
A statistical framework for evaluating definitions of extreme weather phenomena can help 

weather agencies and health departments identify the definition(s) most applicable for alerts 

and other preparedness operations related to extreme weather episodes.
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A n extreme heat event (EHE) is defined as a sus- 
 tained period of abnormally and uncomfortably  
 hot, and usually humid, weather (Meehl and 

Tebaldi 2004). EHEs can negatively impact vital 
aspects of society, including agriculture, power 
production and consumption, and human health 
(National Research Council 2010; IPCC 2007). In 
the United States, fatalities related to naturally oc-
curring ambient temperature extremes (hypothermia 
or hyperthermia) account for far more deaths in 
most years than those resulting from the combined 
effects of natural disasters such as storms and 
floods (Berko et al. 2014). The relationship between 
extreme temperature and mortality has been well 
described (Barnett et al. 2012; Barnett et al. 2010; 
Curriero et al. 2002; Medina-Ramon and Schwartz 
2007), and studies have reported an added effect of 
heat waves independent of the effects of individual 
daily temperature extremes (Anderson and Bell 
2011; Gasparrini and Armstrong 2011; Hajat et al. 
2010; Hertel et al. 2009). Previous studies have also 
explored the sensitivity of the temperature–mortality 

relationship to different measures of temperature, 
as well as the duration and threshold type/intensity, 
used to define EHEs (Barnett et al. 2012; Barnett et al. 
2010). Adverse health outcomes associated with EHEs 
are often preventable (Fowler et al. 2013; Choudhary 
and Vaidyanathan 2014); however, it is imperative to 
identify such events in advance and take measures to 
reduce the public health risk.

Many EHE definitions are available from the 
literature (Anderson and Bell 2011; Basagaña et al. 
2015; CDC 2013; Easterling et al. 2000; Hajat et al. 
2006; Hajat et al. 2010; Huth et al. 2000; Kent et al. 
2014; Kovats and Hajat 2008; Meehl and Tebaldi 2004; 
Nairn and Fawcett 2014; Pascal et al. 2006; Pascal 
et al. 2013; Peng et al. 2011; Robinson 2001; Smith 
et al. 2013). Typical EHE definitions can be decom-
posed into the following core variables:

1) daily heat metric—heat metrics, such as daily 
maximum and mean temperature, and diurnal 
temperature difference are typically employed in 
EHE definitions;
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2 duration—the number 
of consecutive days of 
extreme heat needed to 
constitute an EHE; the 
minimum duration for 
most definitions varies 
from 2 to 4 days;

3) threshold type—abso-
lute, which is based on a 
daily heat metric thresh-
old that does not change, 
or relative, which is based 
on an exceedance above 
a set percentile, which 
varies according to the 
underlying daily heat 
metric distribution for a 
given location; and

4) t h re shold  i nten s i t y, 
which indicates the ex-
tremity of deviation con-
sidered to represent exposure to extreme heat. 
Most definitions refer to exceedances above ab-
solute thresholds such as 90°, 95°, 100°, or 105°F 
or exceedances above relative thresholds such as 
95th, 97th, 98th, or 99th percentiles.

Extreme heat exposures (distinct from EHEs) 
have been defined using thermal indices, which are 
derived based on human energy balance and incor-
porate physiological attributes as well as the effects of 
the thermal environment on human health (Cheng 
et al. 2012; Höppe 1999; Matzarakis et al. 1999; 
Nastos and Matzarakis 2012; Parsons 2014; Vanos 
et al. 2012). Additionally, EHEs have been defined 

using biometeorological indices that utilize ambient 
temperature and other relevant weather parameters; 
widely used examples of such indices are wet-bulb 
globe temperature (Budd 2008), apparent temperature 
(heat index) (Rothfusz 1990), humidex (Vaneckova 
et al. 2011), the Thom discomfort index (Thom 1959), 
and the spatial synoptic classification (SSC) (Sheridan 
et al. 2009). Of note is that the SSC is an airmass-based 
categorical classification system that is customized to 
a geographic area using retrospective health data and 
has been adopted by some local weather forecast offices 
in the United States (Hondula et al. 2014).

