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I. THE DFT+EDMFT THEORETICAL
METHOD

We use the theoretical ab-initio method for correlated
materials [2], which combines the Density Functional
Theory with the Embedded Dynamical Mean Field The-
ory (DFT+EDMFT) [3, 4] in a functional form [5]. The
corresponding functional being extremized is defined in
real space [5, 6], and takes the form

Γ[{G}] = Tr log(−G)− Tr((G−1
0 −G−1)G)

+Φ[{G}] + Enuclei (1)

where

Φ[{G}] = EH [ρ] + EXC [ρ]

+
∑
R∈Ni

ΦDMFT
VDMFT [{GR

local}]− ΦDCVDMFT [{ρRlocal}] (2)

and EH , EXC and ΦDMFT are the Hartree, the
LDA exchange-correlation functional and the DMFT
Luttinger-Ward functional. ΦDCVDMFT [{ρRlocal}] is the ex-
act double-counting [7], computed by solving an auxil-
iary electron gas problem, interacting by the screened
Coulomb repulsion VDMFT . [7] Here the screened in-
teraction VDMFT in the real space is parametrized by
VDMFT (r) = e−λr/(εr), and λ and ε are determined
so that they give estimated values for the Slater in-
tegrals. We estimate that the Slater monopole term
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F 0 = 〈φ, φ|VDMFT |φ, φ〉 is 7 eV for Ni atoms, and Hund’s
coupling J = 1.1 eV (corresponding to Slater F 2 = 9.5 eV
and F 4 = 5.9 eV), which uniquely fixes λ ≈ 1.52/a.u. and
ε = 1.31 for our quasi-atomic orbitals φR(r), defined be-
low. We use the Slater form of the Coulomb repulsion in
its rotationally invariant form.

In our embedded DMFT approach, the local Green’s
function is obtained by projection in real space

GR
local(r, r

′;ω) =
∑
α,β

〈r|φRα 〉 〈φRα |G(ω)|φRβ 〉 〈φRβ |r′〉 (3)

and φR(r) are the 3d solutions of the Schroedinger equa-
tion on the Ni ions (inside the muffin-tin sphere) us-
ing DFT Kohn-Sham potential inside the sphere. As
these states are not bound states, the energy at which
the Schroedinger equation is solved needs to be chosen
properly. We use the Fermi energy as the chosen energy
at which the Schroedinger equation is solved to obtain
φR(r).

Note that in this approach, the Dyson equation

G−1(r, r′) = G−1
0 − VH − VXC − ΣDMFT + ΣDC , (4)

(obtained by direct extremization of the functional Eq. 1)
is solved in the large Hilbert space spanned by the LAPW
basis functions, which is very different from many other
approaches, which commonly implement DFT+EDMFT
in a Wannier basis, and therefore use approximations,
such as downfolding or constructing approximate Hub-
bard Hamiltonians.

The functional derivative of the DMFT functional re-
quires the following self-energy in the Dyson equation

ΣDMFT (r, r′) =
∑
α,β

〈r|φRα 〉
δΦDMFT [{Glocal}]

δGlocal βα
〈φRβ |r′〉(5)

hence we calculate the self-energy δΦDMFT [{Glocal}]
δGlocal βα

=

Σα,β , which is being computed by the continuous
time quantum Monte Carlo impurity solver [8]. The
(L)APW+lo basis and the Kohn-Sham Hamiltonian
VH + VXC are constructed by the Wien2k algorithm [9].
We use LDA parametrization for the DFT exchange-
correlation functional, as it is more precise for heavier
atoms.

We also treat Nd atoms with the DMFT, but we use
Hubbard-I impurity solver for Nd atoms, as the electrons
on these atoms are very localized at 100 K. We found
that merely adding Nd atoms to core, as is commonly
done, leads to underestimation of the size of Nd ions,
and therefore not sufficiently precise predictions of crys-
tal structures. Note also that the correlated Ni-d states
are treated dynamically by the DMFT and are simulated
at finite temperature, while the itinerant states (from
oxygen and Ni-s, etc) are treated within LDA exchange
correlation approximation.

The functional form of our DFT+EDMFT method al-
lows us the compute forces on all atoms by taking the

analytic derivative of the free energy functional [6]. The
implementation of forces [6] is essential for obtaining the
equilibrium structures of the method, and computing the
free energy difference between competing crystal struc-
tures. Namely, taking the structure from experiment,
or from DFT optimization, results in theoretical energy
of the order of 10-30 meV above the minimum energy,
which is much larger than the energy differences we are
interested in across metal-insulator transition.

It turns out that the calculation of the force is more
stable and less affected by the Monte-Carlo noise than
computing the value of the functional itself, as shown
in Ref. 6. This is because the free energy requires the
calculation of the ΦDMFT functional, which contains the
electronic entropy, and can only be computed by an in-
tegral over temperature. The force, on the other hand,
requires only the self-energy, which can be very efficiently
calculated by the Monte Carlo impurity solvers. We thus
computed the free energy differences by computing the
force along the path between two structures, and we inte-
grated the force, to obtain the free energy along the path
between two structures. Using this method, we achieved
statistical error bars from Monte Carlo simulation to be
smaller than 0.25 meV/f.u.

II. METAL-INSULATOR TRANSITION IN
LuNiO3 AND ITS COMPARISON TO NdNiO3

Similarly to NdNiO3 the DFT+EDMFT method pre-
dicts a metal insulator transition in other rare-earth nick-
elates, and in Fig. 1 we are displaying the transition in
LuNiO3, which is theoretically particularly simple, as the
f -shell is fully filled. In Fig.1 of the main text, and in
this Fig. 1 we show the free energy along the path be-
tween the two theoretically optimized structures. We are
using a linear interpolation between the two structures
(Ri(d) = Ri

Pbnm + (Ri
P21/n

−Ri
Pbnm)d, d =distortion).

It is clear from Fig. 1 that below about 500 K the
insulating state with bond disproportionation becomes
stable, and that a clear double-well free energy profile
emerges, typical for a first order phase transitions. For
stability of the insulating state, the magnetic long range
order is not necessary in LuNiO3, because Lu ion is much
smaller than Nd ion, and requires much stronger octahe-
dra rotations, and consequently longer Ni-O bond dis-
tance (1.97Å in LuNiO3 versus 1.95Å in NdNiO3). The
theoretical disproportionation of the bond lengths of the
two octahedra is also larger in LuNiO3, Ni1 (Ni2) octahe-
dra have bond-length 2.007 (1.927) as compared to their
bond-length in NdNiO3, which is 1.978 ( 1.917).

At 100 K Pbnm structure is still a local minimum, but
extremely shallow, while P21/n structure have around
6 meV per formula unit lower energy then Pbnm struc-
ture. We also notice that the gap opens in single particle
spectra once the system climbs across the barrier and the
free energy slopes towards the insulating minimum, hence
we clearly see opening of the Mott gap at half distortion
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FIG. 1: Energetics and spectra of LuNiO3 in paramagnetic state at T = 100 K and T = 500 K. The top row
shows the spectral function A(k, ω) at 100 K and at three different distortion levels, in the Pbnm structure (zero

distortion), half way towards equilibrium structure, and in the equilibrium P21/n structure.

towards P21/n structure.

We notice in passing that to properly compute the
energetics of the metal-insulator transition, it is crucial
to optimize the structure in both minima. For exam-
ple, if one optimizes the P21/n (Pbnm) structure within
GGA+U (GGA) method, and then uses this structure
to compute the DMFT free energy, the resulting free en-
ergy is 33 meV/f.u. (25 meV/f.u.) higher than in the
optimized structure, which is five-times more that the
energy difference between the two structures. For exam-
ple, in Ref. 10 three different theoretical methods were
combines in attempt to compute the total energy pro-
file across the metal insulator transition: to optimize the
Pbnm structure GGA was used, to optimize P21/n struc-
ture GGA+U was used, and to compute the total energy
along the path DFT+EDMFT method was used. In this
case the path was connecting two structures which are
very far from their respective equilibrium, and therefore
can not characterize the free energy lanscape of the the-
oretical solutions.

Finally, let us show the self-energy of the two com-
pounds in the paramagnetic insulating state (see Fig. 2).
The larger octahedra containing Ni1 in the center harbor
almost all fluctuating moment, therefore the self-energy
has a pole in the Mott gap. On the other hand, Ni2 ions
in the small octahedra are bonded with oxygen, develop
a band gap, and show very weak renormalization of the
electronic structure, as previously explained in Ref. 11.
The fluctuating magnetic moment on Ni2 sites is neg-

ligible. Notice also that orbital splitting is completely
negligible in NdNiO3, while it gets somewhat enhanced
in LuNiO3.

FIG. 2: The electronic self-energy in the
equilibrium structure at 100 K in the paramagnetic

insulating state.
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III. OPTIMIZED CRYSTAL STRUCTURE OF
NdNiO3 IN PARA AND AFM STATE

In the main text of the paper, we showed the optimized
parameters for the NdNiO3 crystal structure in param-
agnetic Pbnm symmetry and antiferromagnetic (AFM)
P21/n symmetry. But the DFT+EDMFT functional
has the third solution, the paramagnetic Mott insulating
P21/n structure, which is a local minimum in Fig.1b of
the main text. We had to optimize this structure as well
to find the energy barrier between different structures.
Here we show all three DMFT optimized structures. The

important lesson learned from this optimization is that
the AFM and para crystal structures in P21/n symmetry
are almost identical, hence the magnetic long range order
has almost no effect on crystal structure, and the fluctu-
ating moments in Mott state are as good as the order
moments in AFM state for optimizing crystal structure.
This is consistent with the fact that in late RNiO3 (with
R being the late rare earth ion) in which the Mott transi-
tion and AFM transition are decoupled, the crystal struc-
ture changes abruptly across the Mott transition, but is
almost unchanged across the AFM phase transition.

