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1 Additional Simulations

We conduct additional simulations to study the robustness and performance of BClustLonG
in different scenarios. Specifically, we simulate datasets with different number of genes,
different number of clusters, and with different correlation structures among genes to study
the performance of BClustLonG. Moreover, we simulate datasets where the intercepts and
slopes are drawn from multivariate t distributions to study the robustness of BClustLonG
to model misspecifications.

We adapt scenario RR in the paper to generate new simulation datasets as follows. The
additional simulation scenarios have the same setup as in scenario RR for most parameters
and the modified parameters are specified below.

• Scenario 1: We double the number of genes, that is G = 80. The intercepts and
slopes for patients in each cluster are drawn from multivariate normal distributions.
The means of intercepts and slopes are 1G for patients in cluster one and are 0G
for patients in cluster two. The covariance matrices of the intercepts and slopes for
patients in both clusters are taken to be the block diagonal matrix as [R 0

0 R ].

• Scenario 2: We generate the intercepts and slopes from multivariate t distributions with
degrees of freedom being 10. The means of intercepts and slopes are 1G for patients
in cluster one and are 0G for patients in cluster two. The covariance matrices of the
intercepts and slopes for patients in both clusters are taken to be R.

• Scenario 3: The true number of clusters is four with each cluster having 25 patients.
The intercepts and slopes for patients in each cluster are drawn from multivariate
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normal distributions. The means of intercepts (and slopes) are −2G, 0G, 2G, and 4G
for patients in cluster one, two, three, and four, respectively. The covariance matrices
of the intercepts and slopes for patients in all clusters are taken to be R.

• Scenario 4: The setup is the same as that in scenario 3 except that the means and
covariance matrices are changed. Specifically, the means of intercepts (and slopes) are
−1G, 0G, 1G, and 2G for patients in cluster one, two, three, and four, respectively. The
covariance matrices of the intercepts and slopes for patients in all clusters are taken to
be the AR1 structure (autoregressive structure of order 1) with parameter 0.4.

• Scenario 5: The setup is the same as that in scenario 4 except that the covariance
matrices are changed. Specifically, the covariance matrices of the intercepts and slopes
for patients in all clusters are taken to be a randomly generated covariance matrix,
which is done using the function genPositiveDefMat in R package “clusterGeneration”.

Table S1: Comparisons of BClustLonG, BClustLonG0, MCLUST, EPGMM, and K-means
in simulation settings. The numbers in each cell indicate the average adjusted Rand index
(Avg.Rand) and the average number of clusters (Avg.Clust) estimated by each method under
each scenario with standard deviations in parentheses.

Scenarios BClustLonG BClustLonG0 MCLUST EPGMM K-means

1
Avg.Rand 0.995 (0.013) 0.347 (0.048) 0.473 (0.085) 0.300 (0.470) 0.844 (0.088)
Avg.Clust 2.1 (0.3) 8.5 (1.4) 4.2 (0.6) 1.3 (0.5) 2.0 (0.0)

2
Avg.Rand 0.924 (0.048) 0.251 (0.062) 0.293 (0.153) 0.000 (0.000) 0.429 (0.134)
Avg.Clust 3.8 (1.4) 8.8 (1.8) 3.6 (0.9) 1.0 (0.0) 2.0 (0.0)

3
Avg.Rand 1.000 (0.000) 0.884 (0.097) 0.874 (0.207) 0.136 (0.216) 0.565 (0.184)
Avg.Clust 4.0 (0.0) 5.5 (1.2) 4.8 (0.9) 2.1 (0.5) 2.3 (0.7)

4
Avg.Rand 0.937 (0.160) 0.864 (0.157) 0.562 (0.083) 0.000 (0.000) 0.488 (0.008)
Avg.Clust 3.8 (0.6) 3.6 (0.6) 2.7 (1.0) 1.0 (0.0) 2.0 (0.0)

5
Avg.Rand 0.999 (0.006) 0.818 (0.198) 0.567 (0.095) 0.000 (0.000) 0.491 (0.004)
Avg.Clust 4.0 (0.0) 3.5 (0.8) 2.9 (1.3) 1.0 (0.0) 2.0 (0.0)

From Table S1, we can see that BClustLonG performs better than other methods in all
of these scenarios, suggesting that BClustLonG is robust to varying number of genes and
clusters, different covariance matrices, and model misspecifications.