Within the context of the outline above, EHEs 
are defined using several daily heat metrics but are 
primarily based on meteorological variable deviations 
(e.g., temperature) from the historical norm, and a 
majority of studies have applied one definition to all 
climate regions. Studies that have evaluated EHEs 
are limited to a few geographic areas (Gasparrini 
and Armstrong 2011; Hajat et al. 2010; Ishigami et al. 
2008) and extending definitions from such studies to 
the entire United States could result in the misiden-
tification of EHEs in terms of human health effects. 
Some studies that have been published evaluated 
EHE definitions using health data (Anderson and 
Bell 2009; Hajat et al. 2010; Kent et al. 2014; Pascal 
et al. 2006; Zhang et al. 2012) but almost all of the 
studies conducted nationally failed to evaluate EHE 
definitions using data on health outcomes having 
a clear causal link to extreme heat. On the whole, 
there is a lack of consensus in the scientific literature 
on definitions and procedures to accurately identify 

Fig. 1. Spatial coverage of ASOS weather stations with climate regions.
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periods of extreme heat having the potential for ad-
verse health impacts.

Issuance of alerts and health advisories, prior to 
or during extreme weather events, can be critical to 
averting adverse health outcomes and is a service 
currently supported by weather and public health 
agencies involved in preparedness, response, and 
recovery operations. Alerts and health advisories are 
presumably most effective when based on weather 
event definitions that best reflect related health con-
cerns. In this paper, we use episodes of extreme heat as 
an example to illustrate the application of a statistical 
framework within which to evaluate a candidate set 
of definitions in the context of heat mortality.

The evaluation is conducted by climate regions, 
recognizing that populations living under different 
prevailing climate conditions might adapt differently 
to weather-related exposures, including episodes of 
extreme heat (Davis et al. 2003), which in turn allows 
for the possibility that the most appropriate definitions 
might vary with climate region. Although we dem-
onstrate the application of this framework to identify 
appropriate EHE definitions using county-level heat 
mortality data, the basic framework might also be ap-
plied to data describing other extreme weather events 
with well-established links to adverse health outcomes 
and, potentially, at other levels of geography.

METHODS. Meteorological data. We used station-
based meteorological data for the years 1999–2009, and 
any county in the contiguous United States (lower 48 
states) that had an automated surface observing system 
(ASOS) unit (NOAA/NWS 1999) was considered for the 
present demonstration. We obtained these data from 
the National Oceanic and Atmospheric Administra-
tion’s National Centers for Environmental Information 
(NCEI; www.ncei.noaa.gov/). The spatial coverage of 
the ASOS stations is shown in Fig. 1. For each station we 
adopted a completeness criterion requiring nonmissing 
values for at least 75% of the hourly weather observations 
in a given day (at least 18 of 24 hourly measurements) 
for purposes of calculating daily heat metric summaries. 
For each county and day, a county-level estimate was 
calculated as the average of all available station-level heat 
metric summaries. Counties with estimates for at least 
95% of the days covered by the summer months (1 May–
30 September) of each individual year (1999–2009) were 
included in the demonstration dataset.

EHE def initions and core variables. For this study, 
we considered a number of EHE definitions that 
have been used in public health research and/or 
widely cited in the literature. Table 1 summarizes 