TABLE I: Optimized atomic positions in the metallic and insulating state of NdNiO3.
Experimental structure is from Ref. 12. The GGA and GGA+U structure is from Ref. 13.
Pbnm Exp. DMFT-PARA GGA
Ni (0.000, 0.000, 0.500) (0.000, 0.000, 0.500) (0.000, 0.000, 0.500)
O1 (0.216, 0.287, 0.539) (0.214, 0.287, 0.539) (0.207, 0.294, 0.547)
O2 (0.569, 0.490, 0.750) (0.573, 0.490, 0.750) (0.591, 0.477, 0.750)
Nd (0.496, 0.035, 0.750) (0.491, 0.044, 0.750) (0.488, 0.058, 0.750)√
〈(r− rexp)2〉 0.0056 0.0190

P21/n Exp DMFT-PARA DMFT-AFM GGA+U
Ni1 (0.000, 0.000, 0.000) (0.000, 0.000, 0.000) (0.000, 0.000, 0.000) (0.000, 0.000, 0.000)
Ni2 (0.000, 0.000, 0.500) (0.000, 0.000, 0.500) (0.000, 0.000, 0.500) (0.000, 0.000, 0.500)
O1 (0.575, 0.487, 0.752) (0.575, 0.489, 0.754) (0.574, 0.489, 0.750) (0.595, 0.475, 0.755)
O2 (0.214, 0.276, 0.527) (0.209, 0.284, 0.540) (0.209, 0.285, 0.540) (0.198, 0.291, 0.549)
O3 (0.719, 0.204, 0.447) (0.717, 0.209, 0.460) (0.717, 0.210, 0.460) (0.711, 0.198, 0.452)
Nd (0.493, 0.039, 0.750) (0.491, 0.044, 0.750) (0.493, 0.044, 0.750) (0.489, 0.056, 0.750)√
〈(r− rexp)2〉 0.0090 0.0091 0.0180

IV. X-RAY SCATTERING SPECTROSCOPY
WITHIN DFT+EDMFT

The X-ray absorption intensity IXAS and the resonant
X-ray scattering intensity IRXS sare usually represented
in terms of the scattering tensor F in the following way

IXAS = − 1

π
Im[F (~ε, ~ε′)] (6)

IRXS =
∣∣∣F (~ε, ~ε′)

∣∣∣2 (7)

where the scattering tensor can be broken up into

F = FThompson + F res (8)

a sum of non-resonant Thompson part

FThompsonq = r0
~ε′
∗
~ε

∫
d3r eiqrρ(r), (9)

which is very large, and can not be ignored, and the
resonant part

F res =
r0

4m

∑
n

〈g|~ε′∗
∫
d3r(e−i

~k′~rψ̂†c(ih̄∇)ψ̂v + ψ̂†c(ih̄∇)ψ̂ve
−i~k′~r)|n〉〈n|~ε

∫
d3r(ei

~k~rψ̂†v(ih̄∇)ψ̂c + ψ̂†v(ih̄∇)ψ̂ce
i~k~r)|g〉

Eg − En + h̄ω
,(10)

where r0 = 1
4πε0

e2

mc2 , ~ε, ~ε′ are incoming and outgoing po-

larization, ~k, ~k
′

are incoming and outgoing photon mo-

menta, respectively. ψ̂c creates a hole in the core and ψ̂†v
creates an electron in the valence state.

These formulas can be straightforwardly derived from

the Fermi golden rule

w =
2π

h̄

∣∣∣∣∣〈g|∆H|g〉+
∑
n

〈g|∆H|n〉〈n|∆H|g〉
Eg + h̄ω − En

∣∣∣∣∣
2

(11)

in which the initial state of the solid with the incoming
photon is |g〉 = |g〉 ⊗ |h̄ω〉, and the intermediate state of
the solid (without the photon) is |n〉. Their energies are
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Eg, h̄ω, and En, respectively. The perturbing electro-
magnetic filed is

∆H =
e2

2m

∑
i

A2(ri) +
e

2m

∑
i

~A(ri)~pi + ~pi ~A(ri), (12)

with ~A the quantized photon field ~A(r) =√
h̄

2V ε0ω

(
~εei

~k~rak + ~ε∗e−i
~k~ra†k

)
and ~p the electron

momentum operator ~p = ψ̂†(−ih̄∇)ψ̂
Because the extent of the core state is very small com-

pared to the photon momentum, we may use the dipole
approximation, in which the position operator r is ap-
proximated by the atom position in the phase factor

(eikr ≈ eikRa). We may also expand the field operator in
terms of the spherical harmonics, and the radial solutions
of the Dirac equation inside the muffin-tin sphere, i.e.,

ψ̂c =
∑
mc,s

φc(r)Ylc,mc(r̂)|χs〉 clc,mc,s (13)

ψ̂v =
∑
mv,s

φv(r)Ylv,mv (r̂)|χs〉 dlv,mv,s, (14)

where clc,mc,s (dlv,mv,s) annihilates electron in the core
(valence) with momentum lc,mc (lv,mv) and spin s.

The resonant part of the scattering amplitude then be-
comes

F resq =
r0h̄

2

m

∑
n,a

eiqRa

∑
mc,mv,m′v,s,s

′

~ε′
∗ · 〈φcYlc,m′c |i∇|φvYlv,m′v 〉 ⊗ 〈φvYlv,mv |i∇|φcYlc,mc〉 · ~ε × (15)

×
〈g|c†lc,m′c,s′dlv,m′v,s′ |n〉〈n|d

†
lv,mv,s

clc,mc,s|g〉
Eg − En + h̄ω

(16)

The first line (Eq. 15) contains the matrix elements, and
the second (Eq. 16) the two-particle correlation function,
which we will describe more precisely below.

The matrix elements are computed quite straightfor-
wardly within our ab-initio approach, using the solu-
tions of the Schroedinger equation (φ(r)Ylm(r̂)) inside
the muffin-tin sphere at a, we compute

Pa,lc,lv
mc,mv ≡ 〈φcYlc,mc |ih̄∇|φvYlvmv 〉 = (17)

ih̄〈φc|
d

dr
|φv〉〈Ylc,mc |~er|Ylvmv 〉

+ih̄〈φc|
1

r
|φv〉〈Ylc,mc |(r∇)|Ylvmv 〉, (18)

and the integrals of the spherical harmonics

I1
l1m1,l2m2

= 〈Yl1,m1
|~er|Yl2,m2

〉 (19)

I2
l1m1,l2m2

= 〈Yl1,m1 |r∇|Yl2,m2〉, (20)

are evaluated analytically, and are given in Ref. [6] (Ap-
pendix A.22, A23) Note that these integrals lead to the
dipole selection rules lv = lc ± 1.

To compute the two-particle correlation function in
Eq. 16, we first define the following imaginary time cor-
relation function

Glc,lvm′cm
′
vs
′,mcmvs

(τ) = −〈Tτ c†lc,m′c,s′(τ)dlv,m′v,s′(τ)d†lv,mv,sclc,mc,s〉, (21)

and then we continue it analytically to frequency space
Glc,lv (ω), and take the unoccupied part of its spectra,
i.e.,

G̃lc,lv (ω) = − 1

π

∫
f(−x)ImGlc,lv (x)

ω − x+ iδ
dx. (22)

Namely, it is straightforward to show that G̃lc,lv (ω) has

the spectral representation

G̃lc,lv (ω) =
∑
g,n

〈g|c†lcdlv |n〉〈n|d
†
lv
clc |g〉

h̄ω + Eg − En + iδ

e−βEg

Z
(23)

which is exactly the quantity appearing in Eq. 16.

Putting all these terms together, we finally obtain
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F resq =
r0

m

∑
a,mc,mv,m′c,m

′
v,s,s

′

eiqRa ~ε′
∗ ·Pa,lc,lv

m′c,m
′
v
⊗Pa,lc,lv ∗

mc,mv · ~ε G̃
lc,lv
m′cm

′
vs
′,mcmvs

(ω) (24)

For the X-ray scattering at the K-edge, the electron is
excited from 1s core state to the 4p valence state. We
notice that the 4p valence state is very extended as com-
pared to the 1s, therefore we can treat the 4p states as

weakly interacting (”within the DFT+EDMFT average
potential”) and we can thus decouple the interaction be-
tween the 4p and 1s states, to obtain

Glc,lv (τ) ≈ −〈Tτ c†lc,m′c,s′(τ)clc,mc,s〉 〈Tτdlv,m′v,s′(τ)d†lv,mv,s〉 = Glcmcm′c(−τ)Glvm′vmv (τ) (25)

Notice that the scattering amplitude has very simple dia-
grammatic representation displayed in Fig. 3. Notice also
that the above decoupling is equivalent to negligence of
the vertex corrections in the displayed bubble diagram.
The core 1s state and valence 3d states are both concen-

1s

4p
F∝ ω ω

RXS (K edge)

!∙i∇ !’∙i∇

FIG. 3: Feynman diagram representation of the
resonant X-ray scattering on K-edge, where valence

state is treated as non-interacting.

trated near the nucleus, and since the 3d state is par-
tially occupied, the interaction between the 1s state and
3d state is very significant, and similar to the interaction
within the 3d orbitals. Our estimation is that Hubbard
interaction U within 3d shell and between 3d and 1s are
almost equal. The spectral function of the 1s orbital is
therefore not just a Kronecker-delta function at the core
energy εc, but it should be computed in the presence of
the partially occupied 3d states. This is so-called dressed
Green’s function, therefore we plotted 1s propagator in
Fig. 3 with the tick black line.

The interaction between 3d and 1s states can be ex-
panded in terms of Slater integrals, and has both the
density-density and Hund’s type terms. Here we concen-
trate on density-density term, which is of the order of
Uch ≈ 7 eV, as compared to the Hund’s terms, which are

of the order of 1 eV. We thus add to the DMFT Hamil-
tonian (Hdd) the Hamitonian of the 1s core states, to
obtain

H = Hdd + εc(n1s − 2) + Uch(n1s − 2)(n3d − 〈n3d〉)(26)

where εc is the average core energy, and the constants
and potential terms were chosen such that in the absence
of 1s core-hole H = Hdd. For convenience, we will per-

form the particle hole transformation so that c†1s creates
a hole in 1s state and c1s annihilates the hole. Then the
transformed Hamiltonian becomes

H = Hdd − c†1s(εc + Uch(n3d − 〈n3d〉))c1s (27)

Note that due to the hole notation, the energies appear
with an extra minus sign.

As time evolves, the local occupancy in the solid is
changing, and it fluctuates between various atomic con-
figurations. The average occupancy 〈n3d〉 of the Ni atom
in RNiO3 is around 〈n3d〉 ≈ 8, but there is finite prob-
ability for other occupancies, such as 3d7 and 3d9. We
sample such time evolution numerically with the contin-
uous time quantum Monte Carlo method [8].

