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Supplemental Figures 

 

Figure S1. Proteome and phosphoproteome coverage and reproducibility Related to Figure 1. A) Workflow 

for quantitative global proteome and phosphoproteome analysis. 50 colorectal cancer cell lines (COREAD) were 

analysed using TMT-10plex in seven multiplex sets. The SW48 cell line was included in each set. Biological 

replicates of the MDST8 cell line were included in two different sets and the 7th set corresponds to a biological 

replicate of the 6th set. A technical replicate of the SW48 cell line was included in the 5th set. These were used to 

evaluate the normalization and the batch effect correction methods. B) Number of protein groups (top panel) and 

unique phosphopeptides (bottom panel) identified per multiplex set are depicted as orange bars and cumulative 

numbers are shown as blue lines. C) Boxplots summarizing the coefficient of variation (CV%) of protein abundance 

measurements for intra-laboratory and inter-laboratory comparisons using biological and technical replicates. D) 

Heatmap of relative protein abundances between biological replicates for 11 cell lines without missing values. E) 

Boxplots illustrating the CV% of protein abundance measurements between replicate and non-replicate (all different 

cell lines) samples across a panel of 11 cell lines. F) Boxplots summarizing the CV% of protein abundance 

measurements for selected KEGG pathways. G) Boxplot illustrating the CV% of protein phosphorylation 

measurements for the SW48 biological replicates. 

 

 

 

 

 

 

 

 



 

 

Figure S2. Qualitative and quantitative characteristics of the phosphoproteome and global mRNA-to-protein 

comparisons Related to Figures 1 and 6. A) Enriched KEGG pathways by DAVID analysis of all quantified 

phosphoproteins. B) Number of S,T and Y phosphorylated residues quantified. C) Logos of the phosphorylation 

motifs identified. D) The distributions of Pearson coefficients for randomized and matched pairs of phosphopeptide 

abundances versus protein abundances. E) Gene-level mRNA-to-protein Pearson correlations ranked by lowest to 

highest value and KEGG pathway enrichment for low and high correlations. F) Scatter plot of mRNA versus protein 

variation using normalized standard deviation values across the COREAD cell lines. G) Boxplots for protein 

abundance variation of proteins with high correlations within CORUM complexes versus all other proteins. H) 

Boxplots for mRNA/protein correlation of proteins with high correlations within CORUM complexes versus all 

other proteins. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 



 

 

Figure S3. The colorectal cancer cell protein correlation network Related to Figure 1. A) Examples of unique 

network signatures for six COREAD cell lines. B) Boxplots of Pearson mRNA-to-protein correlation for modules 

highly corresponding to mRNA levels. Dots are color-coded according to the default WGCNA module name. 

Modules enriched for GSEA gene sets and chromosome locations are highlighted with green and black marks 

respectively. Enriched transcription factors in the “small molecule metabolic process” and “innate immune 

response” modules are displayed. C) Correlation heatmap of protein complexes based on the similarities of their 

representative profiles (eigengenes). The heatmap is divided in six main clusters which are color-coded and 

magnified. Shortened CORUM complex names are used. Duplicate entries represent protein complexes that are 

separated into more than one modules.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 



 

Figure S4. De novo prediction of a phosphorylation network involving kinases and phosphatases Related to 

Figure 6. A) Correlation network of positive and negative associations (Benj. Hoch. FDR<0.1) among 

phosphopeptides belonging to protein kinases and phosphatases. The nodes represent the phosphorylated kinases or 

phosphatases. B) Correlation heatmap of phosphopeptides belonging to kinases and phosphatases involved in KEGG 

signalling pathways. Duplicate entries represent protein phosphorylation sites that were identified by different 

overlapping phosphopeptides with different lengths. Phosphoproteins of the MAPK pathway are outlined. C) 

Correlation plots of MAPK1 and MAPK3 phosphorylation (top left) and total protein (top right). Correlation plots of 

BRAF and ARAF phosphorylation (bottom left) and negative correlation plot between phosphorylated CDK1 kinase 

and PPP2R5D phosphatase (bottom right). 