the different combinations of core variables used 
to define an EHE in this analysis. We used daily 
maximum temperature (Tmax), daily maximum heat 
index (HImax), daily average temperature (Tavg), and 
a combination of Tmax and daily minimum tempera-
ture (Tmin) as daily heat metrics; all heat metrics were 
represented in degrees Fahrenheit and we used the 
formula cited in Robinson (2001) to compute HImax. 
We considered EHE definitions with both absolute 
and relative thresholds. Absolute thresholds were set 
at various intensity values, including 90°, 95°, 100°, 
and 105°F. Relative thresholds were calculated using 
two different approaches. We calculated percentile-
based relative thresholds representing different in-
tensities, including the 80th, 85th, 90th, 95th, 98th, 
and 99th percentile values and, for one definition, 
that of Huth et al. (2000),1 we used the 81st and 
97.5th percentile values. We computed these percen-
tiles using heat metric data for the summer months 
for the years 1999–2009. We obtained station-level 
climate normal information from the NCEI, that is, 
the mean and standard deviation of the daily heat 
metrics computed based on data from 1981 to 2010 
(Arguez et al. 2012); climate normals were unavail-
able for the heat index. We operationalized EHE 
definitions with minimum duration, that is, the 
number of consecutive days needed to constitute 
an EHE, variously ranging from 2 to 4 days. Vary-
ing minimum durations coupled with the various 
thresholds for each daily heat metric resulted in a 
total of 92 variants (Table 1). Table ES1 (in the online 
supplemental material; http://dx.doi.org/10.1175 
/BAMS-D-15-00181.2) provides precise details for 
each of these variants. We operationalized each EHE 
definition/variant using a binary [yes (1) or no (0)] 
variable, classifying each day in each county during 
the summer months as either an “EHE day” or a 
“non-EHE day.”2 Days for which daily county-level 
data were not available could in some instances have 
interrupted a data sequence that might otherwise 

1 Per Huth’s definition, a heat wave is defined as the longest 
period of consecutive days satisfying the following three 
conditions: 1) the daily maximum temperature is above T1 
(97.5th percentile) for at least three consecutive days, 2) the 
daily maximum temperature is above T2 (81th percentile) dur-
ing the entire period, and 3) the average of the daily maximum 
temperature over the entire period is greater than T1. 

2 We added a buffer of 3 days to the start and end of the summer 
months to account for any potential EHE that either started 
prior to 1 May and ended on or shortly after 1 May, or started 
on or shortly before 30 September and ended in the early part 
of October. The buffer days were not included in the analysis.
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have qualified the surrounding 
days as EHE days. However, 
because of the high data com-
pleteness threshold employed, 
we believe any such effects to be 
minimal.

Mortality data. We obtained mor-
tality data from the National Cen-
ter for Health Statistics (NCHS) 
National Vital Statistics System 
for the years 1999–2009 and iden-
tified records representing heat 
deaths based on International 
Classification of Diseases, 10th 
revision (ICD-10; www.who.int 
/classifications/icd/icdonlinever 
sions/en/), external cause codes. 
Specifically, we selected death 
records for which exposure to ex-
cessive natural heat (ICD-10 code 
X30) was listed as the underlying 
cause of death; the underlying 
cause of death is defined as the 
disease or injury that initiated 
the chain of events leading to 
death (Hanzlick et al. 2006). We 
summarized the extracted death 
records for the summer months 
to obtain counts of heat deaths 
by county of residence and day. 
(County of residence was used as 
opposed to county where death oc-
curred to facilitate calculation of 
population-based rates.) We then 
assigned the data for each county 
to one of the nine U.S. climate 
regions, which are aggregations 
of states based on homogeneous 
long-term climatology (Fig. 1); 
a description of these regions is 
available from the NCEI (www 
.ncdc .noaa .gov/monitor ing 
-references/maps/us-climate 
-regions.php). Additionally, as 
a result of small death counts 
in the West North Central and 
Northwest regions, we combined 
these two regions into the “North 
West Central.” We excluded coun-
ties that did not have meteoro-
logical data (or that did not meet 
the completeness criterion for T
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such data) and made adjustments to account for 
county boundary changes that occurred between 
1999 and 2009 (www.census.gov/geo/reference 
/county-changes.html).