2 Sensitivity Analysis

Next, we study the sensitivity of BClustLonG to the prior distributions for αa1 and αa2 (αb1
and αb2), which are taken to be Gamma(2,1) for our analyses in simulations and real data
application. Specifically, we adopt Gamma(5,2), Gamma(5,5), and Gamma(8,1) as the prior
distributions for αa1 and αa2 and compare the results to that of using Gamma(2,1). For each
of the prior distributions, we run one chain with the same configuration as that described in
Section 3.2 of the main text.
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As shown in Figure S1, the posterior similarity matrices resulted from using different
prior distributions for αa1 and αa2 are similar. Some minor differences exist in the upper
right corner, where the patients tend to be clustered together slightly more often in the
setting of using Gamma(5,5) compared to other settings. However, the two major clusters
using HCLUST are the same for all these settings with the same adjusted Rand index (0.94),
suggesting that BClustLonG is not very sensitive to the prior distributions for αa1 and αa2.

Furthermore, the prior distributions for αa1 and αa2 mainly determines how well the co-
variance matrices are approximated. We can see that BClustLonG performs consistently well
for all scenarios, even where the covariance matrices differ substantially (shown in Section 1
above and the Simulation Section of the paper), again suggesting that the performance of
BClustLonG is not very sensitive to the prior distributions for αa1 and αa2.
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Figure S1: The posterior similarity matrices generated by using different hyperparameters
specifications in the prior distributions for αa1 and αa2 in the injury data application.
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3 MCMC algorithm

Finally, we provide the detailed MCMC sampling algorithm for our proposed method,
BClustLonG, which clusters on both intercepts and slopes. The algorithms for BClust-
LonG that clusters only on intercepts or slopes can be easily adapted from the algorithm
below. Notationally, let [v]i denote the ith element of any vector v and [V ]ij, [V ]·j, and
[V ]i· denote the (i, j)th entry, the jth column, the ith row of any matrix V , respectively.
Also, let K denotes the number of clusters at the current iteration (note that the number of
clusters is changing from iterations to iterations) and nk be the number of subjects belonging
to kth cluster. And, let ei be the cluster membership for subject i, that is ei = k if subject
i belongs to the kth cluster.

The MCMC sampling proceeds in the following steps:

1. The random intercept coefficients for each subject are drawn as follows.

ai|... ∼ MVN

(
Ωa

{
Σ−1
a0 aµi +

Ti∑
t=1

Σ−1 {Yi(xit)− bixit}

}
,Ωa

)
, (S1)

where Σa0 = ΛaΛ
T
a + Σa, Ω−1

a = Σ−1
a0 + TiΣ

−1, and |... denotes the distribution is
conditional on all other parameters.

2. The random slope coefficients for each subject are drawn as follows.

bi|... ∼ MVN

(
Ωb

{
Σ−1
b0 bµi + Σ−1

Ti∑
t=1

xit{Yi(xit)− ai}

}
,Ωb

)
, (S2)

where Σb0 = ΛbΛ
T
b + Σb and Ω−1

b = Σ−1
b0 + Σ−1(

∑Ti
t=1 x

2
it).

3. The gene specific variances are drawn as follows.

[Σ]gg|... ∼ Inverse Gamma

(
v1 +

1

2

∑
i

Ti, v2 +
1

2

∑
i

Ti∑
t=1

{Yig(xit)− aig − bigxit}2

)
,

(S3)
where v1, v2 are the hyperparameters in the prior distribution for [Σ]gg.