When the core-hole is created in the 1s orbital, the
Hamiltonian suddenly changes from Hdd → Hdd −
c†1sc1s(εc + Uch(n3d − 〈n3d〉), according to Eq. 27. We
thus need to simulate a type of non-equilibrium problem.

The core-electron Green’s function is given by G1s(τ −
τ ′) = −〈Tτ c1s(τ ′)c†1s(τ)〉

and can be expressed with the functional field integral as

G1s(τs − τe) =
1

Z

∫
D[ψ†dψdc

†
1sc1s]exp

(
−Sdd −

∫ τe

τs

(
−(

∂

∂τ
c†1s)c1s − c†1s(εc + Uch(n3d − 〈n3d〉))c1s

)
dτ

)(
−c1s(τe)c†1s(τs)

)
(28)

where c1s and ψd are Grassmanns corresponding to the core and 3d degrees of freedom. Sdd[ψ
†
d, ψd] is the action
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corresponding to the correlated 3d part. As discussed

before c†1s |g〉 creates a hole in the core, while c1s |g〉 = 0.
The crucial simplification in the CTQMC algorithm

comes from the fact that n3d is a good quantum number
within each segment of time between two kinks (between

the creation or annihilation of 3d electron due to hopping
into/from the bath), and that the core degrees of freedom
c have no hybridization terms, which would require in-
sertion of new kinks. We can use standard manipulations
for the functional integrals to rewrite

G1s(τs − τe) =
1

Z

∫
D[ψ†dψd]e

−Sdd

∫
D[c†1sc1s]exp

(
−
∫
c†1s(τ1)A(τ1, τ2)c1s(τ2)dτ1dτ2

)
c†1s(τs)c1s(τe)∫

D[c†1sc1s]exp
(
−
∫
c†1s(τ1)A(τ1, τ2)c1s(τ2)dτ1dτ2

) (29)

=
1

Z

∫
D[ψ†dψd]e

−Sdd
(
− δ

δA(τs, τe)

)
ln

∫
D[c†1sc1s]exp

(
−
∫
c†1s(τ1)A(τ1, τ2)c1s(τ2)dτ

)
(30)

=
1

Z

∫
D[ψ†dψd]e

−Sdd
(
− δ

δA(τs, τe)

)
ln

1

Det[A]
=

1

Z

∫
D[ψ†dψd]e

−Sdd δ

δA(τs, τe)
Tr ln(A) (31)

=
1

Z

∫
D[ψ†dψd]e

−Sdd
(
A−1

)
τe,τs

(32)

=
1

Z

∫
D[ψ†dψd]e

−Sdd
(
δ(τ1 − τ2)(− ∂

∂τ1
− εc − Uch(n3d − 〈n3d〉))

)−1

τe,τs

(33)

where

A(τ1, τ2) = δ(τ1 − τ2)(− ∂

∂τ1
− εc − Uch(n3d(τ2)− 〈n3d〉))

and A vanishes, unless τs ≤ τ1, τ2 ≤ τe.
In CTQMC algorithm, we are visiting configurations

with probability proportional to e−Sdd/Z, hence to com-
pute the core Green’s function G1s, we just need to eval-
uate the value of the function A−1 on each Monte Carlo
configuration (for each visited Feynman diagram), and
then we average 〈A−1〉 over the Metropolis chain.

In the atomic limit, n3d is fixed to the atomic valence
over the entire time evolution, and thus the core-Green’s
function in frequency space is simply given by

G1s(iωn) =
1

iωn − εc − Uch(n3d − 〈n3d〉)
(34)

but since n3d is fixed, its temporary value is equal to the
average (n3d = 〈n3d〉), hence the core-hole interaction
becomes irrelevant.

Another limit, which is easy to evaluate, is the short
time (large frequency) limit. In this case both τs and τe
occur very likely on the same time interval, before the
hybridization kink intervenes. Let’s call the atomic state
in this time interval |m〉, and the 3d occupancy is then
constant over that interval, and given by the occupancy
of the atomic state n̂3d |m〉 = n3d(m) |m〉. The proba-
bility that τs or τe fall into the interval with state |m〉
is probability for that state (Pm), hence the short time
limit is G(iω) ≈∑m Pm/(iω− εc−Uch(n3d(m)−〈n3d〉),
and n3d(m) is the occupancy of the 3d orbital in atomic
state |m〉.

When the valence in 3d orbitals fluctuates slowly, but
it is not frozen, we can expect nontrivial effects, because
n3d can be found almost constat but not equal to the
average valence over an extended period of time. This
happens in correlated insulators, such as RNiO3, which
has non-negligible probability for n3d = 7 and n3d = 9
configurations.

In Fig.3a-b of the main text we showed the spectral
function of both the 1s and the 4p orbitals on Ni1 and
Ni2 atoms. Their convolution according to Feynman di-
agram in Fig. 3 gives the scattering amplitude, and its
imaginary part at q = 0 gives resonant X-ray absorption.
We show in Fig. 4 the high-resolution X-ray absorption
from Ref. [14], and the computed absorption using the
above derived formulas. We compare it to the simplest
approach in which the core-hole interaction is neglected.
We see in Fig. 4b that the addition of the core-hole inter-
action brings two new peaks in the absorption lineshape.
One appears roughly Uch below the main peak, and one
Uch above the main peak, which is a consequence of mul-
tiple peak spectra of the 1s core spectral function. These
additional peaks can clearly be resolved in the measured
high-resolution absorption in Fig. 4a.

In Fig. 5 we show all 9 components of the scattering
matrix F (defined in Eq. 8), and we atom resolve them.
The X-ray absorption is proportional to the imaginary
part of the trace of the above matrix and averaged over
both Ni atoms. We notice that the diagonal components
are an order of magnitude larger than the off-diagonal
parts. The contribution of the Ni1 and Ni2 atoms are
split by approximately 1.5 eV, in which 0.7 eV comes from
the split of the core levels, and another 0.8 eV from the
split of the 4p states. The imaginary parts are related
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tection mode !PFY-XAS" probes the valence configuration of
the absorbing TM ion with enhanced sensitivity to fine spec-
tral details over conventional XAS.12 The energies of the 4p
absorption threshold, of the main edge !defined as the maxi-
mum of the first derivative", and of the pre-edge structures
increase with the formal valence !Kunzl’s law13". This de-
pendence is approximately linear for absorbers with the same
ligands and coordination polyhedra.14 For oxides with octa-
hedrically coordinated Ni, slopes of 1–2 eV /e− have been
reported.15,16

Polycrystalline RNiO3 samples with R=La, Pr, Nd, Sm,
Eu, Gd, Ho, Er, Tm, Yb, and Lu were prepared as described
in Ref. 1. PFY-XAS measurements were performed at beam-
line ID26 at the European Synchrotron Radiation Facility
!Grenoble, France", using radiation from two undulator
sources monochromatized by Si!311" or Si!220" double-
crystal monochromators. The beam scattered by the sample
was analyzed by a Rowland circle spectrometer equipped
with a spherically bent Si!620" crystal and detected by a
photoavalanche diode. The intensity of the Ni K!1 fluores-
cence !2p→1s , h"out=7478 eV" was measured at room
temperature !RT" for all samples while scanning the energy
of the incident beam between 8330 and 8380 eV, across the
Ni K absorption edge. The energy scale was calibrated at the
beginning of the experiment using the maximum of the first
derivative of a sheet of metallic Ni. The measurement was
repeated several times during the experiment !typically every
3 h". The changes were always smaller than + /−0.2 eV.
Low- and high-temperature PFY-XAS spectra were also re-
corded for selected samples !T=6 K for La, Pr, and Nd, 573
K for Gd, and 623 K for Lu" using, respectively, a He cry-
ostat and a furnace.

III. DISCUSSION

The Ni K edges of metallic LaNiO3 !RT" and of the re-
maining samples in the insulating state are shown in Fig.
1!a". The raw spectra were divided by the incoming photon
intensity and normalized at E=8368.3 eV. PFY-XAS spectra
of metallic Ni, NiO, and LaNiO3, with formal valences 0, +2,
and +3, are shown for comparison in Fig. 1!b". To be noted is
the clear displacement of the edge toward lower energies for
decreasing valences. By contrast, the RNiO3 spectra cross at
a common energy corresponding to the maximum slope of
the main edge, as expected from compounds with the same
nominal valence. Figure 1!c" shows an enlarged view for the
two end members of the family. Whereas the line shape of
LaNiO3 is nearly structureless, that of LuNiO3 displays a
steplike structure, clearly visible also in the pre-edge. This
suggests that LuNiO3 Ni K edge is in fact a superposition of
two similar line shapes shifted by #1.5 eV with respect to
that of LaNiO3 !see ticks indicating the splitting of the
maxima".

In order to check the existence of a similar splitting in the
remaining members of the family, the first derivative was
calculated for all spectra !see Fig. 2". For LaNiO3 we ob-
serve single, sharp maxima at 8333.5 and 8348.4 eV. All the
other nickelates exhibit a double-peak structure at both the
main edge !A and B features" and at the pre-edge !a and b

features". The separation decreases for larger R ions but the
splitting is clearly observable from R=Lu to Eu. It is less
apparent for R=Sm, Nd, and Pr but a comparison !not
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FIG. 4: X-ray Absorption : a) Measured
high-resolution X-ray absorption from Ref. [14]. b)

Calculated X-ray absorption of NdNiO3. The arrows
mark the additional peaks due to core-hole interaction,

which are separated for approximately Uch ≈ 7eV .
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Fyx
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FIG. 5: Scattering factor: The energy dependent
matrix of the scattering factor.

to the above displayed X-ray absorption curve, and the
real parts are Kramars-Kronig related to the imaginary
parts.

The xy and yz components vanish for all scattering
wave vectors with even h + k + l, which is true for all
magnetic Bragg peaks. This is because there are two Ni1
and two Ni2 atoms per unit cell, related by the glide mir-
ror symmetry (y → −y mirror and (1/2, 1/2, 1/2) shift).