 

 

Figure S5. The impact of mutations on protein and mRNA abundances Related to Figures 2,3,4 and 5. A) 

Boxplots of scaled protein abundances for proteins with LoF mutations within specific protein domains. B) Boxplots 

of scaled protein abundances for proteins with LoF mutations located closer to the N-terminus, in the middle and 

closer to the C-terminus of the protein sequence. C) Volcano plot summarizing the effect of LoF mutations on the 

respective mRNA regressed-out protein levels (ANOVA test). Hits at permutation-based FDR<0.1 are coloured. D) 

Volcano plot summarizing the effect of LoF mutations on the respective protein regressed-out mRNA levels 

(ANOVA test). Hits at permutation-based FDR<0.1 are coloured. E) Identification of cis and trans eQTLs in 

colorectal cancer cell lines considering cancer driver variants. The p-value and genomic coordinates for the most 

confident non-redundant mRNA-variant association tests are depicted in the Manhattan plot. F) Representation of 

eQTLs as 2D plot of variants (x-axis) and associated genes (y-axis). Associations with q<0.3 are shown as dots 

coloured by the beta value (red: positive association, blue: negative association) while the size is increasing with the 



 

confidence of the association. Cumulative of the number of associations per variant is plotted below the 2D matrix. 

G) Boxplots of protein abundance of proteins from the Mediator complex identified only by pQTL analysis, in cell 

lines with mutated (red) and wt (grey) FBXW7.   

 



 

 



 

Figure S6. Consensus clustering of colorectal cancer cell lines and overlap with colorectal cancer tissue 

subtypes Related to Figure 6. A) Proteome clusters were derived based on consensus clustering 

(ConsensusClusterPlus R package) using the 30% most variable proteins with no missing values. The consensus 

matrices for target values k=4,5 and 6 are visualized (top panel) along with the cluster-consensus plot displaying the 

mean of all pairwise consensus values between a cluster’s members at each k (bottom panel). Balanced mean 

consensus values are obtained at k=5. B) The empirical cumulative distribution function (CDF) plot which indicates 

the k at which the distribution reaches an approximate maximum. C) Overlap of the proteomics cell line subtypes 

with tissue level classifications. D) Heatmaps using the cell line signature proteins that are also differentially 

regulated between the CPTAC colorectal cancer proteomic subtypes. Scaled protein abundances are used for both 

datasets. Proteins (rows) are hierarchically clustered based on the CPTAC data and columns are sorted by CPTAC 

proteomics subtype (left panel) or by the COREAD cell lines subtypes (right panel). E) The abundance profiling of 

CPTAC subtype C down-regulated proteins across the COREAD cell lines panel. Strong down-regulation is 

observed in COREAD cell lines subtype 4. F) Summary of the overlap between the CPTAC colorectal cancer tissue 

proteome subtypes and the COREAD cell lines proteomic subtypes.      

 

 

Figure S7. Proteins associated with microsatellite instability and pharmacoproteomic models Related to 

Figures 6 and 7. A) Heatmap of MSI-high associated proteins (Welch t-test, permutation-based FDR<0.1). Rows 

represent proteins and columns correspond to cell lines grouped according to the MSI status. B) Scatter plot of fold-

enrichment versus significance FDR for enriched biological processes, KEGG pathways and CORUM complexes in 

the MSI-high associated proteins. C) The number of drugs where response was specifically predicted by one 



 

molecular data type, stratified by each of the four molecular data types and by the 21 drug classes as defined by 

Iorio et al. (2016). D) Heatmap indicating for each drug and each data type whether a predictive model could be 

fitted using ABCBs-corrected drug response data.  

 

Supplemental tables titles and legends 

Table S1 Related to Figures 1,2,3,5,6 and 7. Relative protein abundances in the COREAD cell lines. Scaled 

protein quantification values for 50 colorectal cancer cell lines. Proteins affected by mutations or DNA copy number 

alterations are annotated by ANOVA p-value and average log2fold-changes where applicable. 

Table S2 Related to Figures 6, S2 and S4. Relative phosphopeptide abundances in the COREAD cell lines. 

Scaled phosphopeptide quantification values for 50 colorectal cancer cell lines. Phosphopeptides are annotated by 

the known regulatory kinase and by KEGG pathway where applicable. The values are not corrected or normalized 

for total protein levels. 