4. The cluster-specific mean of intercept coefficients (a
(k)
µ ) are drawn as follows.

a(k)
µ |... ∼ MVN

(
Ω(k)
a

(
Σ−1
a0

∑
i:ei=k

ai + σ−2
a0 IGaµ0

)
,Ω(k)

a

)
, (S4)

where Ω
(k)
a =

{
σ−2
a0 IG + nkΣ

−1
a0

}−1
, Σa0 = ΛaΛ

T
a + Σa, and {aµ0, σ

2
a0} are the hyper-

parameters in the base distribution of the DP prior.
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5. The overall mean of intercept coefficients (aµ0) are drawn as follows.

aµ0|... ∼ MVN

(
Ωa0

(
σ−2
a0

∑
k

a(k)
µ

)
,Ωa0

)
, (S5)

where Ωa0 =
{
Kσ−2

a0 IG + h−1IG
}−1

.

6. The elements of diagonal covariance matrix for intercepts are drawn as follows.

[Σa]gg|... ∼ Inverse Gamma

(
v1 +

N

2
, v2 +

1

2

N∑
i=1

(aig − [aµi]g − [Λaηai]g)
2

)
, (S6)

where v1, v2 are the hyperparameters in the prior distribution for [Σa]gg.

7. The hyperparameter σ2
a0 in the base distribution for intercepts in the DP prior are

drawn as follows.

σ2
a0|... ∼ Inverse Gamma

(
v1 +

N

2
, v2 +

1

2

K∑
k=1

G∑
g=1

(
[a(k)
µ ]g − [aµ0]g

)2

)
, (S7)

where v1, v2 are the hyperparameters in the prior distribution for σ2
a0.

8. The subject specific factor scores for intercepts ηai are drawn as follows.

ηai|... ∼ MVN
(
Ωηa

{
ΛT
aΣ−1

a (ai − aµi)
}
,Ωηa

)
, (S8)

where Ω−1
ηa = ΛT

aΣ−1
a Λa + IMa.

9. The loading matrix Λa for the intercepts are drawn as follows.

[Λa]g·|... ∼ MVN
(
ΩΛa{[Σa]

−1
gg η

T
a ([A]·g − [Aµ]·g)},ΩΛa

)
, (S9)

where Ω−1
Λa = [Σa]

−1
gg η

T
a ηa +Dg, Dg is a diagonal matrix with [Dg]mm = [φa]gm[τa]m

,ηTa = [ηa1, ...,ηan], [A]·g is the gth column of A = [a1, ...,an]T , and [Aµ]·g is the gth
column of Aµ = [aµ1, ...,aµn]T .

This updating rule is for a fixed number of factors Ma. A straightforward adaptive
updating rule can be derived to tune the number of factors as the sampler progresses.
Specifically, let p(s) = exp{κ1 + κ2s} (κ1 and κ2 are some pre-specified negative num-
bers) and u(s) be a Uniform(0,1) random number generated at the sth iteration. At
the sth iteration, if u(s) ≤ p(s), we discard the columns in the loading matrix having
all elements within some pre-specified small neighborhood of zero. If no such columns
exists, we add a column to the loading matrix. We refer to [1] for more detailed
discussions on this adaptive updating rule.
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10. The variance parameters φa for the loading matrix of intercepts are drawn as follows.

[φa]gm|... ∼ Gamma

(
v +

1

2
, v +

1

2
[Λa]

2
gm[τa]m

)
, (S10)

where v are the hyperparameters in the prior distribution for φa.

11. The parameters γa, which determine the variance parameters τa for the loading matrix
of intercepts, are drawn as follows.

