
Appendix

S1. Three protein sequence labeling problems
We employ three impo==rtant protein sequence labeling problems to test our
DeepCNF models trained by three different methods: solvent accessibility (ACC)
prediction, disorder (DISO) prediction, and 8-state protein secondary structure
(SS8) prediction. A protein sequence consists of a collection of sequentially-
linked residues. We want to predict a label for each residue from the sequence
information. Below we briefly introduce each problem, especially how to calculate
the true label.

ACC. We used DSSP [11] to calculate the absolute accessible surface area
for each residue in a protein and then normalize it by the maximum solvent
accessibility to obtain the relative solvent accessibility (RSA) [4]. Solvent acces-
sibility of one residue is classified into 3 labels: buried (B) for RSA from 0 to
10), intermediate (I) for RSA from 10 to 40 and exposed (E) for RSA from 40
to 100. The ratio of these three labels is around 1:1:1.

DISO. Following the definition in [15], we label a residue as disordered (label
1) if it is in a segment of more than three residues missing atomic coordinates in
the X-ray structure. Otherwise it is labeled as ordered (label 0). The distribution
of these two labels (ordered vs. disordered) is 94:6.

SS8. The 8-state protein secondary structure is calculated by DSSP [11]. In
particular, DSSP assigns 3 types for helix (G for 310 helix, H for alpha-helix, and
I for pi-helix), 2 types for strand (E for beta-strand and B for beta-bridge), and
3 types for coil (T for beta-turn, S for high curvature loop, and L for irregular).
The distribution of these 8 labels (H,E,L,T,S,G,B,I) is 35:22:19:11:8:4:1:1.

Existing work. Quite a few methods have been developed to predict ACC, DISO,
and SS8 [13,10,20]. Many of them used networks (NN) [17] or support vector
machines (SVM) [9]. Recently, [6] applied a deep belief network (DBN) [8] to
DISO prediction, and [21] reported a supervised generative stochastic network
(GSN) [2] for SS8 prediction. Besides maximum-AUC training, our work differs
from them as follows.

Our method differs from Chengs work on DISO prediction: (a) we use DCNN
while Cheng uses DBN. DCNN is better than DBN in capturing a longer-range
of sequential information; and (b) our method considers the correlation of the
ordered/disordered states of sequentially-adjacent residues while Chengs method
does not.

Our method differs from Zhous work on SS8 prediction: (a) our method
places only input features at a visible layer and treats the SS labels as hidden
states while Zhous method places both the input features and SS labels in a
visible layer; (b) our method explicitly models the SS label interdependency
while Zhous method does not; (c) our method directly calculates the conditional
probability of SS labels on input features while Zhous method uses sampling;
and (d) our method trains the model parameter simultaneously from end to end
while Zhous method trains the model parameters layer-by-layer.



Input features. Given a protein sequence, we use the same feature set for the
prediction of ACC, DISO, and SS8. There are two types of features: residue-
related feature and evolution-related feature.

Residue-related features. (a) amino acid identity represented as a binary vec-
tor of 20 elements; (b) amino acid physic-chemical properties (7 values from
Table 1 in [14]); propensity of being at endpoints of a secondary structure seg-
ment (11 values from Table 1 in [5]; (d)correlated contact potential (40 values
from Table 3 in [19] and (e) AAindex (5 values from Table 2 in [1]). These
features may allow for a richer representation of amino acids [12].

Evolution-related features. We use PSSM (position specific scoring matrix)
generated by PSI-BLAST [3] to encode the evolutionary information of the se-
quence under prediction. We also use the HHM profile generated by HHpred [18],
which is complementary to PSSM to some degree.

S2. More details about the DeepCNF model
As shown in Fig.1 in the main text, DeepCNF has three architecture hyper-
parameters: (a) the number of neurons at each layer; (b) the window size at
each layer; and (c) the number of hidden layers. We train the model parameters
(i.e., U, T,W ) simultaneously. We first calculate the gradient for parameter U, T
and then for parameter W . Below we explain how to calculate the DeepCNF in
a feed-forward way and the gradient by back-propagation.

S2.1 Feed-forward function of DCNN (deep convolutional neural
network)
Appendix Fig. 1 shows two adjacent layers of DCNN. Let Mk be the number
of neurons for a single position of the k-th layer. Let Xi(h) be the h-th feature
at the input layer for residue i and Hk

i (h) denote the output value of the h-th
neuron of position i at layer k. When k = 1, Hk is actually the input feature X.
Otherwise, Hk is a matrix with dimension L×Mk. Let 2Nk + 1 be the window
size at the k-th layer. Mathematically, Hk

i (h) is defined as follows:

Hk
i (h) =Xi(h) if k = 1

Hk+1
i (h) =π

( Nk∑
n=−Nk

Mk∑
h′=1

(Hk
i+n(h′) ∗W k

n (h, h′))
)

if k < K

Ah(X, i,W ) =Hk
i (h) if k = K.