Population and other ancillary data. For incidence 
rate denominators we used county-level bridged-
race population estimates developed by NCHS and 
the U.S. Census Bureau (www.cdc.gov/nchs/nvss 
/bridged_race.htm). In addition to the meteorologi-
cal data described in the meteorological data section 
above, we note the availability of a number of county-
level measures of health, behavior, and economic 
conditions that could influence heat-related health 
outcomes. Percentages of residents of all ages living in 
poverty and percentages of residents aged 0–64 years 
without health insurance are available from the U.S. 
Census Bureau; prevalence estimates of current adult 
smokers are available from the Centers for Disease 
Control and Prevention (CDC) Behavioral and Risk 
Factor Surveillance System; data on diabetes preva-
lence, adults that reported no leisure-time physical ac-
tivity, and obesity prevalence (body mass index ≥ 30) 
are available from the CDC National Center for 
Chronic Disease Prevention and Health Promotion, 
Division of Diabetes Translation, while residential 
air conditioning prevalence data are available from a 
private vendor (efficiency 2.0). For the present dem-
onstration, however, we felt that these data could not 
be meaningfully summarized across entire climate 
regions, as would be necessary for their inclusion in 
the modeling process described subsequently (see the 
section on rate regression modeling below). While 
EHEs tend to occur over broad geographic scales (and 
can thus be plausibly summarized across regions), 
measures such as those identified above might be 
expected to vary at more localized scales.

Evaluating EHE definitions using heat mortality data. 
Separately evaluating 92 different EHE defini-
tions/variants and compiling results could become 
unmanageable from an operational standpoint; 
hence, we used cluster analysis as a preliminary 
data reduction technique to group EHE definitions 
into homogeneous sets. We differentiated any two 
EHE definitions based on county-day disagree-
ments between the binary variables representing 
the operationalized definitions. For a given county 
and year, the total count of daily disagreements 
between two definitions is provided by the sum of 
the off-diagonal frequencies, as shown in Table ES2 
in the online supplemental material to this article. 
(This sum represents the squared Euclidean distance 

between two vectors of binary variables.) Because 
the main research focus is on human health effects, 
these counts were weighted by the yearly county 
population estimates in order to ensure proportional 
representation. The population-weighted disagree-
ment counts were then summed across counties 
(nationwide) and years to obtain an overall mea-
sure of disagreement (or distance) between the two 
EHE definitions. A distance matrix containing the 
overall disagreement measures for all pairs of EHE 
definitions (4,186 pairs) was used as input into the 
clustering procedure.

We applied a hierarchical clustering technique and 
employed an average distance metric to determine 
distances between clusters that might be merged in 
each step of the clustering process (Kalkstein et al. 
1987; Zhang et al. 1996). Average distance is calcu-
lated using the formula

 
i

n

j

n
i j

a b

a b d Ca Cb

n n= =
∑∑

( )
×1 1

,
, (1)

where Ca and Cb are two disjoint clusters; na and 
nb are the number of members within clusters Ca 
and Cb, respectively; and d is the squared Euclidean 
distance between two members of the two disjoint 
clusters.

We divided the final hierarchical cluster (one large 
cluster encompassing all definitions) into smaller 
clusters, taking into consideration various diagnos-
tics including the R-squared, pseudo-F, and pseudo-
t-squared indices. Based on these diagnostics, we 
identified relatively distinct high-level clusters. One 
representative EHE definition was then selected from 
each high-level cluster. Representative definitions 
were selected according to the following criteria: 1) 
EHE definitions/variants that are well recognized 
in the literature, 2) application in studies conducted 
in the United States, and 3) application in nationally 
representative studies (i.e., those studies that covered 
the various climate regions of the United States). 
Recognizing the possibility of delayed or extended 
health effects associated with EHEs, each representa-
tive EHE definition was combined with the following 
exposure offsets: no lag (i.e., no offset), a 1-day lag, and 
1-, 2-, and 3-day extended (post-EHE) effects (Fig. 2).