Consequently, the local Green’s function on the two

equivalent atoms are related by G
(1)
xy = −G(2)

xy and G
(1)
zy =

−G(2)
zy , and since the scattering factor for these two equiv-

alent atoms is proportional to G
(1)
ab +eiπ(h+k+l)G

(2)
ab , these

off-diagonal components vanish exactly. The xz compo-
nent is non-zero, but it is quite small compared to di-
agonal parts, which is consistent with the fact that the
σ − π′ intensity is two orders of magnitude smaller than
σ − σ′ scattering intensity [15, 16].

Very recently, the X-ray scattering profile has also been
interpreted in terms of the LDA+U magnetic solution in
the bond-order structure [13]. In contrast to our results,
LDA+U calculation of the scattering factor found sub-
stantial off-diagonal components and non-vanishing xy
and zy components. This could only come from large
symmetry breaking in LDA+U, which is not consistent
with the P21/n space group. Such large non-sphericity
of the 4p states is inconsistent with the fact that σ − π
intensity is two orders of magnitude smaller than σ − σ
intensity [15, 16].

q=(1,0,5) q=(1,0,1)

q=(1,0,5) q=(1,0,1)

no	core-hole no	core-hole

with	core-hole with	core-hole

Uch UchUch Uch

FIG. 6: X-ray intensity: Measured and computed
X-ray scattering intensity with and without core-hole
interaction. Experimental data are reproduced from

Ref. 17 and from Ref. 13.

In Fig. 6 we display the σ − σ′ scattering X-ray in-
tensity for Bragg peaks (1, 0, 5) and (1, 0, 1) computed
with and without core-hole interaction. We notice that
since the off-diagonal components of F are small, and di-
agonal components are similar, the scattering matrix is
approximately spherically symmetric and therefore very
weakly depends on azimuthal angle, as also seen in ex-
periment [15].

To understand this result, we note that there are
two Ni1 atoms at position (0, 0, 0) and (1/2, 1/2, 1/2)
and two Ni2 atoms at (0, 0, 1/2) and (1/2, 1/2, 0) in the
crystallographic unit cell (not the magnetic unit cell).
The corresponding structure is displayed in Fig.1e of
the main text. The phase factors eiqR (q is the trans-
fer momentum corresponding to the Bragg peak and
R is position of the Ni atoms) then give the follow-
ing contribution to the structure factor: for the two
Ni1 ions F(0,0,0) +F(1/2,1/2,1/2)e

iπ(h+k+l) and for the Ni2
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ions eiπl(F(0,0,1/2) + F(1/2,1/2,0)e
iπ(h+k+l)). Hence when

h + k + l is even, and l is odd, we have F(0,0,0) +
F(1/2,1/2,1/2)−(F(0,0,1/2) +F(1/2,1/2,0)). The two Ni1 ions
are equivalent in their local coordinate axis, but due to
the rotations of Ni-O octahedra, F(0,0,0) is somewhat dif-
ferent from F(1/2,1/2,1/2). As explained above, the yz
and xy components of F(0,0,0) and F(1/2,1/2,1/2) have op-
posite sign and subtract, and because the xz component
is small, the resulting scattering factor is not very far
from a spherically symmetric quantity, i.e., F(0,0,0) ≈
F(1/2,1/2,1/2) = FNi1 and F(0,0,1/2) ≈ F(1/2,1/2,0) = FNi2 .
Within such approximation, the structure factor is pro-
portional to 2(FNi1 −FNi2), as has been assumed in pre-
vious works [17].

Since the scattering factor F on the two Ni atoms is
very similar, but shifted in frequency (see Fig. 5), their
difference is approximately proportional to the derivative
of F , therefore we expect the scattering intensity to also
contain several peaks roughly separated by Uch. Indeed
we see that the intensity in Fig. 6 has a small shoul-
der below the main peak, and the second peak above
the main peak both separated by Uch. If we neglect the
core-hole interaction, the second peak appears approx-
imately 17 eV above the main peak, which comes from
the fact that 4p density of states (displayed in Fig.3 of
the main text) has the second peak also approximately
17 eV above the main peak, and is roughly constant 7 eV
above the main peak, resulting in constant intensity at
around 8352 eV, which is 7 eV above the main peak. Our
calculation thus show that, in contrast to Ref. [13], the
side peaks in the measured X-ray intensity can not be ex-
plained by the non-interacting or DFT type calculation.
Instead, our calculation shows that they require proper
treatment of the core-hole interaction.

V. REANALYZING THE NEUTRON POWDER
DIFFRACTION EXPERIMENTS AND THEIR

CONSISTENCY WITH PROPOSED MAGNETIC
MODELS

The high-resolution synchrotron X-ray powder-
diffraction experiments conclusively proved that the
metal insulator transition in RNiO3 is accompanied
by a structural transition from high temperature or-
thorombic to low temperature monoclinic symmetry [12].
This low temperature monoclinic symmetry is described
within the P21/n space group, while the orthorhombic
symmetry is Pbnm. At the time when the neutron
powder diffraction experiments on NdNiO3 were per-
formed [18, 19], there was no conclusive evidence for the
low temperature monoclinic structure, and within the ex-
perimental resolution of the neutron powder diffraction,
there was no support for such a structural transition,
therefore the neutron scattering data was analyzed in the
orthorhombic Pbnm space group.

The main difference between the two space groups is
that within the Pbnm symmetry there is only one type

of Ni site, and consequently only one type of NiO6 oc-
tahedra, but within the P21/n symmetry there are two
nonequivalent Ni ion sites, and consequently two type of
NiO6 octahedra (the expanded and the contracted oc-
tahedra). As discussed in the main text of the paper,
our theory predicts that Ni ions inside the contracted
octahedra carry no magnetic moment. This is different
than previously proposed magnetic models for RNiO3,
where a finite magnetic moment was considered for all
the Ni ions. For early R ions, it was assumed that all Ni
ions carry equal magnetic moments, and for some late R-
ions, such as HoNiO3 and YNiO3 the best fit gave some-
what different magnitude of the two magnetic moments
on the non-equivalent Ni ions (in YNiO3 : mNi1 = 1.4µB ,
mNi2 = 0.7µB [20] and in HoNiO3: mNi1 = 1.4µB ,
mNi2 = 0.6µB [21]). [20, 21]

Here we will concentrate on NdNiO3, for which it was
previously argues that all Ni atoms carry the same mo-
ments [18, 19], and we will show that the experimental
data obtained from neuron powder diffraction can be fit-
ted similarly well with (A) the magnetic models where
all the Ni ions have equal magnetic moment and (B) the
magnetic models where only half of the ions have a finite
magnetic moment (as predicted by our theory). In chap-
ter VII we will show analytically that such near degener-
acy of the two types of magnetic models is unavoidable
when analyzing the neutron powder diffraction data.

For NdNiO3 two magnetic models were proposed so
far [1, 25–27], the first is displayed in Fig. 7(a) and is
based on the neutron powder diffraction, while the sec-
ond is shown in Fig. 10(a) and is based on soft X-ray
resonant scattering. As explained above, the neutron
powder diffraction data was analyzed in terms of wrong
Pbnm symmetry [1], therefore we will reanalyze the neu-
tron powder diffraction data of Ref. 1 by considering the
true monoclinic symmetry, found at low temperature be-
low the metal-insulator transition. We will compare the
theoretical magnetic model with the other two magnetic
models proposed before, as well as several related models,
and we will show how consistent they are with the neu-
tron powder diffraction data. In our new refinements we
are using (A) the magnetic form factors corresponding to
Ni d8 valence (Ni2+) instead of previously assumed Ni
d7 (Ni3+) and (B) a better approximation for the Nd3+

magnetic form factor, as explained in section VI.
The integrated intensity, extracted from a powder neu-

tron diffraction experiment, can be modeled by the for-
mula:

IQ = C
∑
|Q|∈Q

LP (θ) [|FN (Q)|2 + |FM⊥ (Q)|2] (35)

where C is an arbitrary constant, LP (θ) is the instrumen-
tal parameter called Lorentz factor, Q = 2π(ha ,

k
b ,

l
c ), and

FN and FM are the nuclear (scalar) and magnetic (vec-
tor) structure factors, respectively. The first depends on
the crystal structure only, while the second is determined
from the magnetic model, and its form is explained in de-
tail in section VII. FM⊥ represents the component of the
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magnetic structure factor perpendicular to the scatter-
ing vector Q. The sum must be performed over all the
(h, k, l) reflections, which have the same scattering angle
2θ within the resolution of the neutron/x-ray instrument
(
∑
|Q|∈Q). All the data refinements described in this sec-

tion were performed using FullProf software [22–24]. The
earlier version of the same software was also used in Ref. 1
to analyze the original data.

To refine any magnetic model against the experimental
magnetic integrated intensities given in Ref. 1, we need
to first find the value of the constant C for this partic-

ular experiment. As the magnetic integrated intensities
for the magnetic model shown in Fig. 7(a) were given in
Ref. 1 (in Table II, column Icalc ) together with the di-
rections and the sizes of all the magnetic moments in this
configuration, we can use that information to determine
the value of the constant C. The result of this refinement
is shown in Fig. 7(b) and the best fit gives C = 0.06512.
This constant can then be used in our further analysis.

The experimental magnetic integrated intensities are
also given in Table II of Ref. 1 as Iobs(σ). These were ex-
tracted from the neutron powder diffractogram assuming
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a nuclear model based on the Pbnm symmetry. Since the
nuclear model used to extract the magnetic integrated
intensities was not accurate (Pbnm symmetry instead of
P21/n), we believe that the large disagreement found in
Ref. 1 for two magnetic Bragg reflections is due to the
slight overlap of these magnetic reflections with the nu-
clear reflections, as shown in Fig. 7(c) (gray arrows). Due
to the overlap of these two magnetic reflections with the
nuclear reflections, we can not reliably extract the mag-
netic integrated intensity from the two magnetic peaks,

therefore we did not use these two reflections in our new
refinements of the experimental data, but we include
them in the final plots of the calculated versus observed
integrated intensities, and in calculating the Bragg pa-
rameter RBragg (see below).