Meanwhile, π is the activation function, either the sigmoid or the tanh.W k
n (−Nk ≤

n ≤ Nk) is a 2D weight matrix fir the connections between the neurons of posi-
tion i at layer k and the neurons of position i + 1 at layer k + 1. W k

n is shared
by all the positions in the same layer, so it is position-independent. Here h and
h′ index two neurons at the k-th and (k + 1)-th layers, respectively.

S2.2 Approximated AUC

We have introduced the detailed derivation of AUC in related work. We
therefore carefully computed the gradient of the approximate AUC with respect



Fig. 1. The feed-forward connection between two adjacent layers of DCNN.

to the parameter θ, which is as follows:

∂AUCWMW (Pθ, τ)

∂θ
=

1

n0n1

d∑
µ=0

µ∑
l=0

Yµl
(∂s(P lθ, Dτ )

∂θ
v(Pµ−lθ , D!τ ) == +s(P lθ, D

τ )
∂v(Pµ−lθ , D!τ )

∂θ

)
.
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∂θ is similar, so we only
explain one of them, and suppose there is only one training sequence with length
L. In particular,
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where Q′i is the gradient of Qi with respect to the marginal probability Pθ.

Since
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,



Fig. 2. Illustration of how to calculate the gradient of DCNN from layer k + 1 to layer
k.

applying the quotient rule we can compute the gradient of equation (1) as follows
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The second term in equation (2) could be calculated efficiently using forward-
backward algorithm. For parameter T at position i, the gradient could be cal-
culated as follow:

−C
∑
u′

∑
u

α(u′, i− 1)β(u, i)

Z(X)
exp(fθ(u

′, u,X, i))
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.

For parameter U at position i, the gradient could be calculated as follows:

−C
∑
u

α(u, i)β(u, i)
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The forward function α(u, i) and backward function β(u, i) are defined as

α(u, i) =
∑
y1:i

δ(yi = u) exp(F1:i(y,X, θ))

β(u, i) =
∑
yi:L

δ(yi = u) exp(Fi+1:L(y,X, θ)).

They can be calculated by dynamic programming as follows,

α(u, i) =
∑
u′

α(u′, i− 1) exp(fθ(u
′, u,X, i))

β(u, i) =
∑
u′

β(u′, i+ 1) exp(fθ(u, u
′, X, i+ 1)).

The gradient of the inner summation part of the first term in equation (2) with
respect to parameter T at position i could be calculated as follows:∑

u

∑
u′

φ(u′, u, i) exp(fθ(u
′, u,X, i))

∂fθ(u
′, u,X, i)

∂θ
,

where
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Z(X)
+
ατ (u′, i− 1)β(u, i)

Z(X)
+
α(u′, i− 1)βτ (u, i)

Z(X)
.

Similarly, the inner summation part of the first term in equation (2) with respect
to parameter U at position i could be calculated as∑

u

Φ(u, i)
∂gθ(u,X, i)

∂θ
,

where Φ(u, i) = ατ (u,i)β(u,i)
Z(X) + α(u,i)βτ (u,i)

Z(X) . Here we define,

ατ (u, i) =

i∑
t=1

∑
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βτ (u, i) =

L∑
t=i+1

∑
yi:L

δ(yt = τ ∧ yi = u)Q′t exp(Fi+1:L(y,X, θ)).

Like the forward matrix α(u, i) and backward matrix β(u, i), ατ (u, i) and βτ (u, i)
may also be calculated by dynamic programming. In particular, given the initial
conditions ατ (u, 1) = Q′1δ(u = τ)α(u, 1) and βτ (u, L) = 0. ατ (u, i) and βτ (u, i)
can be computed by the following recurrences:

ατ (u, i) =
∑
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(
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)
exp(fθ(u
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(
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)

exp(fθ(u
′, u,X, i)).