Rate regression modeling. We applied rate regression 
models to evaluate the relationship between op-
erationalized EHE definitions and heat deaths. The 
following model was used to estimate the death rate 
per person day for each EHE definition/variant and 
exposure offset combination:
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log(E[D]/P) = α + βregion + βEHE × EHE  
+ βEHE.Region × EHE × Region, (2)

with model terms defined as follows: D is the count 
of deaths for each combination of region, year, and 
EHE status;3 E[D] is the expected count of deaths; P 
is the number of person-days of exposure for which 
D is measured; α is the intercept; βregion is the inter-
cept offset for the climate region; βEHE is the effect 
parameter for the binary variable representing the 
operationalized EHE definition/variant and expo-
sure offset combination; EHE is the binary variable 
representing the operationalized EHE definition/
variant and exposure offset combination; βEHE.Region 
is the effect parameter for the interaction between 
the region and EHE; and Region is the classification 
(indicator) variable for the region.

To compensate for overdispersion, we specified 
a negative binomial link. Using this modeling ap-
proach, we estimated region-specific baseline rates of 
the heat death (in the absence of an EHE) and region-
specific EHE rates of heat death (in the presence of 
an EHE). We termed the estimated increases in rates 
due to EHEs as “EHE effects.”

We used the estimated EHE effects to identify the 
“best” EHE definition/variant and exposure offset 
combinations for each region. One might hypothesize 
that there is some “gold standard” EHE definition 
that best explains heat mortality; the various EHE 
definitions considered in this evaluation represent 
approximations to this hypothetical gold standard. 
The extent to which each operationalized EHE defini-
tion deviates from the hypothetical gold standard can 
be expected to materialize in the form of attenuation 
bias (i.e., weaker estimated EHE effects than might 
be ideally attained). By this reasoning, the strongest 
estimates, presumably corresponding to those with 
the least attenuation bias, are assumed to best repre-
sent the gold standard. We tested this reasoning by 
simulating various “ideal” datasets, each with health 
outcomes following a probability distribution con-
forming to a different (and arbitrary) gold standard 
EHE definition, and then observing the influence of 
deviations from the gold standard. The steps in our 
simulation exercise are described in Fig. 3.

After the simulation exercise indicated that the 
attenuation bias concept is applicable to our situation, 

we employed model (2) to identify the EHE definition/
variant and exposure offset combinations having the 
strongest effect estimates. We evaluated each of the 
EHE definitions/variants selected as high-level cluster 
representatives crossed with the five exposure offsets 
and ranked the results in descending order based on the 
lower confidence limit associated with each EHE effect 
estimate, for each climate region. Further, to character-
ize the region-specific differences in population-level 
susceptibility to extreme heat, we conducted a random 
effects meta-analysis, by region, based on the 10 “best” 
region-specific EHE definition/variant and exposure 
offset combinations, to estimate the mean baseline 
rate, the mean EHE effect, and associated confidence 
intervals (CIs) for each region. We carried out our data 
analyses using the Statistical Analysis System (SAS ver-
sion 9.3), Environmental Systems Research Institute’s 
GIS software (ESRI, ArcGIS version 9.3), and compre-
hensive meta-analysis software (CMA version 2.0).

RESULTS. Table 2 summarizes the number of 
heat deaths and counties with meteorological data, 
by climate region. A total of 3,829 heat deaths were 
identified for the contiguous United States during 
the summer months of 1999–2009, and 2,218 (58%) 
of these deaths were among residents of counties with 
meteorological data meeting the stated completeness 
criterion (complete data). For the latter group the state 
of residence and the state where death occurred were 
the same in 94% of cases; the county of residence and 
the county where death occurred were the same in 
83% of cases and in another 6% of cases the counties 
were geographically adjacent. The average fraction of 
the U.S. population living in counties with complete 
meteorological data was 57% over the 11-yr period 
considered here. The South region had the largest 
number of counties with complete meteorological 
data (n = 91) and also the largest number of heat 
deaths (n = 481) among residents of those counties. 
The West region had the smallest number of counties 
(n = 38) with complete meteorological data, although 
counties in this region are notably among the most 
geographically expansive. The North West Central re-
gion, which was formed by combining the Northwest 
and West North Central regions, had the smallest 
number of heat deaths (n = 72) among residents of 
counties with complete meteorological data.

