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SI Materials and methods 

Dataset. Data on introduced birds in the Iberian Peninsula 

were obtained from a comprehensive database of exotic 

birds in Spain and Portugal (1), which compiles records of 

exotic species observed in the wild in both countries from 

1912 to 2012. This dataset, which is based on a systematic 

review of national peer-reviewed journals, national and 

regional bird atlases, books, regional ornithological 

yearbooks and monographs, websites that compile bird 

observations or photographs of birds in Spain and Portugal, 

as well as our own data and unpublished observations from 

a number of ornithologists or researchers (see dataset 

details in ref. 1), includes over 11,200 records of exotic 

birds in the Iberian Peninsula. The location of each record 

was assigned to 0.05×0.05 arc degree cells (approx. 5×5 

km). When coordinates were not provided in the literature 

source, the record was georeferenced from the locality 

description using Google Earth software. Those records 

lacking sufficient information for adequate georeferencing 

(16% of the total of records) were not further used for 

spatial analyses. 

According to this database, a total of 335 exotic birds have 

been recorded by observers in the wild in the Iberian 

Peninsula during this time period, although a large number 

corresponds to species only observed occasionally (often a 

single record). To avoid a bias toward anecdotic 

introductions, we focused only on those species with at 

least five georeferenced records. Obligate brood parasites 

(Vidua genus) and domestic varieties were also excluded. 

Our final dataset consisted of 107 bird species, and all 

analyses were subsequently restricted to these species (see 

Dataset S1). Established species were those that have 

established self-sustaining populations or, at least, whose 

reproduction in the wild has been regularly verified (n=26; 

see ref.1). It should be noted that this classification might 

be biased towards non-established species since recently 

introduced species were classified as non- established, 

although they can currently or in a near future establish 

breeding populations, but not enough time has passed to 

allow it (1).  

Only some of those species that successfully establish self-

sustaining populations are able to spread into locations 

away from the point of introduction, where individuals 

survive and reproduce, becoming invasive (2). For the 

subset of established species, we estimated the increase 

through time in the number of occupied 5x5km cells, as an 

estimate of the rate of spatial spread (Fig. S2). Although 

the increase in the number of new occupied cells per year 

may not be just the result of a population spread process, 

but can also be partially influenced by the release/escape of 

new individuals (as it seems to be the case of Cyanoliseus 

patagonus, for which there is little evidence of 

reproduction but of many escape events, Fig. S2), it 

provides a reliable estimate to further investigate factors 

explaining differences in spread rate among species. In the 

case of Threskiornis aethiopicus, the two Spanish breeding 

nuclei were eradicated and current spread comes from the 

nearby French invasive populations; the rest of species 

show clear spread from single or multiple introduction 

sites, with little contribution of new escapes/releases 

(Authors unpublished information, Fig. S2).  Additionally, 

we also calculated the degree of invasion or spread by 

quantifying the number of occupied 5x5km cells in the 

study area as a measure of invaded range size.  

Event-level factors. We considered several factors related 

to introduction history, propagule pressure and origin of 

species. Years since first introduction (i.e. the number of 

years since the species was first recorded as introduced 

relative to 2012) was used as a variable reflecting 

introduction history as well as the number of years with 

records and the range of years with records in our dataset. 

Because these three variables were highly correlated 

(Pearson correlation coefficients r > 0.75) we retained just 
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the time since first introduction. Propagule pressure was 

estimated as the total number of live birds reported by 

CITES that have been legally traded from each of the 

native ranges to Spain and Portugal from 1976 (the first 

year for which CITES have been compiling records) to 

2012 (www.cites.org). Although this measure is more 

accurate for species listed in CITES appendixes (i.e., 

parrots), it is the only information available for all species 

included in the study and represents the minimum number 

of individuals traded, so results are conservative. 