[γa]m|... ∼ Gamma

(
αa2 +

1

2
G(Ma −m+ 1), 1 +

1

2

Ma∑
l=m

[τa]
(m)
l

(
G∑
g=1

[φa]gl[Λa]
2
gl

))
, ∀m ≥ 2,

(S11)

where α2 are the hyperparameters in the prior distribution for γa and [τa]
(m)
l = [τa]l

[γa]m
.

For m = 1, the conditional distribution is in the same form except that the αa2 is
replaced by αa1.

12. The hyperparameters αa2 and αa1 are drawn using Metropolis Hasting. The conditional
density of αa2 and αa1 can be written as

f(αa1|...) ∝ Ψ(αa1; 2, 1)Ψ([γ]1;αa1, 1), (S12)

f(αa2|...) ∝ Ψ(αa2; 2, 1)
Ma∏
m=2

Ψ([γa]m;αa1, 1), (S13)

where Ψ(·; a, b) is the density function of a gamma distribution with shape and scale
being a and b, respectively. Then, a Metropolis Hasting updating algorithm can be
used to draw αa1 using N(0, s2) as proposing distribution on the transformed variable
log(αa1), where s2 is the variance parameter that can be used to tune the rejection
rate. The parameter αa2 can be drawn using a similar strategy.

13. The corresponding parameters for the slopes {b(k)
µ , bµ0,Σb, σ

2
b0,ηbi,Λb,φb,γb, αb1, αb2}

can be drawn similarly as shown in Equations (S4) - (S13).

14. The concentration parameter c in the DP prior is drawn using Metropolis Hasting. It
is well known that the distribution of c depends only on K and the number of subjects
N [2]. More specifically,

f(c|N,K) ∝ cKΓ(c)π(c)/Γ(c+N), (S14)

where π(c) is the prior distribution on c, which is Uniform(0, 10) in our case. Then,
a Metropolis Hasting updating algorithm can be used to draw c using N(0, s2) as
proposing distribution on the transformed variable log(10−c

c
), where s2 is the variance

parameter that can be used to tune the rejection rate.
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15. The cluster membership indicators for each subject are drawn as follows. For cluster
k, which is occupied by some subjects excluding subject i, we have

P (ei = k|e−i, ...) = ln
(−i)
k Φ

(
ai;a

(k)
µ ,Σ(k)

a

)
Φ
(
bi; b

(k)
µ ,Σ

(k)
b

)
(S15)

where l is some normalizing constant shared across all clusters, n
(−i)
k is the number

of subjects in the kth cluster excluding subject i, Φ(·;µ,Σ) is the density function
for the multivariate normal distribution with mean µ and covariance matrix Σ, and
{a(k)

µ ,Σ
(k)
a , b

(k)
µ ,Σ

(k)
b } are the cluster specific means and variances for intercepts and

slopes, respectively, which can be calculated as

a(k)
µ = Σ(k)

a

Σ−1
a0

∑
j:ej=k,j 6=i

aj + σ−2
a0 IGaµ0

 , (S16)

Σ(k)
a =

{
σ−2
a0 IG + Σ−1

a0 n
(−i)
k

}−1

, (S17)

b(k)
µ = Σ

(k)
b

Σ−1
b0

∑
j:ej=k,j 6=i

bj + σ−2
b0 IGbµ0

 , (S18)

Σ
(k)
b =

{
σ−2
b0 IG + Σ−1

b0 n
(−i)
k

}−1

, (S19)

where Σa0 and Σb0 are the same as in Equations (S1) and (S2).

For a new cluster k̃, we have

P (ei = k̃|e−i, ...) = lcΦ
(
ai;aµ0, σ

2
a0IG

)
Φ
(
bi; bµ0, σ

2
b0IG

)
, (S20)

where c is the concentration parameter in the DP prior and {aµ0, σ
2
a0, bµ0, σ

2
b0} are the

means and variances for intercepts and slopes, respectively, in the base distribution.

Then, the indicators are drawn from a multinomial distribution for all possible clusters
with corresponding probabilities given by Equations (S15) and (S20).
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