Figure 4 shows a dendrogram (or cluster tree), which 
depicts the sequential clustering of the EHE defini-
tions/variants in a hierarchical manner. We delineated 
the final high-level clusters, taking into consideration 
the R-squared, pseudo-F, and pseudo-t-squared indices 
(data not shown). The break points were also influenced 

3 To facilitate reliable modeling diagnostics as well as conver-
gence, data were collapsed according to a three-way strati-
fication: climate region × year × EHE status (for the EHE 
definition/variant and exposure offset combination under 
consideration).

1822 OCTOBER 2016|



by subjective assessments of 
the homogeneity of mem-
bers within clusters and the 
heterogeneity across clus-
ters. We ultimately settled 
on five high-level clusters. 
We labeled each high-level 
cluster to reflect the under-
lying feature(s) common to 
the definitions/variants comprising it. Cluster 1 was 
the first cluster delineated and it contains only defini-
tions/variants that are based on absolute thresholds 
for several of the daily heat metrics. Cluster 2 contains 
definitions/variants based on thresholds that are pre-
dominantly moderate in intensity. Cluster 3 contains 
definitions/variants based on thresholds that are 
slightly more severe than those for cluster 2. Cluster 4 
contains definitions/variants based on thresholds that 
are predominantly extreme in nature. Cluster 5 consists 
of definitions/variants that rely on relative thresholds 
constructed from long-term climate-normal data, with 
thresholds that are predominantly low. Table ES3 in the 
online supplemental material lists the EHE definition/
variant that was selected as the representative from 
each high-level cluster. The five representative EHE 
definitions/variants crossed with the five exposure off-
sets resulted in 25 different combinations to be evalu-
ated using the rate regression modeling framework.

Table 3 ranks the EHE definition/variant and 
exposure offset combinations by climate region. The 

representative definition/variant from cluster 3, daily 
maximum temperature greater than the 95th percen-
tile for at least two consecutive days, is most strongly 
associated with heat mortality for six of the eight 
climate regions. The combinations of this definition/
variant with exposure offsets representing a 1-day lag 
(Lag1) or no lag (Lag0) show the strongest estimated 
EHE effects for all regions except the Southwest and 
South. The representative definition/variant from 
cluster 1, daily maximum heat index greater than 
90°F for three consecutive days, combined with each 
of the different exposure offsets, shows the strongest 
estimated EHE effects for the Southwest. The repre-
sentative definition/variant from cluster 4, the Huth 
definition, was the best definition for the South but 
generally shows the weakest estimated EHE effects for 
other regions. The representative definition/variant 
from cluster 2, daily maximum and minimum tem-
perature greater than the 80th percentile for at least 
three consecutive days, ranked fairly high (depending 
on the exposure offset) for the Central, Northeast, and 

Fig. 2. Exposure offsets.

Fig. 3. Simulation exercise to test the attenuation bias concept.
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Southeast regions; Lag1 and Lag0 represent the best 
exposure offsets. The representative definition/vari-
ant from cluster 5, daily mean temperature greater 
than the mean plus one standard deviation of the 
long-term climate normal for at least three consecu-
tive days, shows the weakest estimated EHE effects 
overall. For most regions, no one definition/variant 
is distinctly superior to all others. We also provide a 
table in the online supplement (see Table ES4) that 
describes other metrics such as the percentage of days 
classified as EHE days and percentage of heat deaths 
covered by EHE days for each representative EHE 
definition/variant and exposure offset combination.