Furthermore, because importation data does not include 

those birds that have been bred in captivity in Spain and 

Portugal which could also escape or be released into the 

wild, we also used the number of introduction (or escape) 

events as a proxy of propagule pressure. For each species, 

the number of introduction events was estimated using 

graph theory from the geographic locations of their records. 

The igraph package (3) in R (4) was used to obtain a 

network in which any two nodes (georeferenced records) 

were deemed connected by an edge if they were separated 

by a geographic distance lower than 100 km. The number 

of isolated or non-connected sub-networks present in the 

whole graph was assimilated to the number of introduction 

events. The assumption here was that those records more 

distant from each other than this distance threshold 

represent (or come from) independent introduction events. 

Alternative thresholds (50 and 150 km) were also 

considered, providing highly correlated values (r > 0.73). 

Finally, for the most commonly traded cage species 

(Psittaciformes and Passeriformes), we used information of 

their abundance in the pet market (i.e. market availability) 

from Carrete & Tella (5) as an additional surrogate of 

propagule pressure for this subset of species. It should be 

noted that under our approach “event-level factors” refer to 

the global colonization or invasion process in the study 

area, and not to each one of the introduction events. 

On the other hand, Carrete & Tella (5) have shown that, 

among exotic cage bird species, those that were caught in 

the wild and traded on the pet market were more successful 

invaders than those that were bred in captivity over a long 

period of time. The reason is that the ability to cope with 

important aspects such as predators in new environments 

seems to have been lost in captive-bred species (6, 7). We 

here also tested this hypothesis. For this purpose, 

passerines (songbirds) and parrots (orders Passeriformes 

and Psittaciformes, respectively), which numerically 

encompass most of pet or cage birds (5), were classified as 

wild-caught or captive-bred species according to their main 

origin (see classification in ref. 5). 

Location-level factors. We assessed the degree to which 

the introduced region resembles the species’ native range 

(i.e. climate matching between the region of introduction 

and origin of the species). Methods for quantifying the 

environmental niche and estimating niche differences 

typically rely on either direct comparisons of species–

environment relationships in environmental space (usually 

using ordination techniques) or model predictions (8). We 

adopted here both approaches to assess differences in 

native and introduced environmental niches for each 

species. Vector range maps were obtained from the 

BirdLife International's World Bird Database (9). For each 

species, we excluded the areas occupied only during the 

non-breeding season or during migration (10). 

Georeferenced native range occurrences were obtained 

from GBIF (Global Biodiversity Information Facility, 

www.gbif.org). Species’ records with lower resolution than 

that of climatic layers (see below) were discarded. Our 

final dataset comprised over 1,200,000 record locations for 

107 species.  

First, we measured niche overlap between native and 

invaded ranges using the same approach as Broennimann et 

al. (8) that allows calculating niche overlap while 

correcting for differences in the availability of 

environments between study areas. This involves (1) the 

application of multivariate analyses to summarize 

environmental variables in a one- or two-dimensional 

environmental space, (2) calculation of the density of 

occurrences across the environmental space, and (3) 

measurement of niche overlap across the environmental 

space. A principal components analysis (PCA) was 

calibrated using global climate conditions from the 19 

bioclimatic variables of the Worldclim database (11) at a 5 

arc minutes spatial resolution. The first two PCA axes, 

which accounted for 77.6% of the variation in the data, 

were then used to create a gridded climate space of 100 × 

100 square cells, in which each cell corresponds to a 

unique set of global climate conditions. The first axis 

mostly correlates with temperature and the second with 

precipitation variables. Then, we used a kernel density 

function to convert native occurrences of each species and 

the available climate in the native range (i.e., background 

conditions) into densities in order to correct for 

environmental availability (8). Background conditions 

were defined by those spatial grid cells within the species’ 
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breeding range, as obtained from BirdLife database, with a 