Table S3 Related to Figure 1. Correlation of proteins belonging to known CORUM complexes. Overlap of 

known CORUM protein complexes with the COREAD cell lines proteome. The mean and median correlation 

between protein complex components is shown for all complexes. Proteins with outlier profiles (high or low 

correlations) are labelled.  

Table S4 Related to Figure 1. Annotation of WGCNA modules. Enrichment of Gene Ontology, GSEA, KEGG, 

CORUM and Pfam terms for the WGCNA modules. Significance FDR is shown for each term. 

Table S5 Related to Figure 1. The full WGCNA network. The entire WGCNA correlation network with weights 

greater than 0.02. The respective Pearson’s correlations are also shown and CORUM interactions are highlighted 

(value=1). Modules that are possibly driven by DNA copy number variations are highlighted (value=1). 

Table S6 Related to Figure 4. Proteomics and RNA-seq results for the ARID1A, ARID2 and PBRM1 

CRISPR-cas9 experiments. Absolute and scaled S/N TMT values are shown for the proteomics data. ANOVA p-

values refer to any comparison between the WT, ARID1A, ARID2 and PBRM1 replicate groups. RNA-seq 

quantification and significance is shown only for the respective identified proteins.  

Table S7 Related to Figure 7 and Figure S7. Associations between drug response and molecular data. The 

predictive performance, data type and target pathway is shown for each association. The column “Corrected for 

ABCBs?” indicates whether the feature was predicted with the mean protein abundance of ABCB1 and ABCB11 

regressed-out from drug response data. 

 

Supplemental Experimental Procedures   

 

Colorectal cancer cell lines culture and reagents 

Cells were grown in either DMEM/F12 medium (Gibco) supplemented with 10% fetal calf serum (v/v) (Gibco) and 

50 U/mL penicillin, 50 mg/mL streptavidin (Gibco), or RPMI 1640 medium (Gibco) supplemented with 10% fetal 

calf serum (v/v) (Gibco), 50 U/mL penicillin, 50 mg/mL streptavidin (Gibco), 2.5 mg/mL glucose (Sigma-Aldrich) 

and 1 mM sodium pyruvate (Gibco), and maintained at 37 °C in a humidified atmosphere at 5% CO2. Cells were 

harvested by incubating with TrypLE (Gibco) until detached, and washing twice with cold PBS solution before snap 

freezing on dry ice. 

 

Viability assays 

Cells were seeded at 5,000 cells per well in 96-well tissue culture plates in growth media. The following day, 

docetaxel (Selleckchem) was added to give a final concentration range of 0.2 nM – 50 nM, with triplicate wells of 

each condition. Assay was carried out in the presence or absence of 2.5 μM tariquidar (Selleckchem). Control wells 

received an equivalent volume of DMSO. Assay plates were incubated at 37°C, 5% CO2 for 6 days, before adding 



 

CellTiter Blue (Promega) as an indicator of cell viability. Fluorescent signal was measured after 6 h using a 

Molecular Devices Paradigm plate reader (560/590 nm filter). 

 

iPSC lines culture 

Human induced pluripotent stem cells have been maintained in mTeSR E8 media (StemCell Technologies) on 

Synthemax II-SC Substrate-treated plates (Corning). All lines have been passaged as single cells by incubating with 

Accutase for 10 min at 37 °C, scraping with cell lifters and re-suspending 5 to 10 times with a 10 mL pipette. Cells 

were then plated in mTeSR-E8 media containing 10 uM ROCK inhibitor (Y-27632 dihydrochloride monohydrate, 

StemCell Technologies). When passaging as clumps, cells were incubated 3 minutes in Gentle Dissociation Buffer, 

scraped with cell lifters, resuspended once or twice with a 10 mL pipette and plated in mTeSR-E8 media. 

 

iPSC lines CRISPR targeting 

Production of tumor suppressor gene knock out lines was achieved through the substitution of an asymmetrical exon 

by a Puromycin cassette and introduction of a frame-shift indel in the remaining allele. A hSpCas9 and two small 

guide RNA expression vectors along with a template vector were used. The template vector harboured an EF1a-

Puromycin cassette with two flanking 1.5 kb homology arms designed around the asymmetric exon of interest. For 

each knock out line, 2×106 single cells were transfected using the Amaxa Human Stem Cell Nucleofector® Kit 2 

(Lonza) with 4 ug, 3 ug and 2 ug of each plasmid, respectively, and plated in 10 cm plates. After 72 h, cells were 

selected in 3 ug/mL Puromycin and colonies expanded and genotyped for the presence of a frame-shift indel by 

Sanger sequencing. For the proteomic analysis 2×105 single cells were plated in 10 cm plates and collected once 

colonies showed the typical dense sharp-edged morphology. Cells were washed in DPBS, scraped with cell lifters 

and cell pellets were centrifuged at 2,500 rpm for 5 min at 4 °C. Pellets were then snap frozen in dry ice and stored 

at -80 °C.  