Let a and b denote the labels at two adjacent sequence positions, then the gra-
dient of equation (2) with respect to parameter T is

∂s(P lθ, D
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∑
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The gradient of equation (2) with respect to parameter U is:
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S2.3 Calculation of gradient by back-propagation
The error function from the CRF part at position i for a certain label u is

Ei(u) =

d∑
µ=0

µ∑
l=0

Yµl
(
φ̃ls(µ, i)v(Pµ−lθ , D!τ ) + s(P lθ, D

τ )φ̃µ−lv (µ, i)
)
,

where φ̃ls and φ̃u−lv are derived according to equation (3) with respect to function

s(P lθ, D
τ ) and v(Pµ−lθ , D!τ ), respectively. As show in Fig. 2, we can calculate the

neuron error values as well as the gradients at the k-th layer by back-propagation
as follows:

Eki (h) =η(Hk
i (h)) ∗

∑
u

(
Ei(u) ∗ Ua,h) if k = K

Eki (h) =η(Hk
i (h)) ∗

Nk∑
n=−Nk

Mk+1∑
h′=1

(
Ek+1
i+n (h′) ∗W k

n (h′, h)
)

if k < K,

where η is the derivative of the activation function π. In particular, it is η(x) =
(1 − x)x and η(x) = 1 − x ∗ x for the sigmoid and tanh function, respectively.
Ek is the neuron error value matrix at the k-th layer, with dimension L ×Mk.
Finally, the gradient of the parameter W at the k-th layer is

∇Wk
n (h,h

′) =

L∑
i=1

(
Ek+1
i (h) ∗Hk

i+n(h′)
)

S3. Performance comparison with the state-of-the-art predictors



Programs to compare. Since our method is ab initio, we do not compare it with
consensus-based or template-based methods. Instead, we compare our method
with the following ab initio predictors: (i) for ACC prediction, we compare to
SPINE-X [7] and ACCpro5-ab [13]. SPINE-X uses neural networks (NN) while
ACCpro5-ab uses bidirectional recurrent neural network (RNN); (ii) for DISO
prediction, we compare to DNdisorder [6] and DisoPred3-ab [10]. DNdisorder
uses deep belief network (DBN) while DisoPred3-ab uses support vector machine
(SVM) and NN for prediction; (iii) for SS8 prediction, we compare our method
with SSpro5-ab [13] and RaptorX-SS8 [20]. SSpro5-ab is based on RNN while
RaptorX-SS8 uses conditional neural field (CNF) [16]. We cannot evaluate Zhous
method [21] since it is not publicly available.

Overall evaluation. Here we only compare our AUC-trained DeepCNF model
(trained by the JPRED data) to the other state-of-the-art methods on the CASP
and CAMEO datasets. As shown in Tables 1 to 3, our AUC-trained DeepCNF
model outperforms the other predictors on all the three sequence labeling prob-
lems, in terms of the Qx accuracy, Mcc and AUC. When the label distribution
is highly imbalanced, our method greatly exceeds the others in terms of Mcc
and AUC. Specifically, for DISO prediction on the CASP data, our method
achieves 0.53 Mcc and 0.88 AUC, respectively, greatly outperforming DNdisor-
der (0.37 Mcc and 0.81 AUC) and DisoPred3 ab (0.47 Mcc and 0.84 AUC). For
SS8 prediction on the CAMEO data, our method obtains 0.42 Mcc and 0.83
AUC, respectively, much better than SSpro5 ab (0.37 Mcc and 0.78 AUC) and
RaptorX-SS8 (0.38 Mcc and 0.79 AUC).

sensitivity, specificity, and precision. Tables 4 and 5 list the sensitivity, speci-
ficity, and precision on each label obtained by our method and the other com-
peting methods evaluated on the merged CASP and CAMEO data. Overall, at a
high specificity level, our method obtains compatible or better precision and sen-
sitivity for each label, especially for those rare labels such as G, I, B, S, T for SS8,
and disorder state for DISO. Taking SS8 prediction as an example, for pi-helix
(I), our method has sensitivity and precision 0.18 and 0.33 respectively, while
the second best method obtains 0.03 and 0.12, respectively. For beta-bridge (B),
our method obtains sensitivity and precision 0.13 and 0.42, respectively, while
the second best method obtains 0.07 and 0.34, respectively.

Table 1. Performance of solvent accessibility (ACC) prediction on the CASP and
CAMEO data. Sens, spec, prec, Mcc and AUC are averaged on the 3 labels. The best
values are shown in bold.

CASP CAMEO
Method Q3 Sens Spec Prec Mcc AUC Q3 Sens Spec Pre Mcc AUC

OurMethod 0.69 0.65 0.82 0.64 0.47 0.82 0.66 0.62 0.81 0.62 0.43 0.80
SPINE-X 0.63 0.59 0.80 0.59 0.42 0.78 0.61 0.58 0.78 0.57 0.39 0.75

ACCpro5 ab 0.62 0.58 0.81 0.57 0.41 0.76 0.59 0.55 0.79 0.55 0.36 0.73



Table 2. Performance of order/disorder (DISO) prediction on the CASP and CAMEO
data.