The main results of our data analysis are summarized
in Figs. 8 and 11. In Fig. 8(a) we show the magnetic
model (labeled Model I) which is similar to the model
of Ref. 1 based on previous analysis of the same neutron
scattering data, with the only difference that our Model
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I has slightly different magnetic moments for Ni2+ and
Nd3+ ions, due to use of the correct monoclinic crystal
structure and improved treatment of the atomic magnetic
form factors, corresponding to Ni d8 valence and Nd f3

valence.
In Fig. 8(b) we show the magnetic configuration (la-

beled Model II), which we believe is the most likely can-
didate for the magnetic structure of NdNiO3. It is based
on our theoretical result that Ni2 ions do not carry any
magnetic moment, and that Ni1 ions order ferromagneti-
cally within each (1, 0, 1) plane, and atiferromagnetically
between adjacent planes. This model is equivalent to the
one displayed in Fig.1i of the main text, except that here
all the magnetic moments are rotated clockwise around y-
axis for approximately 45 degrees as compared to Fig.1i.
In the DMFT theoretical calculation, we did not include
spin-orbit coupling on Ni atoms, hence the direction of
the magnetic moments in real space can not yet be de-
termined theoretically. Much more precise total energy
calculation considering the anisotropy of both Ni and Nd
ions would be required to determine the direction. Here
we rather resort to the existing neutron powder diffrac-
tion data, to determine the direction of the magnetic
moments within this model. The results of the refine-
ments are shown in Fig. 8(c). The new theoretical mag-
netic model (Model II) fits the experimental data as good
as the previously proposed mode (Model I). Besides the
visual comparison of the calculated and observed inte-
grated intensities, one can use the standard Bragg pa-
rameter, defined by

RBragg = 100×
∑

(|Iobs − Icalc|)∑
(Iobs)

(36)

to compare the fits. Iobs and Icalc are the observed and
calculated integrated intensities and the sum is over all
the reflections measured in the experiment. RBragg for

Model I and Model II are very similar (8.57 vs. 9.36) sug-
gesting that the neutron powder diffraction experiments
can not distinguish between these two models. Moreover,
the fitted value of the magnetic moment on Ni1 site is
around 1.35µB , which is similar to theoretically obtained
value of 1.2µB (see main text), in particularly considering
that the theoretical value was obtained at 100 K, which
is only half of the critical temperature. A model where
half of the Ni ions have zero magnetic moment was also
discussed in Ref. 1, but in that work it was found that
such model does not fit the neutron data well enough,
as its RBragg = 24.3 was found to be much larger than
RBragg = 9.6 for the Model I (see Table II in Ref. 1).
This discrepancy is likely due to inaccuracies related to
the use of the wrong crystal structure and less precise
atomic magnetic form factors. For a better understand-
ing of the equivalency between Model I and Model II, in
Fig. 9(a) and (b) we show the neutron magnetic model
in two different scenarios. In Fig. 9(c) and (d), we show
that a purely collinear magnetic model also gives a good
agreement with the neutron data Ref. [25].

Based on the soft x-ray resonant scattering experi-
ments [26, 27] Ref. 26 proposed a related magnetic model
with non-collinear magnetic configuration, displayed in
Fig. 10(a) and named Model IVa. In Ref. 27 the non-
colinear Model IVa was compared to a collinear model,
which we call Model Ia in Fig. 10(b). The finding of
Refs. 26, 27 was that the collinear Model Ia can not
describe X-ray scattering results, while the Model IVa
fitted their data quite well. Our calculation presented
in Fig. 10(c) shows that none of these two models are
consistent with the neutron powder diffraction. How-
ever, there is a related model, which we call Model IV
displayed in Fig. 11(a), which differs from Model IVa
by the coupling of the Nd and Ni magnetic moments.
In model IV (IVa) they are antiferromagnetically (fer-
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romagnetically) aligned. The two configurations (Model
IV and Model IVa) are indistinguishable by X-ray scat-
tering experiments. We show in Fig. 11(c) that when
the Nd and Ni magnetic moments are antiferromagnet-
ically aligned, but otherwise in similar configuration as
discussed in Refs. 26, 27, the fit of the neutron data im-
proves a lot. The Bragg parameter is not as good as for
Model I and Model II above, but we still can not exclude
it based solely on the neutron scattering refinement. We
also tested a related model, which we named Model V
(see Fig. 11(b) ), where only half on the Ni ions have
a finite magnetic moment, while the rest have moments
like in Model IV. The refinement gives worse Bragg pa-
rameter than for Model IV.

In conclusion, we have shown that: (A) Model II in
Fig. 8(b), which is based on DMFT theoretical work,
fits the neutron scattering data as well as the related
model proposed in Ref. 1. (B) The non-collinear model,
which was obtained based on the soft X-ray scattering
data [26, 27] and is displayed in Fig. 10(a) does not fit
the neutron data, but a closely related models, displayed
in 11(a) and (b), fit the neutron data reasonably well.

VI. TECHNICAL DETAILS ON THE NEUTRON
POWDER REFINEMENTS

Below we give details of the atomic parameters and
magnetic moments in the crystallographic unit cell (not
the magnetic unit cell). To obtain all the magnetic mo-
ments inside the magnetic unit cell, one needs to use
the phase factor corresponding to the propagation vec-
tor k = (1/2, 0, 1/2), i.e., for a related crystallographic
unit cell with the origin at the lattice vector R, the mag-
netic moments are inverted according to the phase-factor
exp(2π ik · R) [1, 25]. The refinements was performed
with the FullProf software [22–24]. The plots were made
using VESTA [28].

A. Reproducing published results of Ref. 1 where
the crystal structure was believed to be described

by Pbnm symmetry

(1) The structural parameters at 1.5K used for the
Pbnm symmetry [19]:

a = 5.3834Å, b = 5.3861Å, c = 7.6066Å
RNia = ( 1

2 , 0, 0), RNib = ( 1
2 , 0,

1
2 )

RNic = (0, 1
2 ,

1
2 ), RNid = (0, 1

2 , 0)
RNd1 = (0.9940, 0.0384, 0.25)
RNd2 = (0.0060, 0.9616, 0.75)
RNd3 = (0.4940, 0.4616, 0.75)

RNd4 = (0.5060, 0.5384, 0.25)

(2) Magnetic moments for the magnetic model [1] pre-
sented in Fig. 7(a):

MNia(x, y, z) = (+0.88491, 0.00000,−0.10367)
MNib(x, y, z) = (+0.88491, 0.00000,+0.10367)
MNic(x, y, z) = (+0.88491, 0.00000,−0.10367)
MNid(x, y, z) = (+0.88491, 0.00000,+0.10367)
MNd1(x, y, z) = (+2.05341, 0.00000,−0.48956)
MNd2(x, y, z) = ( 0.00000, 0.00000, 0.00000)
MNd3(x, y, z) = ( 0.00000, 0.00000, 0.00000)
MNd4(x, y, z) = (−2.05341, 0.00000,+0.48956)

C = 0.06512 (assuming the Pbnm symmetry for the
crystal structure [19])

In order to reproduce the results of the refinements
given in Ref. 1, we used the magnetic form factors for
Ni3+ and Nd3+ stored internally in FullProf [22–24]. In
Fullprof’s notation, we used for Ni3+ the magnetic form
factor MNI3 [< j0 > approximation] and for Nd3+ the
magnetic form factor MND3 [< j0 > approximation].

(3) The peak shape function we used to generate the
theoretical powder diffraction profile in Fig. 7(c) was
profile number 5 in FullProf, with half-with parameters
U=1.161020, V=-0.658240, W= 0.291757 obtained from
the FullProf examples for other experiments performed
on the same D1B instrument.

B. New results obtained when using the low
temperature crystal structure described by P21/n

symmetry

For all the refinements presented in this work, we used
magnetic form factors for Ni2+ and Nd3+ stored inter-
nally in FullProf. In Fullprof’s notation, we used for
Ni3+ the magnetic form factor MNI2 [< j0 > approx-
imation] and for Nd3+ the magnetic form factor JND3
[< j0 > +c2 < j2 > approximation].

The values of the constant C were also refined for each
magnetic model, since the value used in Ref. 1 was not
accurately determined, due to the fact that the crystal
structure used in the refinements was assumed to have
the average Pbnm symmetry.

(4) The structural parameters at 50K used for the
P21/n symmetry [12]:

a = 5.37783Å, b = 5.38846Å, c = 7.60511Å, β = 90.061
RNia = ( 1

2 , 0, 0), RNib = ( 1
2 , 0,

1
2 )

RNic = (0, 1
2 ,

1
2 ), RNid = (0, 1

2 , 0)
RNd1 = (0.99322, 0.03910, 0.2495)
RNd2 = (0.00678, 0.96090, 0.7505)
RNd3 = (0.49322, 0.46090, 0.7495)
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RNd4 = (0.50678, 0.53910, 0.2505)

Nia / Nic are inside of what we call contracted octa-
hedra and Nib / Nid are inside of what we call expanded
octahedra. As mentioned in the main text, our theory
predicts zero magnetic moment for the Nia and Nic ions.

(5) Magnetic moments for the magnetic model pre-
sented in Fig. 8(a):

MNia(x, y, z) = (+0.93102, 0.00000,+0.10050)
MNib(x, y, z) = (+0.93102, 0.00000,−0.10050)
MNic(x, y, z) = (+0.93102, 0.00000,+0.10050)
MNid(x, y, z) = (+0.93102, 0.00000,−0.10050)
MNd1(x, y, z) = (+1.73539, 0.00000,−0.31860)
MNd2(x, y, z) = ( 0.00000, 0.00000, 0.00000)
MNd3(x, y, z) = ( 0.00000, 0.00000, 0.00000)
MNd4(x, y, z) = (−1.73539, 0.00000,+0.31860)

C = 0.06479

(6) Magnetic moments for the magnetic model pre-
sented in Fig. 8(b):

MNia(x, y, z) = ( 0.00000, 0.00000, 0.00000)
MNib(x, y, z) = (−1.34622, 0.00000, 0.00000)
MNic(x, y, z) = ( 0.00000, 0.00000, 0.00000)
MNid(x, y, z) = (+1.34622, 0.00000, 0.00000)
MNd1(x, y, z) = (+1.24786, 0.00000, 0.00000)
MNd2(x, y, z) = (+1.24786, 0.00000, 0.00000)
MNd3(x, y, z) = (+1.24786, 0.00000, 0.00000)
MNd4(x, y, z) = (+1.24786, 0.00000, 0.00000)

C = 0.06512

(7) Magnetic moments for the magnetic model pre-
sented in Fig. 11(a):