 

Protein digestion and TMT labelling 

The PBS washed cell pellets containing 2~3×106 cells were dissolved in 150 μL 0.1 M triethylammonium 

bicarbonate (TEAB), 0.1% SDS with pulsed probe sonication (EpiShear™, power 40%) on ice for 20 sec and direct 

boiling at 95 °C in a preheated heat block for 10 min. The sonication-boiling procedure was performed twice and 

cellular debris was removed by centrifugation at 12,000 rpm for 10 min. Protein concentration was measured with 

Quick Start Bradford Protein Assay (Bio-Rad) according to manufacturer’s instructions. Aliquots containing 100 μg 

of total protein were prepared for trypsin digestion. Cysteine disulfide bonds were reduced with a final concentration 

of 5 mM tris-2-carboxymethyl phosphine (TCEP) followed by 1 h incubation in heating block at 60 °C. Cysteine 

residues were blocked with a final concentration of 10 mM freshly prepared Iodoacetamide (IAA) solution and 30 

min incubation at room temperature in dark. Trypsin (Pierce, MS grade) was added at mass ratio 1:30 for overnight 

digestion. The resultant peptides were diluted up to 100 μL with 0.1 M TEAB buffer. A 41 μL volume of anhydrous 

acetonitrile was added to each TMT 10-plex reagent (Thermo Scientific) vial and after vortex mixing the content of 

each TMT vial was transferred to each sample tube. The labelling reaction was quenched after 1 hour by the 

addition of 8 μL 5% hydroxylamine. Samples were combined and the mixture was dried with speedvac concentrator 

and stored at -20 °C until the high-pH Reverse Phase (RP) fractionation.   

 

Peptide fractionation  

High pH Reverse Phase (RP) peptide fractionation was performed with the Waters, XBridge C18 column (2.1 x 150 

mm, 3.5 μm, 120 Å) on a Dionex Ultimate 3000 HPLC system equipped with autosampler. Mobile phase (A) was 

composed of 0.1% ammonium hydroxide and mobile phase (B) was composed of 100% acetonitrile, 0.1% 

ammonium hydroxide. The TMT labelled peptide mixture was reconstituted in 100 μL mobile phase (A), 

centrifuged and injected for fractionation. The multi-step gradient elution method at 0.2 mL/min was as follows: for 

5 minutes isocratic at 5% (B), for 35 min gradient to 35% (B), for 5 min gradient to 80% (B), isocratic for 5 minutes 

and  re-equilibration to 5% (B). Signal was recorded at 215 and 280 nm and fractions were collected in a time 

dependent manner every 30 sec. The collected fractions were dried with SpeedVac concentrator and stored at -20 °C 

until the LC-MS analysis. For the replication sample set (7th set) and the CRISPR/cas9 proteomic experiments, 

peptide fractionation was performed on reversed-phase OASIS HLB cartridges at high pH and up to 12 fractions 

were collected for each set.  

 

Phosphopeptide enrichment 

The peptide fractions were reconstituted in 10 uL of 20% isopropanol, 0.5% formic acid binding solution and were 

loaded on 10 uL of phosphopeptide enrichment IMAC resin (PHOS-Select™ Iron Affinity Gel) already washed and 



 

conditioned with binding solution in custom made filter tips fitted on the eppendorf tubes caps. The resin was 

washed three times with 40 uL of binding solution and centrifugation at 300 g after 2 h of binding and the flow-

through solutions were collected. Phosphopeptides were eluted three times with 70 uL of 40% acetonitrile, 400 mM 

ammonium hydroxide solution. Both the eluents and flow-through solutions were dried in a speedvac and stored at -

20 °C until the phosphoproteomic and proteomic LC-MS analysis respectively.  