buffer area of 400 km. The same approach was used for all 

grid cells within the Iberian Peninsula, representing the 

region of introduction. Two metrics of niche overlap, 

Schoener's D and Hellinger's distance (I), as proposed by 

Warren et al. (12), were calculated from the occupancies in 

the environmental space depicted by the two first axes of 

the PCA (8, 12). Both indices indicate the overall match 

between two niches over the whole climatic space and 

varies between 0 (no overlap at all) and 1 (complete 

overlap). In niche comparisons, both species’ native range 

and Iberian conditions were projected along the axes of the 

PCA calibrated on the global climate space. Thus, the 

environmental space remained constant allowing a more 

robust comparison across species. It should be noted here 

that our measure of niche similarity refers to the whole 

target region (i.e., the Iberian Peninsula). Nevertheless, 

using the records for each species in the invaded region 

(i.e. the 5x5km cells in which the species has been 

recorded) provided niche overlap measures highly 

correlated with those using all grid cells of the Iberian 

Peninsula (r = 0.91) for the subset of species (n = 89) that 

had enough records to perform the approach of 

Broennimann et al. (8).  

An alternative measure of niche climatic matching was 

calculated as the distance in the environmental space 

between the centroid of species' scores along PCA axes (an 

estimate of the centre of the distribution for each species 

along an axis) and the centroid of Iberian conditions 

(scores along PCA axes). Niche metrics were calculated 

using the ‘ecospat’ R package (13). 

Second, we also used species distribution models (SDMs) 

to measure niche overlap between native and invaded 

ranges. In this case, niche overlap metrics were calculated 

using the environmental space as defined by the gradient of 

predicted probabilities obtained with SDMs (8) using the 

‘ecospat’ library. SDMs were calibrated using occurrence 

data in each native range and a set of bioclimatic variables 

as predictors, using the Maxent modelling algorithm (14) 

as implemented in the R package ‘dismo’ (15). The Maxent 

algorithm has been shown to perform better than other 

correlative methods that use presence and background data 

(16). While it is generally accepted that the potential range 

distribution of invasive species is best addressed using its 

global coverage (17), we only used native information for 

model calibration because the focus of this study was not to 

produce the best-fit model in the invasive range, but to 

determine the environmental similarity between the two 

native and the invasive ranges. As climatic predictors we 

used 7 bioclimatic variables (obtained from Worldclim 

database) commonly used in avian distribution modelling 

to denote bioclimatic controls (e.g. (18)) representing 

average and extreme climatic conditions: annual mean 

temperature, temperature seasonality, maximum 

temperature of the warmest month, minimum temperature 

of the coldest month, annual precipitation, precipitation of 

the driest month and precipitation seasonality. Ten 

replicate niche models were then constructed for each 

species within its native range and, in each model, all 

native occurrence records were partitioned randomly into a 

calibration set (training set = 70% of all records) and a 

testing set (validation set = 30%). We selected 500 

iterations for model convergence and employed the 

regularization procedure to prevent overfitting.  

Potential bias in presence records was addressed by 

creating bias grids for use in Maxent modeling, following 

procedures outlined by Elith et al. (19), which has been 

shown to provide more accurate model predictions (20). 

For each species, we produced a bias grid using 

information on surveyed grids retrieved from GBIF for all 

species belonging to the same genus. We derived kernel 

density maps of sampled grids and rescaled it from 1 to 20 

to reduce numeric disparities (19), so cell values reflected 

sampling effort and gave a weight to random background 

data used for modeling. Species’ breeding range, as 

obtained from BirdLife database (21), with a buffer area of 

400 km, were used as background area. Performance of 

Maxent models was assessed using the Continuous Boyce 

Index (22), which was especially designed for presence 

only models. It is obtained by plotting the relationship 

between the predicted number of evaluation points (P) and 

the number of points expected by a random distribution (E) 

along the gradient of habitat suitability (HS) scores. The 

index, defined as the Spearman’s r between P/E and HS, 

ranges from 0 (random) to 1 (perfect prediction), with 

negative values indicating models that predict worse than 

random. Results of Maxent models are summarized in 

Dataset 1.  