MNia(x, y, z) = (+1.06603, 0.00000,+0.99455)
MNib(x, y, z) = (−1.06603, 0.00000,+0.99455)
MNic(x, y, z) = (+1.06603, 0.00000,+0.99455)
MNid(x, y, z) = (+1.06603, 0.00000,−0.99455)
MNd1(x, y, z) = (+0.82296, 0.00000, 0.00000)
MNd2(x, y, z) = ( 0.00000, 0.00000,−0.82296)
MNd3(x, y, z) = (+0.82296, 0.00000, 0.00000)
MNd4(x, y, z) = ( 0.00000, 0.00000,−0.82296)

C = 0.06639

(8) Magnetic moments for the magnetic model pre-
sented in Fig. 11(b):

MNia(x, y, z) = ( 0.00000, 0.00000, 0.00000)
MNib(x, y, z) = (−1.16681, 0.00000,+1.16681)
MNic(x, y, z) = ( 0.00000, 0.00000, 0.00000)
MNid(x, y, z) = (+1.16681, 0.00000,−1.16681)
MNd1(x, y, z) = (+1.33448, 0.00000, 0.00000)
MNd2(x, y, z) = ( 0.00000, 0.00000,−1.33448)
MNd3(x, y, z) = (+1.33448, 0.00000, 0.00000)
MNd4(x, y, z) = ( 0.00000, 0.00000,−1.33448)

C = 0.06618

(9) In the earlier stages of finding the magnetic struc-
ture for NdNiO3, a collinear magnetic model was pro-
posed [25] similar with the one shown in Fig. 7(a), but
where all the magnetic moments are strictly collinear
with the a-axis, see Fig. 9(c). Below we give the refined
magnetic moments for the magnetic model labeled Model
Ib, shown in Fig. 9(c). The standard Bragg parameter
for this model is RBragg = 9.66 which is very similar with
RBragg for the magnetic model shown in Fig. 8(a).

MNia(x, y, z) = (+0.93093, 0.00000, 0.00000)

MNib(x, y, z) = (+0.93093, 0.00000, 0.00000)

MNic(x, y, z) = (+0.93093, 0.00000, 0.00000)

MNid(x, y, z) = (+0.93093, 0.00000, 0.00000)

MNd1(x, y, z) = (+1.78159, 0.00000, 0.00000)

MNd2(x, y, z) = ( 0.00000, 0.00000, 0.00000)

MNd3(x, y, z) = ( 0.00000, 0.00000, 0.00000)

MNd4(x, y, z) = (−1.78159, 0.00000, 0.00000)

C = 0.06479

The only difference between the Model Ib shown in
Fig. 9(c) and the Model Ia shown is Fig. 10(b), is that
in Model Ia the magnetic moments of Nd and Ni ions
are ferromagnetically aligned as opposed to the antifer-
romagnetic alignment in Model Ib. The reason why we
show Model Ia in Fig. 10(b) is to point out that this
model is inconsistent with the neutron data, see Fig.
10(c). Model Ia is the magnetic model tested against
soft X-ray resonant scattering experiments [26, 27].

(10) In Fig. 10(a) we show the magnetic model labeled
Model IVa, which is obtained from Model IV shown in
Fig. 11(a) by reversing the direction of the Nd magnetic
moments with respect to the direction of the Ni magnetic
moments. Model IVa is the magnetic model proposed
from soft X-ray resonant scattering experiments [26, 27].
The reason why we show both noncollinear models Figs.
11(a) and 10(a), is to point out that Model IV gives a
good agreement with the neutron data as opposed to
Model IVa which is inconsistent with the neutron data,
see Fig. 10(c).

VII. INSIGHTS INTO THE NEUTRON
MAGNETIC SCATTERING

To understand these conclusions to a deeper level, we
will here compute analytically the magnetic structure fac-
tor for various magnetic models which have been pro-
posed for RNiO3, and discuss the relation between these
models. For simplicity, we will use from now on the
magnetic unit cell, which is quadrupled in size, namely,
amagnetic = 2 ∗ a, bmagnetic = b, cmagnetic = 2 ∗ c. We
will also choose a unit cell slightly different than above,
namely, consistent with the main text, but with the origin
shifted compared to the previous chapter. The various
models which we will discuss are displayed in Fig. 12.
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Ni
O
Nd

a) b) c) d)

FIG. 12: Magnetic Configurations: a) the configuration suggested by the DFT+EDMFT theory, except that
here for clarity we orient moments in (-1,0,1) direction, b) the model best fitted to neutron scattering in NdNiO3

(like Fig. figGLP1 above), but for clarity we pointed magnetic moments in z rather then x direction; c) model
obtained by neutron scattering on HoNiO3; d) the model suggested by resonant soft X-ray scattering on NdNiO3.

The DMFT calculation suggests the magnetic configu-
ration displayed in Fig. 12a, in which the Ni2 ions (con-
tracted octahedra laying on yellow planes) have no mo-
ments, while Ni1 ions (expanded octahedra laying on blue
and green planes) have ferromagnetic configuration, and
planes are antiferromagnetically arranged. Based on neu-
tron powder diffraction, the model in Fig. 12b (Fig. 12c)
was proposed for NdNiO3 (HoNiO3) in Ref. 1 (Ref. 21)

Here we want to show that neutron scattering on pow-
der can not distinguish between the theoretical magnetic
configuration displayed in Fig. 12a and the configuration
fitted to neutron data in Ref 1 or Refs. 20, 21, provided
that the magnetic moments on Ni and the rare earths are
properly scaled, as we will show below.

The magnetic structure factor is computed by the
Fourier transform of the magnetic moments:

FQ =
∑
Ri

eiQRimi (37)

where the magnetic moments on magnetic ion are

mi =

∫
r∈Ri

eiQ(r−Ri)m(r−Ri)d
3r (38)

and the intensity for magnetic scattering is proportional
to the absolute value squared of the transverse compo-
nent

I ∝ |FM⊥ (Q)|2 = |~eQ × FQ × ~eQ|2, (39)

as already explained in Eq. 35.
We will first compute the part of the magnetic struc-

ture factor coming from Ni1 atoms, which have magnetic
moments colored in green and blue in Figs. 12a-c. Half of
the atoms have positive component ofm along z-direction
and the other half have negative. We will denote their
position in the unit cell with R↑ and R↓, respectively.

We have

R↑ = {(0, 0, 0), (
3

4
,

1

2
,

1

4
), (

1

2
, 0,

1

2
), (

1

4
,

1

2
,

3

4
)} (40)

R↓ = {(1

2
, 0, 0), (

1

4
,

1

2
,

1

4
), (0, 0,

1

2
), (

3

4
,

1

2
,

3

4
)} (41)

We wrote these positions in term of the magnetic unit
cell, hence the Bragg peaks also need to be specified in
the magnetic Brillouin zone. We will denote them by
Q = 2π(h, k, l), with h, k, l integers. The contribution of
these atoms to the magnetic structure factor is

F
(1)
Q = m

(1)
↑ (1− eiπl)(1− eiπh)(1− eiπ2 (h+2k+l)) (42)

Nonzero contribution is obtained in the magnetic Bragg
peaks, which have odd h = 2n + 1 and odd l = 2m + 1.
In these peaks, the structure factor simplifies to

F
(1)
Q = 4 m

(1)
↑ (1− (−1)

h+l
2 +k) (43)

where (h+ l)/2 + k = n+m+ 1 + k is integer.
Next we compute the magnetic structure factor for Ni2

atoms, which carry no magnetic moment in theoretical
model of Fig. 12a, but have finite value in the other mod-
els. For configuration in Fig. 12b,c we find that the atoms
with opposite magnetic moments are

R↑ = {(1

4
,

1

2
, 0), (

1

2
, 0,

1

4
), (0, 0,

3

4
), (

3

4
,

1

2
,

1

2
)} (44)

R↓ = {(0, 0, 1

4
), (

3

4
,

1

2
, 0), (

1

4
,

1

2
,

1

2
), (

1

2
, 0,

3

4
)} (45)

Their contribution to the magnetic structure factor is

F
(2)
Q = −m

(2)
↑ ei

π
2 l(1− eiπl)(1− eiπh)(1− eiπ2 (h+2k−l))(46)

and give nonzero contribution for odd h and odd l,
namely

F
(2)
Q = −4 im

(2)
↑ (−1)

l−1
2 (1− (−1)

h−l
2 +k) (47)
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where (l−1)/2 = m and (h−l)/2+k = n−m+k are inte-
gers. Moreover, because l is odd we have (−1)(h−l)/2+k =
−(−1)(h+l)/2+k, therefore

F
(2)
Q = −4 im

(2)
↑ (−1)

l−1
2 (1 + (−1)

h+l
2 +k) (48)

A. Ni moments only

For YNiO3 and PrNiO3 the magnetic moment on rare
earths ions vanish, therefore the intensities are simply
given by the square of the Ni structure factor. For the
configuration in Fig. 12a we get

Ia = |F(1)
Q,⊥|2 = 16|m(1)

⊥ |2
[
1− (−1)

h+l
2 +k

]2
(49)

The equivalent expression for the configuration in

Fig. 12b-c is computed by Ib = |F(1)
Q,⊥+ F

(2)
Q,⊥|2, which is

greatly simplified by the fact that F(1) is purely real and
F(2) is purely imaginary, hence we get no interference
terms, i.e.,

Ib = 16|m(1)
⊥ |2

[
1− (−1)

h+l
2 +k

]2
+16|m(2)

⊥ |2
[
1 + (−1)

h+l
2 +k

]2
(50)

These two expressions for Ia and Ib are not yet simi-
lar. However, the neutron scattering on powder can not
distinguish between scattering vector Q = (h, k, l) and
other related vectors Q = (±h,±k,±l), hence we need
to average over those 8 possible scattering vectors. We
will show below that when scattering is averaged over
these equivalent reflections, the two expressions Ia and
Ib can be brought into an equivalent form.

1. Ni moments along a high symmetry direction

First we discuss the case in which the magnetic mo-
ment points along the high symmetry directions, either
in x or z direction, like in Fig. 12b. Since the Ni1 and
Ni2 moments are colinear, we have m(1) = m(2), when
evaluating the configuration in Fig. 12b.