 

LC-MS analysis   

LC-MS analysis was performed on the Dionex Ultimate 3000 UHPLC system coupled with the Orbitrap Fusion 

Tribrid Mass Spectrometer (Thermo Scientific). Each peptide fraction was reconstituted in 40 μL 0.1% formic acid 

and a volume of 7 μL was loaded to the Acclaim PepMap 100, 100 μm × 2 cm C18, 5 μm, 100 Ȧ trapping column 

with the μlPickUp mode at 10 μL/min flow rate. The sample was then subjected to a multi-step gradient elution on 

the Acclaim PepMap  RSLC (75 μm × 50 cm, 2 μm, 100 Å) C18 capillary column retrofitted to an electrospray 

emitter (New Objective, FS360-20-10-D-20) at 45 °C. Mobile phase (A) was composed of 0.1% formic acid and 

mobile phase (B) was composed of 80% acetonitrile, 0.1% formic acid. The gradient separation method at flow rate 

300 nL/min was as follows: for 95 min gradient to 42% B, for 5 min up to 95% B, for 8 min isocratic at 95% B, re-

equilibration to 5% B in 2 min, for 10 min isocratic at 5% B.  

Precursors were selected with mass resolution of 120k, AGC  3×105 and IT 100 ms in the top speed mode within 3 

sec and were isolated for CID fragmentation with quadrupole isolation width 0.7 Th. Collision energy was set at 

35% with AGC 1×104 and IT 35 ms. MS3 quantification spectra were acquired with further HCD fragmentation of 

the top 10 most abundant CID fragments isolated with Synchronous Precursor Selection (SPS) excluding neutral 

losses of maximum m/z 30. Iontrap isolation width was set at 0.5 Th, collision energy was applied at 45% and the 

AGC setting was at 6×104 with 100 ms IT. The HCD MS3 spectra were acquired within 120-140 m/z with 60k 

resolution. Targeted precursors were dynamically excluded for further isolation and activation for 45 seconds with 7 

ppm mass tolerance. Phosphopeptide samples were analyzed with a CID-HCD method at the MS2 level. MS level 

AGC was set at 5×105, IT was set at 150 ms and exclusion duration at 30sec. AGC settings for CID and HCD 

fragmentation were 5×104 and 2×105 respectively. The fractions for the replication and CRISPR/cas9 sets were 

analysed with 180 min and 300 min LC-MS runs respectively and the analysis was repeated by setting upper 

intensity thresholds between 2-5×106 to capture lower abundant peptides. The total data collection was accomplished 

with 469 LC-MS runs in about 1,000 hours of analysis.  

 

Protein identification and quantification  

The acquired mass spectra were submitted to SequestHT search in Proteome Discoverer 1.4 (P.D 2.1 for the 

CRISPR-cas9 experiments) for protein identification and quantification. The precursor mass tolerance was set at 20 

ppm and the fragment ion mass tolerance was set at 0.5 Da for the CID and at 0.02 Da for the HCD spectra used for 

the phosphopeptide analysis. Spectra were searched for fully tryptic peptides with maximum 2 miss-cleavages and 

minimum length of 6 amino acids. TMT6plex at N-termimus, K and Carbamidomethyl at C were defined as static 

modifications. Dynamic modifications included oxidation of M and Deamidation of N,Q. Maximum two different 

dynamic modifications were allowed for each peptide with maximum two repetitions each. Search for phospho-

S,T,Y was included only for the IMAC data. Peptide confidence was estimated with the Percolator node. Peptide 

FDR was set at 0.01 and validation was based on q-value and decoy database search. All spectra were searched 

against a UniProt fasta file containing 20,165 reviewed human entries. The Reporter Ion Quantifier node included a 

custom TMT-10plex Quantification Method with integration window tolerance 15 ppm, integration method the 

Most Confident Centroid at the MS3 level (or at the MS2 level for the IMAC data) and missing channels were 

replaced by minimum intensity. Only peptides uniquely belonging to protein groups were used for quantification. 