Because results using the different measures of climatic 

matching were qualitatively congruent, we only report the 

outputs for the measure of niche overlap between native 

and invaded ranges using Schoener’s D from the PCA 

procedure for further analyses, while results for the SDM 

approach, I index and centroid distances are provided in the 



Table S4. Additionally, we explored the role of 

temperature alone in climate matching, as it could be 

argued that temperature should represent the main direct 

climatic constraint on the invasion success. Precipitation is 

likely to be more related to food supply which is often also 

affected by other factors (e.g. urbanization) and could mask 

the role of climate-matching as some exotic birds may 

establish in human settlements. Because the first PCA axis 

was mostly correlated with temperature (e.g. r = 0.96 with 

minimum temperature of the coldest month), we calculated 

niche overlap along this axis following the approach 

proposed by Broennimann et al. (8) and outlined above. 

We found that niche overlap measures considering only 

temperature were highly correlated with those measures 

using both PCA axes when using the whole target region (r 

= 0.9, p < 0.001) and when using the records for each 

species in the invaded region (r = 0.76, p < 0.01) for the 

subset of species that had enough records to perform the 

approach of Broennimann et al. (8) (n = 89). 

Species-level factors We considered several factors 

related to species traits: 

Relative brain size. Brain mass data were obtained from 

different literature sources (see reference list in Dataset 

S1). We compiled brain size information for a total of 1357 

bird species (both species introduced and species that have 

never been introduced), including 74 of those in our dataset 

of exotic birds. We used actual brain mass, where 

available, but we also included cranial endocast measures 

converted to mass by multiplying the reported value by the 

density of fresh brain tissue (1.036 g/ml) (ref. 23 and 

references therein). To control for the allometric effect of 

body size on brain size, we used the residuals of log-log 

regressions against body mass (relative brain size, 

hereafter). Body mass was obtained from the same sources 

as was brain mass and the residuals were taken from a log-

log regression on all available species. The relationship 

between brain size and body mass was strongly positive 

and linear (linear regression, R2 = 0.84; slope ± SE, 

0.580±0.007; P < 0.0001), and the residuals were unrelated 

with body mass (R2 = 0.0007). Then, for those species in 

our dataset of exotic birds for which brain mass was not 

available (n=33), we used the average brain residual of the 

species from the same genus (24). 

Life history strategies. We collected information for a set of 

life-history traits, namely: clutch size, number of broods 

per year, fecundity, egg mass, incubation period, fledgling 

period, lifespan and age at first breeding (sources detailed 

in Supplementary Information) to estimate the fast-slow 

continuum of life-history strategies of the different species. 

Following Bielby et al. (25; see also ref 24), we used a 

factor analysis to simplify the pattern of covariation among 

traits by positing latent variables underlying the data. In 

order to avoid potential biases in the estimates, information 

for both species introduced and species that have never 

been introduced was compiled. A total of 253 species, for 

which information was available for all the eight traits, 

were used in the factor analysis, including 52 of those in 

our dataset of exotic birds. The confounding effect of body 

size (26) was removed by regressing life‐history variables 

on body size after log transformation, using ordinary least 

squares, and computed residuals for use in the factor 

analysis. The first factor was retained as an estimate of the 

fast-slow continuum (44% of variance explained). 

However, because clutch size (i.e. the residuals of log-log 

regression against body mass) was highly correlated with 

this derived variable (r = 0.91) and was available for all of 

the target species, we used it as surrogate of the fast-slow 

continuum in order to maximize the number of species 

included in the analysis. 