Table 4 provides the results of the random effects 
meta-analyses of the estimated baseline rates and EHE 
effects, based on the 10 best EHE definition/variant 
and exposure offset combinations, for each climate re-
gion. The North West Central region shows the lowest 
mean (95% CI) baseline rate, 1.8 (1.5–2.2) deaths per 
one billion person-days of risk, and the highest mean 
(95% CI) EHE effect of 22.0 (17.7–27.3). The South 
region shows the highest mean (95% CI) baseline rate 
of 10.0 (8.8–12.0) deaths per one billion person-days of 
risk. The lowest mean EHE effect of 6.2 (4.9–7.9) was 
observed in the Southeast. In general, colder regions of 
the United States show a relatively low baseline rate and 
a relatively high EHE effect, while the warmer regions 
of the United States show a relatively high baseline rate 
and a relatively low EHE effect.

SUMMARY AND PERSPECTIVES. EHE defini-
tions used for issuing alerts in most heat warning sys-
tems are calibrated to the extreme end of the daily heat 
metric spectrum. As noted by Hajat et al. (2010), our 

findings similarly suggest that using a definition that 
only identifies extremely hot days may have a greater 
tendency to introduce false negatives and thereby 
underestimate the risks associated with extreme heat, 
whereas using a less stringent threshold for EHE 
definitions may have a greater tendency to introduce 
false positives and thereby overestimate the risks. 
Additionally, prior approaches to evaluating EHE defi-
nitions that relied on mortality data mostly considered 
deaths due to all causes (Gasparrini and Armstrong 
2011; Hajat et al. 2010; Zhang et al. 2012). The relation-
ship between all-cause mortality and extreme heat 
is confounded by other factors, including long-term 
trends in mortality and various sociodemographic fac-
tors (Anderson and Bell 2009; Reid et al. 2009; Semenza 
et al. 1996). While this may also be true of the relation-
ship between heat-related health outcomes and extreme 
heat, the extent of confounding might be expected to 
be less pronounced because of the presumably stronger 
causal link between the exposure and such outcomes.

To the best of our knowledge, the framework de-
scribed here represents the first nationally consistent 
scheme for evaluating definitions of extreme weather 
events, within the context of adverse health outcomes 
with clear causal links to exposures characterized by 
such definitions. The framework, applied here to the 
evaluation of EHE definitions, employs cluster analysis 
to identify homogeneous groupings of event definitions 
followed by rate regression modeling to estimate the 
effects for representatives from these groupings. It pro-
vides a cohesive approach to identifying those defini-
tions (and their variants) most closely associated with 
the adverse health outcome(s) of interest. Moreover, 
the approach can also shed light on definitions that are 

Table 2. Heat deaths (U.S. residents) and counties with meteorological data, by climate region, 
1999–2009.

U.S. climate region

No. of 
heat 

deaths

No. of counties 
with complete 
meteorological 

data

No. of heat deaths in 
counties with complete 

meteorological data

Percentage of regional 
population living in 

counties with complete 
meteorological data

Central 640 78 314 49

East North Central 150 54 93 49

Northeast 474 70 212 47

Northwest 70 40 51 73

South 890 91 481 60

Southeast 541 71 224 49

Southwest 508 43 367 64

West 508 38 455 92

West North Central 48 48 21 42

Total contiguous United States 3,829 533 2,218 57
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Fig. 4. Dendrogram of hierarchical clusters.

most weakly associated with adverse health outcomes. 
For example, in our demonstration, EHE definitions 
with thresholds that are either too extreme or too mod-
erate tend to be among those most weakly associated 
with heat mortality for most climate regions.

Extending the basic framework to include a ran-
dom effects meta-analysis proved useful in summa-
rizing baseline health risks and event-specific effects 
for different climate regions. As exemplified in this 
demonstration, the warmer regions of the United 
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Incorporating such factors into the evaluation 
scheme might also provide information useful for 
community-specific response plans.