Peptide-spectrum matches (PSMs) with mean TMT intensity less than 500 across samples were discarded. The TMT 

intensities of PSMs uniquely matching to the same protein or phosphopeptide were summed to obtain protein and 

phosphopeptide level intensities respectively. Protein and phosphopeptide summed intensities were further corrected 

for equal loading across samples by median normalization (divide by column median). Scaled quantitative values in 

the range of 0 to 1,000 were obtained by dividing each TMT value with the mean TMT intensity across samples per 

protein in each multiplex set separately (divide by row mean × 100, per sample set). To detect net phosphorylation 

changes, the relative protein abundances were regressed out from the respective phosphopeptide levels. 

Phosphorylation abundances were set as the dependent variables (y) and protein abundances were set as the 

independent variables (x). The residuals of the y~x linear model were the phosphorylation levels not driven by 

protein abundance levels.    

 

 



 

 

RNAseq data processing and identification of differentially expressed genes for the CRISPR/cas9 cell lines 

Knockout human induced pluripotent stem cells (hiPSC) for ARID1A, ARID2 and PBRM1 and WT cells were 

cultured in the same conditions as specified in the protein extraction section. RNA was extracted using the RNAeasy 

Kit (QiAGEN) from a total of six biological replicates per gene knockout and four WT cells for a total of 22 

samples. Independent barcoded stranded libraries were prepared for each sample and pooled into a multiplex library 

that was sequenced across six lanes using the Illumina HiSeq4000. Raw 75bp paired-end reads were aligned to the 

human reference genome (GRCh38) using STAR (v2.5.0a) (Dobin et al., 2013) and ENSEMBL (v84) human 

annotation. Subsequently, uniquely mapped read pairs with a mapping quality >10 were counted using htseq-count 

(Anders et al., 2015) with the model intersection_nonempty and ENSEMBL v84 annotation. Raw counts were 

normalised by calculating the transcripts per kilobase per million (TPM) obtained for each gene for each biological 

replicate. Pearson correlation among the different samples was calculated based on the TPM values of all the protein 

coding genes. Differentially expressed genes were identified by performing paired comparisons between the three 

independent groups of targeted hiPS cells (ARID1A, ARID2 and PBRM1) against WT hiPS cells (BoB)  using  

DESeq2 (Love et al., 2014) (v1.10.1). Once dispersion estimates and normalised counts were calculated, genes with 

mean normalized <1, across all samples within the comparison, were filtered out.  P-values were re-adjusted using 

the Benjamini-Hochberg correction for multiple-testing.  

 

 

Visualization on genome coordinates 

The peptides identified in this study were mapped onto the human reference genome GRCh38/hg38 using 

GENCODE v25 and GRCh37/hg19 using GENCODE v25lift37 (Wright et al., 2016) through the peptide to genome 

mapping tool PoGo (http://www.sanger.ac.uk/science/tools/pogo). The resulting BED output files were used to 

create a track-hub (Raney et al., 2014), i.e. web-accessible directory of genomic related data for visualisation of a 

large number of genome-wide data sets, through application of the TrackHubGenerator tool 

(http://www.sanger.ac.uk/science/tools/trackhubgenerator). The track-hub is made available through 

ftp://ngs.sanger.ac.uk/production/proteogenomics/WTSI_proteomics_COREAD and can be loaded in prominent 

online genome browsers. The Hub can be loaded in the Ensembl genome browser (Aken et al., 2017) through 

selection of ‘Custom tracks’ and copying the following URL into the ‘Data’ field and selection of ‘Track Hub’ as 

data format: http://ngs.sanger.ac.uk/production/proteogenomics/WTSI_proteomics_COREAD/hub.txt. After adding 

the data and closing the configuration panel five new tracks will appear in the “Region in detail” view showing the 

overall identified peptides, and phosphopeptides. The tracks can also be loaded in the UCSC genome browser (Kent 

et al., 2002) through ‘My Data’ and the ‘My Hubs’. After copying the above link and adding the hub the tracks will 

appear in the browser after selection of the reference assembly hg19 or hg38.  

To support other types of visualisation the additional folder ‘suppl’ in the track-hub directory provides 

downloadable GTF mappings of the peptides with associated gene names and gene biotypes for reference assemblies 

hg19 and hg38. Furthermore, comparative visualisation of peptide quantitation across all 50 COREAD cell lines for 

both reference assemblies are provided through GCT files in the respective assembly folders. These files can be 

visualised in the Integrative Genomics Viewer (IGV) (Robinson et al., 2011). After selection of the genome 

assembly the respective files can be loaded through the file selection dialog. Comparative visualisation on protein 

level in association with chromosome bands is provided separately in the file 

‘WTSI_proteomics_COREAD_50_proteome_bands.gct’.     