Moreover, the perpendicular magnetic moment is

m⊥ = |~eQ ×m× ~eQ|2 = m2 − (m · ~eQ)2 (51)

and for the moment in z direction it takes the form

m⊥ = m2

(
1− (l/c)2

(h/a)2 + (k/b)2 + (l/c)2

)
(52)

hence we see that the magnitude of the moment is invari-
ant under the following three transformations h → −h,
or, k → −k, or l→ −l.

We then average the configuration Ia (in which Ni2
have no moments) with respect to h→ −h, which gives:

Ia = 8|m⊥|2
[
1− (−1)

h+l
2 +k

]2
+
[
1− (−1)

−h+l
2 +k

]2
(53)

and because h is odd, we can use (−1)
−h+l

2 +k =

−(−1)
h+l
2 +k, therefore

Ia = 8|m⊥|2
[
1− (−1)

h+l
2 +k

]2
+
[
1 + (−1)

h+l
2 +k

]2
(54)

But this expression Ia is the same as expression for Ib in
Eq. 50 if m in configuration Ia is scaled by

√
2. We thus

conclude that if Ni magnetic moment points along the
high symmetry direction (like in Fig. 12b), the neutron
scattering on powder can not distinguish between the
configuration in Fig. 12b, and the configuration similar
to Fig. 12a, in which Ni2 atoms have no moments, while
Ni1 moments point in the same high symmetry direction.

2. Ni moments along (1, 0, 1) and (−1, 0, 1) direction

Next we will discuss the configuration in which the
moment m(1) is along (−1, 0, 1) direction, while the mo-
ment m(2) is along (1, 0, 1) direction (like in Figs. 12a,c).
This configuration was proposed for HoNiO3 [21]. In
this case the expression for the perpendicular moment

|m(i)
⊥ |2 = m2 − (m(i) · ~eQ)2 has the following properties

|m(1)
⊥ (−h, k, l)|2 = |m(2)

⊥ (h, k, l)|2 (55)

|m(1)
⊥ (h, k,−l)|2 = |m(2)

⊥ (h, k, l)|2 (56)

|m(1)
⊥ (h,−k, l)|2 = |m(1)

⊥ (h, k, l)|2 (57)

|m(2)
⊥ (h,−k, l)|2 = |m(2)

⊥ (h, k, l)|2 (58)

Averaging over ±k is not needed, as both Ia and Ib ex-
pressions are invariant under this transformation. Aver-
aging over h→ −h of expression Ia gives

Ia = 8|m(1)
⊥ (h, k, l)|2

[
1− (−1)

h+l
2 +k

]2
+ 8|m(1)

⊥ (−h, k, l)|2
[
1− (−1)

h+l
2 +k−h

]2
(59)

hence

Ia = 8|m(1)
⊥ (h, k, l)|2

[
1− (−1)

h+l
2 +k

]2
+ 8|m(2)

⊥ (h, k, l)|2
[
1 + (−1)

h+l
2 +k

]2
(60)

We again found that this averaged intensities Ia is equiv-
alent to the intensity Ib from Eq. 50 if the moment in Ia



17

is increased for
√

2. We can therefore conclude that neu-
tron scattering on powder should give exactly the same
intensities for model Fig. 12c and Fig. 12a.

The above expressions are sufficient for those rare
earth atoms that carry no magnetic moment( YNiO3 and
PrNiO3), but for others we need to include rare earth
magnetic moments.

B. Rare earth moments with different propagating
vector

We will start with HoNiO3, in which the neutron scat-
tering was fit to the model in which Ho atoms had prop-
agation vector (0, 0, 0) in terms of the non-magnetic unit
cell. In this case, Ho atoms with one orientation of the
magnetic moment have positions

R↑ = {(x
2
, y,

z

2
), (

x

2
+

1

2
, y,

z

2
),

(
x

2
, y,

z

2
+

1

2
), (

x

2
+

1

2
, y,

z

2
+

1

2
), (61)

(
x

2
+

1

4
,−y +

1

2
,
z

2
+

1

4
),

(
x

2
− 1

4
,−y +

1

2
,
z

2
+

1

4
),

(
x

2
+

1

4
,−y +

1

2
,
z

2
− 1

4
),

(
x

2
− 1

4
,−y +

1

2
,
z

2
− 1

4
)} (62)

and those with the opposite moments have positions

R↓ = {(−x
2
,−y,−z

2
), (−x

2
− 1

2
,−y,−z

2
),

(−x
2
,−y,−z

2
− 1

2
), (−x

2
− 1

2
,−y,−z

2
− 1

2
), (63)

(−x
2
− 1

4
, y − 1

2
,−z

2
− 1

4
),

(−x
2

+
1

4
, y − 1

2
,−z

2
− 1

4
),

(−x
2
− 1

4
, y − 1

2
,−z

2
+

1

4
),

(−x
2

+
1

4
, y − 1

2
,−z

2
+

1

4
)} (64)

The corresponding structure factor of Ho atoms is

FHoQ = −2i(1 + eiπh)(1 + eiπl)m [sin(π(hx+ 2ky + lz))

+ sin(π(hx− 2ky + lz) + π(h/2 + k + l/2))](65)

We notice that Ni contributions are nonzero only for odd
h and odd l, while Ho contribution vanish for these mag-
netic Bragg peaks. Since Ho magnetic ions contribute
to different Bragg peaks than Ni ions, their intensities
can be calculated separately. We can therefore conclude
that the above calculation, which does not include rare
earth moments, is valid for Ni magnetic Bragg peaks in
HoNiO3.

C. Rare earth moments with q = (1, 0, 1)
propagating vector

Next we discuss the more complex case of rare earth
nickelate, such as NdNiO3, where rare earth and Ni mo-
ments were assigned the same propagating vector. Such
examples are shown in Fig. 13.

We first evaluate the neutron scattering factor for Nd
moments in Fig. 13b. The following atoms have moment
in the positive direction as compared to Ni atoms

R↑ = {(x
2
, y,

z

2
), (

x

2
+

1

2
, y,

z

2
+ 1/2),

(−x
2

+
1

4
, y +

1

2
,−z

2
− 1

4
),

(−x
2
− 1

4
, y +

1

2
,−z

2
+

1

4
)} (66)

and the following in the negative directions

R↓ = {(x
2

+
1

2
, y,

z

2
), (

x

2
, y,

z

2
+ 1/2),

(−x
2
− 1

4
, y +

1

2
,−z

2
− 1

4
),

(−x
2

+
1

4
, y − 1

2
,−z

2
+

1

4
)} (67)

Here x = 0.49322, y = 0.03910, z = 3/4. The rest of Nd
atoms were assigned no moment in Ref. 1, as displayed
in Fig. 13b. The resulting neutron form factor evaluates
to

F
Nd,(1)
Q = 4mNde2iπky

× (eiπ(hx+lz) − e−iπ(hx+lz)−iπ(h+l2 +k)) (68)

In the theoretical model, displayed in Fig. 13a we as-
signed the direction of Nd moments to be coupled anti-
ferromagnetically to Ni moments, as our refinements of
the neutron data suggested. All Nd magnetic moments
which appear in Fig. 13b also appear in Fig. 13a, but in
Fig. 13a there are additional magnetic moments on the
following atoms

R↑ = (−x
2
,−y,−z

2
), (−x

2
− 1

2
,−y,−z

2
− 1

2
)

(
x

2
− 1

4
,−y − 1

2
,
z

2
+

1

4
)

(
x

2
+

1

4
,−y − 1

2
,
z

2
− 1

4
) (69)

and

R↓ = {(−x
2
− 1

2
,−y,−z

2
), (−x

2
,−y,−z

2
− 1/2),

(
x

2
+

1

4
,−y − 1

2
,
z

2
+

1

4
),

(
x

2
− 1

4
,−y +

1

2
,
z

2
− 1

4
)} (70)

When the rest of the moments are added, we notice
that the second set of atomic positions are related by
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Ni
O
Nd

a) b) c)

FIG. 13: Magnetic Configurations: a) the configuration suggested by the DFT+EDMFT theory, including the
rare earth moments, b) the model best fitted to neutron scattering in NdNiO3 (except that moments were oriented

along x-direction). c) the model that gives best agreement with the resonant X-ray scattering.

inversion to the first set, and since they have the same
moment, their form factor contribution is exactly conju-

gated to the above form factor, i.e., F
Nd,(2)
Q = (F

Nd,(1)
Q )∗.

To compute intensities for magnetic configurations dis-
played in Figs. 13 we need to add Nd and Ni moments.
Previously we computed form factors of Ni atoms. The

green and blue moments were summed up to F
Ni,(1)
Q ,

while the magenta moments were summed to F
Ni,(2)
Q . In

terms of those, we can write the intensity in Fig. 13b as:

Ib = |FNi,(1)
Q,⊥ + F

Ni,(2)
Q,⊥ + F

Nd,(1)
Q,⊥ |2

and intensity in Fig. 13a as:

Ia = |FNi,(1)
Q,⊥ + F

Nd,(1)
Q,⊥ + F

Nd,(2)
Q,⊥ |2

These form factors can be further simplified. We notice
that (h+ l)/2+k in the relevant magnetic Bragg peaks is
an integer number, and can be either even or odd number.
We can thus distinguish two cases

(u) h+l
2 + k is even: Then

F
Nd,(1)
Q = 8imNde2iπky sin(π(hx+ lz))

F
Nd,(2)
Q = (F

Nd,(1)
Q )∗ (71)

and therefore

F
Nd,(1)
Q + FNd,(2) = −16mNd sin(π(hx+ lz)) sin(2πky)

In this case we can also simplify form factor cor-
responding to Ni moments. The green and blue

moments (F
Ni,(1)
Q ) and magenta (F

Ni,(2)
Q ) give

F
Ni,(1)
Q = 0

F
Ni,(2)
Q = −8i(−1)

l−1
2 mNi (72)

The intensity corresponding to Fig. 13b then be-
comes

Iub = 64|mNi
⊥ − (−1)

l−1
2 mNd

⊥ e2πiky sin(π(hx+ lz))|2(73)

while the intensity corresponding to Fig. 13a is

Iua = 256(mNd
⊥ )2 sin2(2πky) sin2(π(hx+ lz)). (74)

(v) h+l
2 + k is odd: Then

F
Nd,(1)
Q = 8mNde2iπky cos(π(hx+ lz))