Recently, a wide cross-species comparison in birds (24) 

suggested that rather than a fast or slow strategy, a bet-

hedging life history characterized by delayed reproduction 

and longer lifespan is linked to invasion. In order to test 

this hypothesis, and following Sol et al. (24), we computed 

for each species its brood value (27), which accounts for 

the ability of species to prioritize current survival over 

future reproduction, expressed as log10(1/[number of 

broods per year x reproductive life span]). For species for 

which either or both of these parameters were unavailable 

(n = 25), values were extrapolated from the mean for 

congeners (24). Variation in brood value was poorly 

correlated with the fast-slow continuum, so providing a 

different life-history trait. Furthermore, as an additional 

proxy of life history strategy, we also explored body mass 

(mean of male and female masses), as obtained from 

different sources (21, 28).  

Niche breadth. For each species, an estimate of niche 

breadth was calculated using  the  area  of  the  PCA  

envelope  surrounding  the native  distribution  points  in  

the  global  PCA climate space (see above) after excluding 

the 5% of most extreme values. Additionally, geographic 

range size in native areas was also used as a proxy of niche 

breadth (see e.g.  ref. 29). Range size data were obtained 

from BirdLife International (21).  



Migratory status. Species were classified as migratory (i.e. 

species for which a substantial proportion of the global or 

regional population makes regular or seasonal cyclical 

movements beyond the breeding range, with predictable 

timing and destinations) or non-migratory, according to the 

information provided by BirdLife International (21). 

Modeling invasion success. To test the link between the 

different predictors and establishment success, we 

conducted logistic regressions, in which the outcome of the 

introduction was the dependent variable, taking a value of 

0 when the species failed in establishing self-sustaining 

populations and 1 when it succeeded. Most predictor 

variables were log transformed to improve compliance with 

normality, and all the continuous predictors were 

standardized to allow comparisons among estimates. 

Species can generally not be considered independent data 

points because closely related ones tend to share many 

morphological, physiological and ecological traits due to 

their common evolutionary history (30). A previous study 

(1) has shown that those exotic taxa that have succeed in 

establishing viable breeding populations in the wild in 

Spain and Portugal are a non-random subset of all 

introduced birds in terms of phylogeny, so we performed 

our analyses in a phylogenetic comparative framework. For 

comparison, we also performed non-phylogenetic logistic 

regressions, which assume all species values are 

independent. Dated phylogenies of all extant bird species 

have been recently built (31) and sets of 10,000 pseudo-

posterior samples of these phylogenies are available for 

download at http://birdtree.org/. In order to account for 

phylogenetic uncertainty, we subsampled 1,000 trees (see 

(31) for further details on phylogeny construction). We 

began with separate univariate analyses to test the effect of 

each predictor variable on establishment. We used 

phylogenetic logistic regression (PLR) (32), as 

implemented in the R package ‘phylolm’ (33), to assess the 

relationship between single predictor variables and 

establishment success. By this approach we were able to 

assess the influence that each variable had on the 

probability of establishment independently of the 

phylogenetic relationships among species. Then, we 

examined the combined influence of predictor variables on 

establishment success in phylogenetic multiple logistic 

regression. We used a multi-model approach based on 

Akaike’s Information Criterion adjusted for small sample 

sizes (AICc) to evaluate the parameter estimates and the 

relative importance of predictor variables in a likelihood-

based framework (34). We identified the best model based 

on AICc and calculated the relative importance of each 

predictor variable as the sum of the AICc weights of all 

models that included this variable in the set of most likely 

models (ΔAICc < 4). We conducted this approach for each 

of the 1,000 phylogenetic trees, and we report the mean 

and the central range that contains 95% of parameter 

estimates. Goodness-of-model fit was evaluated by 

calculating the explained deviance (D
2
) (35). It is not 

currently possible to obtain D
2
 for PLRs (32) so we relied 

on the results of non-phylogenetic logistic regression.  