 

COREAD gene expression data 

The mRNA relative abundances between 45 colorectal cancer cell lines were computed from publicly available 

microarray gene expression data (ArrayExpress, accession: E-MTAB-3610) using robust Multi-Array Average 

(RMA) (Bolstad et al., 2003). Scaled values were obtained by row-mean normalization as applied to the proteomics 

data. 

 

Weighted correlation network analysis 

Weighted correlation network analysis was performed with the WGCNA package in RStudio using 8,295 proteins 

quantified in at least 80% of the cell lines. A soft threshold at power 7 was selected based on scale free topology 

model fit. Other parameters included: mergeCutHeight = 0.25 and minModuleSize = 3. Gene Ontology annotation 

of the modules was performed by the WGCNA package and enrichment for additional terms was performed with 

Fisher’s test using GSEA, GOBP-slim, CORUM, KEGG, and Pfam terms in Perseus software (Tyanova et al., 

2016). 

http://www.sanger.ac.uk/science/tools/pogo
http://www.sanger.ac.uk/science/tools/trackhubgenerator
ftp://ngs.sanger.ac.uk/production/proteogenomics/WTSI_proteomics_COREAD


 

 

Consensus clustering of the cell lines 

Unsupervised clustering of the cell lines was performed with the ConsensusClusterPlus R package using the top 

30% most variable proteins without missing values (N=2,161). Proteome clusters were derived based on k-means 

clustering and 1,000 resampling repetitions in the range of 2 to 10 clusters. The consensus matrices for target values 

k=4, 5 and 6 were visualized along with the empirical cumulative distribution function (CDF) plot which indicates 

the k at which the distribution reaches an approximate maximum and the cluster-consensus plot displaying the mean 

of all pairwise consensus values between a cluster’s members at each k.  

 

Comparison of COREAD cell lines proteomic subtypes with CPTAC colorectal cancer proteomic subtypes 

To assess the overlap between the COREAD and the CPTAC colorectal cancer proteomic subtypes from Zhang et 

al., we tested whether our COREAD signature proteins (differentially expressed between the five subtypes, ANOVA 

test, permutation-based FDR<0.05, N=723) were also differentially expressed between the CPTAC subtypes. For 

the CPTAC data, proteins with mean intensity greater than 1.4 (median label free intensity) across tissues were 

considered (N=3,615), and the label free quantification values were row-mean scaled similarly to the cell line data. 

About 75% of the COREAD signature proteins (N=251) that were found in the scaled CPTAC subset were also 

differentially regulated between the CPTAC subtypes (ANOVA test, permutation-based FDR<0.1). The most 

variable proteins of the latter subset were visualized with hierarchical clustering and the resultant clusters were 

compared with the COREAD subtypes profiles.  

 

Statistical tests and visualization 

ROC curves were plotted in Python (v 2.7.10) module Seaborn (v 0.7.1) using known STRING and CORUM 

interactions as true positive hits. Enrichment for biological terms and pathways was performed in Perseus 1.4 

software (Tyanova et al., 2016) with Fisher’s test or with the 1D-annotation enrichment method (Cox and Mann, 

2012). The enrichment score indicates whether the proteins in a given pathway tend to be systematically up-

regulated or down-regulated based on Wilcoxon-Mann-Whitney test. The 1D-annotation enrichment method was 

also applied for the enrichment of KEGG pathways with low and high mRNA-to-protein correlations and for kinase 

enrichment analysis using known kinase-substrate associations from the PhosphoSitePlus database and non-

regressed phosphorylation abundances. All terms were filtered for Benjamini-Hochberg FDR<0.05. Correlation 

analysis of regressed phosphorylation profiles was performed in RStudio with Benjamini-Hochberg FDR multiple 

testing corrections. PHOSIDA was used for enrichment of phosphorylation motifs (Gnad et al., 2011). ANOVA and 

Welch’s tests were performed in Perseus 1.4 software. Permutation based FDR correction was applied to the 

ANOVA test p-values for the assessment of the impact of mutations and copy number variations on protein and 

mRNA abundances in Perseus 1.4 software. The web-based tool Morpheus 

(https://software.broadinstitute.org/morpheus/) was used for hierarchical clustering and visualization of heatmaps. 

