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S1 Text. The dependence of Fst on MAF 17 

Wu, et al. reported the PD among human genes using the HapMap data according 18 

to Fst 1. They called the genes of PD if they contained at least one SNP with an Fst more 19 

than or equal to 0.6. However, it is not feasible that the Fst from rare variants exceed 20 

0.6 and this method could not detect the population differentiation in rare variants. S2 21 

figure shows the Fst in our WES data according to weighted average of MAF from each 22 

ancestry groups, and MAF from total population. The red line describes the maximum 23 

Fst when the MAF is given. The maximum Fst for MAF is defined when all the minor 24 

allele only exist in the ancestry group with the smallest sample size. If we assume there 25 

is no genotyping error, then we know how many loci are genotyped for each ancestry 26 

groups. In case of our data, the max Fst was identified when American Hispanics (1938) 27 

only have minor allele and other ancestry groups such as African Americans (2025), 28 

East Asians (2164), South Asians (2199), and Europeans (4518) do not have minor 29 

allele at all. The maximum Fst for the rare or less common variants (MAF < 0.05) is 30 

less than 0.36 and especially the maximum of Fst for the rare variants (MAF < 0.01) is 31 

less than 0.073. Therefore, for these variants, very high divergence (0.25 < Fst) or high 32 

divergence (0.15 < Fst < 0.25) in the wright’s criteria need to be modified to find PD in 33 

rare variants. 34 

 The upper and lower bound of Fst when the MAF is given are already reported 35 

2 and here we also showed that the maximum of Fst is bounded according to MAF when 36 

MAF is small enough through the equation. We used the initial definition of Fst which 37 

is developed by Wright for the simplification of proof. Since Wright developed this 38 

measure, many estimators has been proposed to estimate the Fst correctly under various 39 

situations. However, we only choose the Wright’s Fst for our proof because other 40 

estimates are originated to estimate this parameter. Since Wright’s Fst assume the ideal 41 



situation with infinite allele and balanced sample sizes, this ideal condition would be 42 

different from the real world. However, we can assume the ideal condition theoretically, 43 

and our proof will be able to be extended to other estimators.  44 

ni denotes minor allele count of ancestry group i; N denotes the total genotyped 45 

allele counts; k denotes the total minor allele counts in population; m denotes the 46 

number of ancestry groups. Under Hardy Weinberg Equilibrium, 47 

 = mean expected heterozygosity within random mating subpopulations =   48 

 = expected heterozygosity in random mating total population =   49 

Wright’s   50 

  51 

  52 

  53 

When k is less than N/m,  such that  and the minimum of nominator is  54 

 . Since , the minimum of nominator can be easily proved by 55 

Jensen’s inequality 3. Therefore, when k is less than N/m, the maximum of above 56 

equation is  57 
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 59 

As k is increasing; the denominator is decreasing; the maximum of Fst is increasing. 60 

Therefore, when we focus on the variants with small MAF, then k is less than N/m and 61 

the maximum of Fst is bounded according to their MAF 62 

 63 

S2 Text. The permutation to confirm the distribution of PDRC 64 

 Considering small p-values from real data analysis, the distribution of PDRC 65 

may be claimed not to follow chi-square distribution. As an attempt to answer this issue, 66 

we permuted the ancestral allele information of each 48 VIP genes for 100 thousand 67 

times and calculated the PDRC statistics with three different weighting schemes. All 68 

the variants are used for this permutation regardless of their MAFs. In Supplementary 69 

S3 Fig, from several permuted data sets, the PDRC statistics without weight did not 70 

follow the chi-square distribution, but the PDRC statistics seem to be controlled by 71 

using weights as inverse of MAF, or inverse of MAF2 (S4 Fig, and S5 Fig). 72 

 73 

S3 Text. The variance of common odds ratio 74 
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76 