There are some limitations to the present dem-
onstration. Because we used station-based measure-
ments as the source of the ambient heat data, approxi-
mately 40% of heat deaths nationwide were excluded. 
While sparseness in the region-wide numbers of heat 
deaths did not lead to convergence or statistical power 
issues in the modeling process, it prevented us from 
conducting an evaluation at a finer geographic scale. 
However, our ultimate goal was not to evaluate dif-
ferent EHE definitions but rather to present a general 
statistical framework for ranking EHE definitions, 
independent of geographic resolution to the extent 

Fig. 5. Potential uses of the statistical framework.

States appear to have relatively modest EHE effects 
coinciding with relatively high baseline rates, whereas 
colder areas of the United States have relatively strong 
EHE effects coinciding with low baseline rates. This 
may indicate that in warmer regions, some summer 
days that are not classified as EHE days are nonethe-
less warm enough to put susceptible populations at an 
elevated risk for adverse heat-related health outcomes. 
To the extent that this might elevate estimated base-
line rates, it would simultaneously offset estimated 
EHE effects. Prior knowledge of such geographic 
differences in health risks over an event timeline 
(preevent, event, and postevent) could potentially 
assist public health practitioners and emergency plan-
ners with advance preparations for extreme weather 
events.

While our demonstration 
relied on heat mortality data 
to evaluate EHE definitions, 
the general framework might 
be applied to other adverse 
health outcomes with well-
established links to extreme 
weather events. Further, con-
sidering a fuller range of 
outcome severity, including 
nonfatal hospitalizations 
and emergency department 
visits, might allow applica-
tion of the framework at 
finer levels of geography such 
as cities and/or greater met-
ropolitan areas. Applying 
the framework at finer geo-
graphic scales could facilitate 
the integration of measures 
ref lecting local population 
attributes into the modeling 
process, as potential con-
founders or modif iers of 
the relationship between 
extreme weather and re-
lated health outcomes. For 
example, air conditioning (a 
material adaptation) is a sig-
nificant protective factor for 
heat-related health outcomes 
(Reid et al. 2009). Studies 
have also shown differing de-
grees of susceptibility to ex-
treme heat among different 
ethnic groups (Klinenberg 
2002; Klinenberg 2003). 
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possible. Relying on ambient weather data may also 
misrepresent true individual-level exposures, particu-
larly in regions where summertime indoor climate 
control is widely employed (Davis et al. 2003) and in 
places where weather stations are not in close proxim-
ity to population centers. Further, this study did not 
consider daily heat metrics that are calculated using 
sophisticated algorithms and/or involve several syn-
optic weather parameters to identify EHEs; however, 
in this regard at least one other study noted a high de-
gree of agreement among different temperature met-
rics used to characterize EHEs (Barnett et al. 2010). 
Finally, the mortality data used to test our framework 
are based on death certificates, which in some instances 
could lead to misclassification of deaths resulting from 
extreme heat exposure (Combs et al. 1999).

CONCLUSIONS. Increasingly, collaborations 
between public health and weather agencies are 
growing into a community of practice with an in-
terest in examining the impacts of a wide range of 
extreme weather events on human health and the 
accompanying economic burdens. The evaluation 
framework proposed here, based on systematic but 
f lexible statistical components, could be adopted 
by this community of practice to validate existing 
(or newly proposed) definitions of extreme weather 
events used to issue alerts and mitigate adverse 
health impacts. The schematic presented in Fig. 5 
illustrates how the proposed framework might be 
adopted by agencies involved in emergency pre-
paredness and response operations and identifies 
potential end-user benefits resulting from identify-
ing definitions that are most appropriate from a 
health perspective. For example, once the defini-
tions for extreme heat most directly associated with 
heat-related health outcomes have been identified, 
statistical modeling approaches could be extended 
to quantify all excess deaths and illnesses associated 

with EHEs over historical (decadal) time scales, 
provided the necessary meteorological and health 
data are available. Noting that climate change is pro-
jected to increase the frequency and/or magnitude of 
EHEs (Morss et al. 2011), estimates of the historical 
(and projected) health burden associated with EHEs 
might help identify vulnerable populations and also 
inform adaptation efforts.
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