Volcano plots, boxplots, distribution plots, scatter plots and bar plots were drawn in RStudio with the ggplot2 and 

ggrepel packages. KEGG pathway enrichment for the identified phosphoproteins was performed in DAVID (Huang 

et al., 2009) (https://david.ncifcrf.gov/). PROSITE protein domains (Sigrist et al., 2010) were used to assess the 

impact of mutated domains on protein abundances. Transcription factor enrichment analysis was performed in the 

Enrichr tool (http://amp.pharm.mssm.edu/Enrichr/). STRING and Cytoscape 3.2.1 (Shannon et al., 2003) were used 

for network analysis and visualization.  

 

Identification of pQTL and eQTL 

We performed a whole-genome protein level QTL (pQTL) mapping by testing for associations between the protein 

level measurements and a set of 19 variant genes and 17 CNAs representing colorectal cancer drivers, filtered for at 

least 5 events across the cell lines. From the original 9,489 proteins measured, we selected proteins expressed across 

all cell lines and aligned uniquely to one Ensemble gene (N=6,929). Proteins on X, Y and mitochondrial 

chromosome were excluded. To increase the robustness with respect to possible outlying protein values, all protein 

measures were quantile normalized to a Gaussian distribution prior to fitting a model. All associations were 

implemented by LIMIX using a linear regression test. Let the protein level measurements be 𝒚, 𝒙𝑠 corresponds to 

the binary representation of somatic variants. We can write the linear regression model as: 

𝒚 = 𝟏𝜇 + 𝒙𝑠𝛽𝑠 + 𝝍,  where  𝝍 ∼ 𝑁(0, 𝜎𝑒
2𝑰).  

 

Here 𝛽𝑠 denotes the effect size of the tested variant, 𝜇  is the intercept and 𝝍 is the residual noise.Similarly for eQTL 

analysis, genes on X, Y and mitochondrial chromosome were excluded (N=16,546). We used a shared 

normalization, regression and multiple testing correction for eQTL as pQTL.  



 

 

Drug response prediction 

For the associations with drug response, we used the genomics, methylation, gene expression, proteomics, 

phosphoproteomics (using only phosphorylation sites of kinases/phosphatases with total protein abundance 

regressed-out, N=436) and drug response data from the COREAD cell lines in the GDSC1000. This encompassed 

the mutation status of 38 colorectal cancer genes, gains or losses in 48 copy number regions, methylation status of 

CpG islands in 32 gene promoters, gene expression and proteomics. For a fair comparison between data types 

(genomics, methylation, gene expression and proteomics), the same cross-validation folds were used for the 

different data types, and hence we only considered the 45 cell lines for which data was available in all data types. 

Given the limited number of available COREAD cell lines, we also limited the number of features. For the genomics 

and methylation we only used the Cancer Functional Events (CFEs), as defined by Iorio et al. (2016). For the 

proteomics, we used a subset of 2,161 most-variable proteins (the top 30% proteins, ranked by standard deviation) 

for which data was available in all cell lines. Similarly, for a fair comparison to the proteomics data, we considered 

the 2,161 most-variable transcripts. Finally, we used k-nearest neighbours (with k=10) to impute missing values in 

the phosphoproteomics data. 

For each drug and each data type an Elastic Net model (Zou and Hastie, 2005) was fitted to predict the drug 

response (log IC50), using the implementation from the R package “glmnet” version 1.4 (2009). The hyper-

parameter λ was optimized using 10-fold cross-validation and α was set to 0.5. Predictive performance was 

determined using Pearson correlation between the observed and the predicted IC50s, using the predictions from the 

cross-validation. When the difference in predictive performance between the optimal model and a model fitting 

only, an intercept was less than one standard deviation (i.e. when a model using λ1SE selects zero features), the 

predictive performance was set to zero. The ABCBs-corrected drug response data were the residuals of the linear 

regression model where the mean abundance of ABCB1/ABCB11 was used as the independent variable (x) and the 

log2(row mean-scaled) drug response data were used as the dependent variables (y). 
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