S4 Text. The simulation under the assumed null distribution 77 

 For the simulation to evaluate the type-1 error rate, we generated the data set 78 

without PD. We designed the data with four ancestral groups with 500 individuals and 79 

one ancestral group with 1000 individuals to assume a similar setting of sample sizes 80 

like our WES dataset. We also specified the number of SNPs in genes and assumed the 81 

distributions of MAF for a range of scenarios to investigate the potential effect of the 82 

number of variants in a gene and the distribution of MAF. In Scenarios 1 to 5, the rare 83 

or less common variants were generated; in Scenarios 6 to 10, the common variants 84 

were generated; in Scenarios 11 to 15, the variants were generated with the same MAF 85 

distribution as our WES data. The ancestral group information was randomly assigned 86 

to follow the null hypothesis, and 105 genes are simulated under fifteen different 87 

scenarios. For each setting of MAF distribution, 5 different numbers of SNP in a gene 88 

are assumed as following, 5, 10, 20, 50, and 100. Let Gene𝑖𝑖,𝑠𝑠 represent the ith Gene of 89 

scenario s for   and SNPi,j,s  the jth SNP in Gene𝑖𝑖,𝑠𝑠R  for 90 1, 2, , 99999, 100 }00{ 0i∈ 
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 . The MAF of 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖,𝑗𝑗,𝑠𝑠 , 𝑝𝑝𝑖𝑖,𝑗𝑗,𝑠𝑠 , is sampled from 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(0, 0.05)  for 91 

scenarios 1 to 5, and from 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(0.05, 0.5) for scenarios 6 to 10. For scenarios 11 to 15, 92 

𝑝𝑝𝑖𝑖,𝑗𝑗,𝑠𝑠 is sampled from the MAF distribution of all 3,130,381 variants in our WES data 93 

sets (S1 Fig). Also, it is known that the p-values from the null distribution follow the 94 

uniform distribution and the distribution of simulated p-values can be investigated by 95 

QQ-plot. Supplementary Figures S6 to S8 show that the p-value of the PDRC test from 96 

the simulated data sets follows the uniform distribution when using three types of 97 

weights, 1, inverse of MAF, and inverse of MAF2. According to these results, the type-98 

1 error rate of PDRC tests seems to be reasonably controlled regardless the MAF values 99 

and the number of variants in a gene. 100 
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Legends to Supplementary Figures 109 

 110 

S1 Fig. Histogram of log10(MAF) from our WES data sets 111 

 112 

S2 Fig. The maximum of Fst is bounded according to the MAF from total population  113 

The red line represents theoretical maximum of Fst. 114 

 115 
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S3 Fig. QQ-plot results of PDRC without weight from the ancestral allele information 116 

permutation of VIP gene datasets 117 

 118 

S4 Fig. QQ-plot results of PDRC with the weight as inverse of MAF from the ancestral 119 

allele information permutation of VIP gene datasets 120 

 121 

S5 Fig. QQ-plot results of PDRC with the weight as inverse of MAF2 from the ancestral 122 

allele information permutation of VIP gene datasets 123 

 124 

S6 Fig. QQ-plot results from the simulation under null hypothesis 1 125 

MAF of 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖,𝑗𝑗,𝑠𝑠, 𝑝𝑝𝑖𝑖,𝑗𝑗,𝑠𝑠, is sampled from 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(0, 0.05) for scenarios 1 to 5 126 

1: Number of SNPs in a Gene is 5. 2: Number of SNPs in a Gene is 10. 3: Number of 127 

SNPs in a Gene is 20. 4: Number of SNPs in a Gene is 50. 5: Number of SNPs in a 128 

Gene is 100. A: No weight, B: Weight is 1/MAF, C: Weight is 1/MAF2    129 

 130 

S7 Fig. QQ-plot results from the simulation under null hypothesis 2 131 

MAF of 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖,𝑗𝑗,𝑠𝑠, 𝑝𝑝𝑖𝑖,𝑗𝑗,𝑠𝑠, is sampled from 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(0.05, 0.5) for scenarios 6 to 10 132 

6: Number of SNPs in a Gene is 5. 7: Number of SNPs in a Gene is 10. 8: Number of 133 

SNPs in a Gene is 20. 9: Number of SNPs in a Gene is 50. 10: Number of SNPs in a 134 

Gene is 100. A: No weight, B: Weight is 1/MAF, C: Weight is 1/MAF2    135 

 136 



S8 Fig. QQ-plot results from the simulation under null hypothesis 3 137 

MAF of 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖,𝑗𝑗,𝑠𝑠, 𝑝𝑝𝑖𝑖,𝑗𝑗,𝑠𝑠, is sampled from the real MAF distribution of our WES data for 138 

scenarios 11 to 15 139 

11: Number of SNPs in a Gene is 5. 12: Number of SNPs in a Gene is 10. 13: Number 140 

of SNPs in a Gene is 20. 14: Number of SNPs in a Gene is 50. 15: Number of SNPs in 141 

a Gene is 100. A: No weight, B: Weight is 1/MAF, C: Weight is 1/MAF2 142 
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