We also tested the link between the different predictors and 

the rate of spatial spread in the study area for the subset of 

established species using phylogenetic generalized least 

squares (PGLS) models. PGLS models were constructed 

with the R library ‘nlme’ (36) assuming a Brownian motion 

model of evolution and with the rate of spatial spread 

(increment in the number of occupied 5x5km cells over 

time, log-transformed) as response variable (for 

comparison, we also performed non-phylogenetic ordinary 

least squares). Similarly, we also tested how the different 

factors explained the size of the invaded range (number of 

occupied 5x5km cells in the study area, also log-

transformed). As for PLR, we fitted univariate PGLS 

models and all possible PGLS multivariate models from 

predictor variables to identify the most likely models and to 

calculate Akaike weights and variable importance based on 

AICc and model averaging. 

To evaluate the relative independent effect of the 

explanatory variables, we performed a hierarchical 

partitioning (37) on the subsets of variables selected in the 

final best PLR and PGLS models. To do so we used the 

‘hier.part’ package in R (38). Briefly, this analysis splits 

the variation explained by each predictor into independent 

and joint effects, allowing assessing the importance of the 

common effect among variables, and thus accounting for 

their collinearity. A 1,000-randomization procedure was 

carried out to test the statistical significance of the 

independent effects of each predictor (37). Because the 

‘hier.part’ analysis does not support PLR nor PGLS 

models, we relied on the results of non-phylogenetic 

models. 
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Fig. S1. Hierarchical partitioning showing independent effects of different factors on spatial spread in 

established species. The left and right panel show variance explained by the subset of variables 

selected in the best PGLS models on the degree of spatial spread (number of occupied 5x5km cells) 

for all established species and for the subset of cage species, respectively. The asterisk denotes 

significance at the P < 0.05 level. 

 

 

 

 

  

 

 

  



Fig. S2. Temporal evolution of the spatial distribution of exotic bird species established in the Iberian 

Peninsula. The graph on the left shows the cumulative number of 5x5 km cells over time. The map 

(right) shows, for each cell, the year in which the species was first recorded. See SI Materials and 

methods for additional information on particular species. 

 



 



 



 



 



 



 

 

 

 

  



Table S1. Results of the non-phylogenetic logistic regressions testing the relationship between the 

different predictors and establishment success. 

 
 Univariate models  Best model  

Variables Estimate D
2
 

 
Estimate D

2
 ΣwAIC 

Event-level factors       
Years from introduction 0.783** 0.094  1.037** 0.29 1.00 
Introduction events 0.787** 0.074  0.612  0.54 
Number of imported 
birds 

0.627** 0.066  0.881**  1.00 

Species-level factors       
Clutch size 0.165 0.004    0.39 
Brood value 0.268 0.013  0.549  0.53 
Body mass -0.406 0.026    0.13 
Range size 0.077 0.001    0.13 
Brain size 0.398 0.025  0.669  0.56 
Niche breadth 0.355 0.023  0.869*  1.00 
Migrant -0.673 0.018    0.15 

Location-level factors       
Climate matching -0.155 0.004    0.14 

 

Standardized regression coefficients are showed for univariate models and for the best multivariate model based on Akaike’s 

Information Criterion adjusted for small sample sizes (AICc). Relative importance of variables (ΣwAIC) based on a multi-

model information-theory based approach is shown. Variables with strong support (ΣwAIC ≥ 0.8) are shown in bold. * P ≤ 

0.05; ** P ≤ 0.01; *** P ≤ 0.0001. Goodness-of-model fit, as evaluated by calculating the explained deviance (D2) is also 

provided. 

 

 

  



Table S2. Results of the ordinary (non-phylogenetic) generalized least squares models testing for the 

link between the different predictors and the rate of spatial spread in established species. 

