m))dtdui.

The E-step and M-step iterate until a pre-specified convergence criterion is met, and the maximum

likelihood estimator (MLE) θ̂ is obtained.

By employing forward difference approximation, the Hessian matrix ∂S(θ)/∂θ> can be calculated

using the functions that compute the score vector. The estimated observed information matrix is

achieved by I(θ̂) = −∂S(θ)/∂θ>|θ=θ̂, and subsequently variance-covariance matrix for the MLE via

V̂ ar(θ̂) = I(θ̂)−1.
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4 Application to the ADNI Study

Parameters MLE SE p

B
(x)
1 1.778 0.424 <0.001

B
(x)
2 −0.528 0.546 0.333

B
(x)
3 0.122 0.600 0.839

B
(x)
4 1.796 0.752 0.017

B
(x)
5 1.052 0.857 0.220

B
(x)
6 −1.724 0.994 0.083

B
(x)
7 −1.406 0.954 0.140

B
(x)
8 1.629 1.234 0.187

B
(x)
9 3.228 1.086 0.003

B
(x)
10 −6.743 1.300 <0.001

B
(x)
11 −4.043 1.506 0.007

B
(x)
12 −1.955 1.343 0.146

B
(x)
13 1.823 1.423 0.200

B
(x)
14 −1.451 1.574 0.357

B
(x)
15 −3.518 1.475 0.017

B
(x)
16 −5.205 1.808 0.004

B
(x)
17 −0.165 1.569 0.916

B
(x)
18 9.129 1.943 <0.001

B
(x)
19 3.757 2.034 0.065

B
(x)
20 3.548 1.830 0.053

Table 3: The estimated coefficients for the 20 FPC scores derived from hippocampal radial distance
(HRD). Model: the proposed functional joint model FJM1 with HRD as a functional predictor in
the longitudinal submodel.
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