F
Nd,(2)
Q = (F

Nd,(1)
Q )∗ (75)

hence

F
Nd,(1)
Q + FNd,(2) = 16mNd cos(π(hx+ lz)) cos(2πky)

The Ni moments give rise to the following form
factors

F
Ni,(1)
Q = 8mNi

F
Ni,(2)
Q = 0 (76)

therefore the corresponding intensities in
Figs. 13a,b are

Ivb = 64|mNi
⊥ + mNd

⊥ e2πiky cos(π(hx+ lz))|2 (77)

Iva = 64|mNi
⊥ + 2mNd

⊥ cos(2πky) cos(π(hx+ lz))|2

Here we always need to take the perpendicular compo-
nent of the magnetic moment, which is given by m⊥ =
eq × (m× eq). Also note that

m1
⊥ ·m2

⊥ = m1 ·m2 − (m1 · eq)(m2 · eq) (78)

(m⊥)2 = m2 − (m · eq)2 (79)
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If the neutron measurements is done on powder, we
need to average over four possibilities, with the trans-
formation l → −l and h → −h. We notice that when
(h+ l)/2 + k is even (h− l)/2 + k is odd, and vice-versa.
(similarly for h → −h). We thus see that the scattering
on powder measures the average of case u and v, i.e.,

Ia =
1

2
(Iua + Iva ) (80)

Ib =
1

2
(Iub + Ivb ) (81)

D. Moments along high symmetry direction

We will simplify the equations for the case when the
magnetic moments point along one of the high symmetry
directions, so that (m · eq)2 is equal for h and −h and
l and −l. Indeed, neutron scattering on NdNiO3 was
fit [1] to a model in which all moments were pointing
almost entirely in the x (or z) direction.

The result of this averaging is

1

32
Ib = 2(mNi

⊥ )2 + (mNd
⊥ )2 + 2mNi

⊥ ·mNd
⊥ cos(2πky)

(
cos(π(hx+ lz))− (−1)

l−2
2 sin(π(hx+ lz))

)
(82)

1

32
Ia = (mNi

⊥ )2 + 2(mNd
⊥ )2(1 + cos(4πky) cos(2π(hx+ lz))) + 4mNi

⊥ mNd
⊥ cos(2πky) cos(π(hx+ lz)) (83)

This needs to be further averaged over h→ −h and l→ −l. The result of such averaging is

1

32
Ib = 2(mNi

⊥ )2 + (mNd
⊥ )2 + 2mNi

⊥ ·mNd
⊥ cos(2πky) cos(πhx) cos(πlz) (84)

1

32
Ia = (mNi

⊥ )2 + 2(mNd
⊥ )2(1 + cos(4πky) cos(2πhx) cos(2πlz)) + 4mNi

⊥ mNd
⊥ cos(2πky) cos(πhx) cos(πlz) (85)

Finally we notice that cos(2πlz) = cos(3πl/2) = 0 because z = 3/4, and l is odd. We thus obtain

1

32
Ib = 2(mNi

⊥ )2 + (mNd
⊥ )2 + 2mNi

⊥ ·mNd
⊥ cos(2πky) cos(πhx) cos(πlz) (86)

1

32
Ia = (mNi

⊥ )2 + 2(mNd
⊥ )2 + 4mNi

⊥ ·mNd
⊥ cos(2πky) cos(πhx) cos(πlz) (87)

If we want to equate the two scattering intensities, we
need to require

ma
Ni =

√
2 mb

Ni (88)

ma
Nd =

1√
2
mb
Nd (89)

ma
Ni ·ma

Nd =
1

2
mb
Ni ·mb

Nd (90)

Because x is very close to π/2 and h is even, cos(πhx) is
quite small, hence the contribution from the mixed term
between Ni and Nd moments (mNi ·mNd) is very small,
and hence even when both magnetic moments point in
almost the same high-symmetry direction, the scattering
intensity in configuration Ia and Ib will be very simi-
lar. We thus understand why Model I and Model II in
section V (Fig. 8a and Fig. 8b) were almost degener-
ate. Indeed the ratio of the magnetic moments extracted
for Model I and Model II is very close to the above de-
rived

√
2 (see table (5) and table (6) in section VI B).

In Model II ma
Ni ≈ 1.35 and in Model I mb

Ni ≈ 0.93,

which gives the ratio of 1.44, which is very close to
√

2.
Similarly ma

Nd ≈ 1.25 while mb
Nd ≈ 1.74, which gives the

ratio of 1/1.39, again very close to 1/
√

2.

VIII. MAGNETIC X-RAY SCATTERING IS
CONSISTENT WITH DMFT MODEL

The resonant X-ray scattering on Ni L edge [26] as
well as Nd M edge [27] at the Bragg peak Q = (1, 0, 1)
was performed. The conclusion was that the collinear
magnetic configuration displayed in Fig. 12b is not ap-
propriate, and that only non-collinear configuration dis-
played in Fig. 12d can give azimuthal dependence con-
sistent with X-ray intensity. As shown in chapter V the
best fit of the non-colinear model (Model IV) to neutron
scattering data is not very good, and the DMFT theory
further suggest that only Model V is a viable candidate,
which fits neutron data even worse.

Therefore we believe that it is quite likely that the X-
ray scattering picked up a signal from multiple domains,
as it is known that RNiO3 tend to come in variety of do-
mains [29, 30]. We will show below that if there are two
domains, one with the moment pointing in the (1, 0, 0)
direction, and another with the moment in the perpen-
dicular direction, pointing in (0, 0, 1) in the coordinate
system of the first domain, the X-ray scattering on the
Model I can explain the X-ray data.

We will approximate scattering on magnetic moments
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with a spherical symmetric tensor, and we will take into
account only magnetic scattering. None of these approx-
imations are satisfied very well, as Nd carries substan-
tial orbital moment, and it has substantial single ion
anisotropy. Nevertheless, we will use this approxima-
tion since it was used before to explain the experimental
data [27]. For magnetic scattering on such spherical sym-
metric ion, we have

f ∝m · ~ε× ~ε′ (91)

where ~ε (~ε′) is the incoming (outgoing) polarization.

When Q is along the local x axis, we can write m · ~ε× ~ε′
for all the scattering geometries as

fπ,π = − sin(2θ) my (92)

fπ,σ = sin θ mx − cos θ mz (93)

fσ,π = sin θ mx + cos θ mz (94)

where (mx,my,mz) is the magnetic moment in the local
coordinate system.

Now we want to compute how will the scattering inten-
sity vary with azimuthal angle ψ. Lets suppose that the
magnetic moment in the global coordinate axis points in
the direction

mg = (cosα, 0, sinα) (95)

The scattering in Ref. 27 was performed on Q = (1, 0, 1)
vector. To orient Q along x-axis, we rotate coordinate
system for β = arctan(c/a) along y axis. Now that the
x-axis is along the scattering vector, we can rotate along
this new x axis for ψ, to obtain the azimuthal scan. We
thus have

m = Rx(ψ) ·Ry(β) ·mg =

 cos(α− β)
− sin(α− β) sinψ
sin(α− β) cosψ

 (96)

Using the expression for the magnetic moment in this
local coordinate system, we can evaluate the scattering
factor of a single magnetic ion as

fπ,π = sin(2θ) sin(α− β) sinψ (97)

fπ,σ = sin θ cos(α− β)− cos θ sin(α− β) cosψ(98)

fσ,π = sin θ cos(α− β) + cos θ sin(α− β) cosψ(99)

This was a contribution of a single atom. Next, we
need to compute the scattering factor due to all Nd or Ni
atoms in the unit cell. Since we are interested in collinear
order, the sum over all equivalent atoms will give just an
unimportant pre-factor. For example, for Nd atoms we
get

F = fNd
c

2
[cos(π(hx+ 2ky + lz)) (100)

− cos(π(hx− 2ky + lz) + π(
h+ l

2
+ k))] (101)

where x, y and z are positions of first Nd atom, and
c is an arbitrary constant. For Q = (1, 0, 1) vector, it
simplifies to

F = fNd c cos(π(x+ z)) (102)

To compare with Fig.4 of Ref. 27, we need to compute
the ratio

|fNdππ |2 + |fNdπσ |2
|fNdσπ |2 + |fNdσσ |2

≡ R (103)

To compare with Fig.3 of Ref. 26, we need to compute

|fNiππ |2 + |fNiπσ |2 ≡ Iπ (104)

|fNiσπ |2 + |fNiσσ |2 ≡ Iσ (105)

If the moments in one domain point in (1, 0, 0) direc-
tion, then α = 0 in Eqs. 97-99, and we have

fπ,π = − sin(2θ) sin(β) sinψ (106)

fπ,σ = sin θ cos(β) + cos θ sin(β) cosψ (107)

fσ,π = sin θ cos(β)− cos θ sin(β) cosψ (108)

and in the second domain with α = π/2 the Eqs. 97-99
give

fπ,π = sin(2θ) cos(β) sinψ (109)

fπ,σ = sin θ sin(β)− cos θ cos(β) cosψ (110)

fσ,π = sin θ sin(β) + cos θ cos(β) cosψ (111)

The averaging of the intensities over the two domains
gives

〈|fπ,π|2〉 = sin2(2θ) sin2 ψ (112)

〈|fπ,σ|2〉 = sin2 θ + cos2 θ cos2 ψ (113)

〈|fσ,π|2〉 = sin2 θ + cos2 θ cos2 ψ (114)

We can then compute the measured azimuthal inten-
sities. For Nd atoms, the ratio R becomes

R = 1 +
sin2(2θ) sin2 ψ

sin2 θ + cos2 θ cos2 ψ
(115)

Taking into account that the Bragg condition for Nd M
edge requires sin θ ≈ 0.7, we realize that the azimuthal
scan from Eq. 115 fits the experimental data of Ref. 27
quite well.

Next we compute the above defined Iπ and Iσ intensi-
ties on Ni L3 edge, corresponding to sin θ ≈ 0.823. We
get

Iσ = sin2 θ + cos2 θ cos2 ψ (116)

Iπ = sin2 θ + cos2 θ cos2 ψ + sin2(2θ) sin2 ψ (117)

The azimuthal ψ dependence is identical to the one ob-
tained for non-colinear magnetic configuration in Ref. 26,
and agrees well with the measured intensities in Fig. 3 of
Ref. 26.
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