 

 Univariate models  Best model  

Variables Estimate R
2
  Estimate R

2
 ΣwAIC 

Event-level factors       
Years from introduction 0.363* 0.181  0.253* 0. 0.82 
Introduction events 0.379* 0.203  0.177  0.39 
Number of imported birds 0.137 0.000    0.57 

Species-level factors       
Clutch size 0.202 0.067    0.40 
Brood value 0.148 0.035    0.19 
Body mass 0.192 0.021  0.260  0.75 
Range size 0.194 0.022    0.21 
Brain size -0.099 0.016    0.40 
Niche breadth -0.146 0.034    0.17 
Migrant -0.182 0.010  -0.808**  0.84 

Location-level factors       
Climate matching 0.475** 0.342  0.423**  1.00 

 

Standardized regression coefficients are showed for univariate models and for the best multivariate model based 

on Akaike’s Information Criterion adjusted for small sample size (AICc). Relative importance of variables (ΣwAIC) 

based on a multi-model information-theory based approach is shown. Variables with strong support (ΣwAIC ≥ 0.8) 

are shown in bold. * P ≤ 0.05; ** P ≤ 0.01; *** P ≤ 0.0001. Goodness-of-model fit (R
2
) is also provided. 

 

  



Table S3. Results of the phylogenetic generalized least squares models testing the link between the 

different predictors and the degree of spatial spread (number of occupied grid cells) of established 

species. 

  

 Univariate models  Best model  

Variables Coefficients R
2
  Coefficients R

2
 ΣwAIC 

Event-level factors       
Years since 
introduction 0.351 (0.297, 0.408) 0.44  0.237 (0.216, 0.258) 

0.60 
1.00 (1.00, 1.00) 

Introduction events 0.035 (0.000, 0.118) 0.18    0.06 (0.05, 0.09) 
Imported birds 0.137 (0.072, 0.256) 0.01    0.08 (0,06, 0.18) 

Species-level factors       
Clutch size 0.064 (-0.121, 0.118) 0.02    0.06 (0.05, 0.11) 
Brood value 0.001 (-0.048 - 0.054) 0.00    0.06 (0.04, 0.09) 
Body mass -0.313 (-0.450 - -0.151) 0.00    0.07 (0.05, 0.10) 
Range size 0.094 (0.052 - 0.157) 0.00    0.08 (0.06, 0.14) 
Brain size -0.264 (-0.370 - -0.187) 0.00    0.10 (0.07, 0.20) 
Niche breadth -0.104 (-0.127 - -0.063) 0.06    0.07 (0.05, 0.09) 
Migrant -0.157 (-0.349 - -0.100) 0.00  -0.263 (-0.330, -0.206)  0.91 (0.55, 1.00) 

Location-level factors       
Climate matching 0.245 (0.221 - 0.268) 0.28  0.191 (0.169, 0.207)  1.00 (1.00, 1.00) 

 

Standardized regression coefficients are showed for univariate models and for the best multivariate model based 

on Akaike’s Information Criterion adjusted for small sample sizes (AICc). Relative importance of variables 

(ΣwAIC) based on a multi-model information-theory based approach is shown. Variables with the strongest 

support (ΣwAIC ≥ 0.8) are shown in bold. Regression coefficients and ΣwAIC values represent the median and the 

central range that contains 95% of values for 1,000 phylogenetic trees. The parameter estimates that are 

significantly different from zero (P < 0.05) are indicated by bold numbers. Goodness-of-model fit (R
2
) from 

ordinary least squares regression is also provided. 

 

 

 

  



Table S4. Results of the phylogenetic regression models testing for the link between the different 

measures of climate matching and both establishment success (phylogenetic logistic regressions) and 

spread rate (phylogenetic generalized least squares) in established species.  