CASP CAMEO
Method Q2 Sens Spec Prec Mcc AUC Q2 Sens Spec Pre Mcc AUC

OurMethod 0.94 0.74 0.74 0.75 0.53 0.88 0.94 0.73 0.73 0.74 0.47 0.86
DisoPred3 ab 0.94 0.67 0.67 0.72 0.47 0.84 0.94 0.71 0.71 0.71 0.42 0.83
DNdisorder 0.94 0.73 0.73 0.70 0.37 0.81 0.94 0.72 0.72 0.68 0.36 0.79

Table 3. Performance of 8-state secondary structure (SS8) prediction on the CASP
and CAMEO data.

CASP CAMEO
Method Q8 Sens Spec Prec Mcc AUC Q8 Sens Spec Pre Mcc AUC

OurMethod 0.71 0.48 0.96 0.56 0.44 0.85 0.69 0.45 0.95 0.54 0.42 0.83
RaptorX-SS8 0.65 0.42 0.95 0.50 0.41 0.81 0.64 0.40 0.94 0.48 0.38 0.79

SSpro5 ab 0.64 0.41 0.95 0.48 0.40 0.79 0.62 0.38 0.94 0.46 0.37 0.78

Table 4. Sensitivity, specificity, and precision of each solvent accessibility (ACC) label,
tested on the combined CASP and CAMEO data.

ACC Sensitivity Specificity Precision
Label Our SpX∗ Acc5∗∗ Our SpX Acc5 Our SpX Acc5

B 0.77 0.74 0.75 0.82 0.81 0.80 0.67 0.63 0.62
M 0.45 0.36 0.34 0.80 0.78 0.79 0.54 0.48 0.46
E 0.71 0.67 0.63 0.82 0.79 0.80 0.67 0.62 0.61

* SPINEX, ** ACCpro5 ab



Table 5. Sensitivity, specificity, and precision of each disorder label on the combined
CASP and CAMEO data.

DISO Sensitivity Specificity Precision
Label Our Diso∗ DN∗∗ Our Diso DN Our DISO DN

0 0.96 0.96 0.89 0.51 0.41 0.55 0.95 0.94 0.93
1 0.51 0.41 0.55 0.96 0.96 0.89 0.54 0.51 0.47

* DisoPred3 ab; ** DNdisorder

Table 6. Sensitivity, specificity, and precision of each 8-state secondary structure label
on the combined CASP and CAMEO data.

SS8 Sensitivity Specificity Precision
Label Our Rapt∗ SSp5∗∗ Our Rapt SSp5 Our Rapt SSp5

H 0.91 0.89 0.90 0.92 0.93 0.93 0.85 0.84 0.84
G 0.28 0.21 0.19 0.99 0.98 0.97 0.47 0.43 0.41
I 0.18 0.03 0.02 0.99 0.98 0.98 0.33 0.12 0.06
E 0.84 0.78 0.77 0.94 0.91 0.89 0.73 0.72 0.69
B 0.13 0.05 0.07 0.99 0.99 0.99 0.42 0.33 0.34
T 0.56 0.49 0.51 0.95 0.93 0.93 0.56 0.50 0.49
S 0.29 0.21 0.18 0.97 0.96 0.97 0.51 0.43 0.45
L 0.61 0.62 0.63 0.86 0.86 0.87 0.58 0.58 0.54

* RaptorX-SS8; ** SSpro5 ab

S4. Complexity Analysis
The gradient of the labelwise accuracy function is derived in [?]. While all
the three training methods have the same space complexity O(|Σ| · L), their
time complexity is different. Specifically, the time complexity of calculating log-
likelihood, labelwise accuracy, and the polynomial approximation of AUC is
O(|Σ|2 ·L), O(|Σ|2 ·L) and O(d2 · |Σ|3 ·L), respectively. Since DCNN is used in
DeepCNF, we may not be able to solve the training problem to global optimum.
Instead we use the L-BFGS [?] algorithm to find a suboptimal solution.

The running time of maximum-AUC training is approximately linear when
the sequence length is much larger than the number of labels and the degree of
the polynomial approximation. When the degree d is larger, we can approximate
the loss function better, but the approximation itself becomes less smooth and
more challenging to optimize. A large d also increases model complexity, which
makes it easier to overfit. In our experiments, along with the increase of d, the
training AUC always improves, but the test AUC drops after d = 15.
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