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Figure S1.  Raptor ablation causes homeostatic loss of monocytes, macrophages, and neutrophils. (A) tSNE dimensionality reduction of flow cy-
tometry data of gated CD11b* cells from the spleen of WT and Rptor”~ mice. Positive staining levels of Ly6G and Ly6C are colored in red (n = 4-5 mice
per group). (B) tSNE dimensionality reduction of flow cytometry data of gated CD11b* cells from the liver of WT and Rptor~ mice. Positive staining levels
of Ly6G and Ly6C are colored in red (n = 4-5 mice per group). (C) Gating strategy for cMoP, MDP, and monocytes in BM cells of WT and Rptor™~ mice.
(D) Numbers of monocyte precursor populations in BM of WT and Rptor™~ mice after L. monocytogenes infection according to the gating depicted in S1C
(n = 4-5 mice per group). (E) Flow cytometry analysis (top left) and frequency (right) of monocytes (CD11b*CD115%) in spleen of WT and Rptor™~ mice.
Flow cytometry analysis (bottom left) of classic (Ly6C") and nonclassic (Ly6C"°) monocytes (gated on CD11b*CD115* monocytes) in spleen of WT and
Rptor”~ mice. (F) Flow cytometry analysis (left) and frequency (right) of neutrophils (CD11b*Ly6G*) in spleen of WT and Rptor”~ mice. (G) Scheme of
experimental design of tamoxifen treatment and continuous bleeding. (H) Cell percentages of blood monocytes, neutrophils, T cells, and B cells from WT
and Rptor™~ mice. (1) Flow cytometry analysis of monocytes (CD116*CD115%; left) and neutrophils (CD11b*Ly6G*; right) in spleen of WT and Rptor”~ mice
at 4 d after the initial injection of tamoxifen. (J) Flow cytometry analysis of phosphorylation of 4E-BP1 (left) and S6 (right) in monocytes and neutrophils
in spleen of WT and Rptor’/’ mice. (K) Flow cytometry analysis of phosphorylation of 4E-BP1 (left) and S6 (right) in B cells and T cells from the spleen of
WT and Rptor~ mice (levels in WT CD11b* cells are shown in comparison). Numbers indicate percentage of cells in gates. Data are mean + SEM. Data are
representative of four (A and B), six (C and D), 14 (E and F), or two (G-K) independent experiments. *, P < 0.05; **, P < 0.01; *** P < 0.0001; Student's t test
for parametric data or Mann-Whitney test for nonparametric data.
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Figure S2. Loss of Raptor has limited effects on precursor composition and cytokine receptor expression aside from M-CSFR. (A) Expression

of CD115 on CD116*CD115* monocytes in the spleen of WT and Rptor~~ mice at day 4 after tamoxifen treatment, with mean fluorescence intensity (MFI)
plotted within graph. (B) Gating strategy for LSK and LK by c-Kit and Sca-1 within Lin™ cells (left), and CMP and GMP within LK population (right) in BM cells
of WT and Rptor™~ mice. Right, frequencies of indicated cell populations. (C) Frequencies of total and CXCR4* or CXCR4~ monocytes and cMoP and MDP
in BM cells from WT and Rptor™~ mice. (D) Flow cytometry analysis of BrdU and 7-AAD in WT and Rptor”~ myeloid progenitor cell populations. (E) Flow
cytometry analysis of active caspase-3 in WT and Rptor~ myeloid progenitor cell populations. (F) Expression of CD116 on supernatant and adherent cell
fractions of WT and Rptor™~ Lin~ BM cells after liquid culture with M-CSF (10 ng/ml) for 3 d, with MFI plotted within graphs. (G) Analysis of Csf2ra mRNA
in WT and Rptor™ Lin™ cells after liquid culture with M-CSF (10 ng/ml) for 0, 1, 2, or 3 d. (H) Expression of CD116, CD114, CD123, or CD135 on WT and
Rptor™~ Lin- BM myeloid progenitor populations, with MFI plotted above graphs. Numbers indicate percentage of cells in gates. Data are mean + SEM and
representative of two (A and C-E), 14 (B), four (F and G), or five (H) independent experiments. *, P < 0.05; **, P < 0.01; Mann-Whitney test.
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Figure S3.  High glucose uptake and M-CSF-induced metabolic activation in myeloid cells. (A) Immunoblot analysis of phosphorylated AKT and
B-actin in fresh (0 h) or M-CSF-stimulated (10 ng/ml, for the indicated times) Lin~ cells from WT and Rptor™~ mice. (B) 2-NBDG staining of neutrophils
and monocytes in spleen of WT mice, with mean fluorescence intensity (MFI) plotted within graph. (C) Measurement of ECAR in freshly isolated Lin~ cells or
those stimulated with M-CSF (10 ng/ml) for 1 or 2 d. (D) Measurement of OCR in freshly isolated Lin™ cells or those stimulated with M-CSF (10 ng/ml) for 1
or 2 d. Data are representative of two (A, C, and D) or three (B) independent experiments.
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Figure S4.  Myc is expressed in myeloid precursors, but not in mature myeloid cells. (A) Summary of differentially expressed genes between WT
and Rptor™~ cells in CMP, GMP, and M-CSF-stimulated Lin~ cells (CMP and GMP: n = 3 mice per group; Lin™ + M-CSF: n = 4 mice per group). (B) Relative
Csf1r expression of WT and Rptor”’~ CMP, GMP, and M-CSF-stimulated Lin~ cells (CMP and GMP: n = 3 mice per group; Lin~ + M-CSF: n = 4 mice per
group). (C) Relative gene expression of /di7and Sgle in WT and Rptor™ Lin™ cells stimulated with M-CSF (10 ng/ml) for 0, 12, or 24 h. (D) Top differentially
requlated gene network (energy production, molecular transport, carbohydrate metabolism) between Rptor‘/‘ and WT cells in transcriptome profiling,
showing Myc as a central node (n = 4 mice per group). (E) Expression of GFP-Myc in myeloid progenitor cell populations from WT and GFP-Myc mice.

(F) Expression of GFP-Myc in mature myeloid cells from WT and GFP-Myc mice. Data are one experiment (A, B, and D) or representative of two independent
experiments (C, E, and F).
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Figure S5.  Model of mTORC1-mediated metabolic reprogramming and feed-forward loop in M-CSF-dependent myelopoiesis. M-CSF drives the
activation of mTORC1 via M-CSFR signaling. mTORC1 links this signal to metabolic pathways including Scap/SREBP, Myc, and mitochondrial biogenesis,
which supports one-carbon metabolism. Together, these pathways reprogram the metabolism of myeloid precursor cells during myelopoiesis. This process
requires glucose as a carbon source, which, together with M-CSF, participates in a feed-forward loop to drive myelopoiesis. Overall, this model depicts a
metabolism-centric view of M-CSF-dependent myelopoiesis. For clarity, myeloid-specific transcription factors are not included.
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