 

Climate matching 
variables Estimates P-values 

D
2
/R

2
 

Establishment    
PCA.dist -0.152 (-0.190, -0.033) 0.523 (0.434, 0.867) 0.00 
PCA.D 0.136 (-0.075, 0.215) 0.542 (0.335, 0.998) 0.00 
PCA.I 0.000 (-0.157, 0.186) 0.627 (0.408, 0.998) 0.00 
Maxent.D -0.367 (-0.426, -0.303) 0.132 (0.093, 0.206) 0.03 
Maxent.I -0.340 (-0.373, -0.309) 0.148 (0.116, 0.185) 0.03 

Spread rate    
PCA.dist -0.429 (-0.542, -0.310) 0.001 (0.000, 0.014) 0.21 
PCA.D 0.475 (0.400, 0.545) 0.000 (0.000, 0.000) 0.34 
PCA.I 0.470 (0.382, 0.540) 0.000 (0.000, 0.000) 0.27 
Maxent.D 0.392 (0.282, 0.529) 0.011 (0.000, 0.049) 0.22 
Maxent.I 0.324 (0.385, 0.463) 0.003 (0.000, 0.010) 0.25 

 
Standardized regression coefficients and P values represent the median and the central range 

that contains 95% of values for 1,000 phylogenetic trees. Goodness-of-model fit, as evaluated 

by calculating the explained deviance (D
2
) from the non-phylogenetic logistic regression or as 

coefficient of determination (R
2
) from ordinary least squares regression, is also provided. Codes: 

PCA.dist, distance in the environmental space between the centroid of species' scores along 

PCA axes; PCA.D and PCA.I, Schoener’s D and Hellinger's distance (I), respectively, measured 

on the occupancies in the environmental space depicted by the two first axes of the PCA; 

Maxent.D and Maxent.I, Schoener’s D and Hellinger's distance (I), respectively, measured on of 

Maxent output. 

 

  



Table S5. Results of the phylogenetic logistic regressions testing the relationship between the 

different predictors and establishment success in cage species (orders Passeriformes and 

Psittaciformes).  

 
 Univariate models  Best model  

Variables Coefficients D
2
  Coefficients D

2
 ΣwAIC 

Event-level factors       
Years since introduction 0.783 (0.771, 0.798) 0.11   0.34 0.29 (0.21, 0.48) 
Introduction events 0.794 (0.757, 0.829) 0.07  0.961 (0.888, 1.001)  0.86 (0.70, 0.92) 
Imported birds 0.747 (0.719, 0.769) 0.05    0.51 (0.46, 0.60) 
Market availability -0.026 (-0.026, 0.107) 0.00    0.09 (0.05, 0.18) 
Wild-caught/captive-bred 17.381 (16.592, 18.433) 0.07  17.812 (16.841, 18.623)  1.00 (0.86, 1.00) 

Species-level factors       
Clutch size 0.280 (0.269, 0.345) 0.02    0.42 (0.31, 0.60) 
Brood value 0.353 (0.247, 0.356) 0.02    0.09 (0.00, 0.25) 
Body mass -0.235 (-0.306, -0.223) 0.01    0.07 (0.03, 0.13) 
Range size 0.093 (0.078, 0.162) 0.00    0.12 (0.02, 0.20) 
Brain size 0.055 (0.051, 0.137) 0.00    0.12 (0.04, 0.31) 
Niche breadth 0.542 (0.420, 0.593) 0.04  0.657 (0.629, 0.681)  0.83 (0.67, 0.96) 

Location-level factors       
Climate matching -0.042 (-0.048, 0.006) 0.00    0.05 (0.04, 0.08) 

 
Standardized regression coefficients are showed for univariate models and for the best multivariate model based 

on Akaike’s Information Criterion adjusted for small sample sizes (AICc). Relative importance of variables 

(ΣwAIC) based on a multi-model information-theory based approach is shown. Variables with strong support 

(ΣwAIC ≥ 0.8) are shown in bold. Regression coefficients and ΣwAIC values represent the median and the central 

range that contains 95% of values for 1,000 phylogenetic trees. The parameter estimates that are significantly 

different from zero (P < 0.05) are indicated by bold numbers. Goodness-of-model fit, as evaluated by calculating 

the explained deviance (D
2
) from the non-phylogenetic logistic regression, is also provided. 

 

 


