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Supplementary Movies 

 

File Name: Supplementary Movie 1 

Description: Jaculus jaculus displaying the hopping gait. Hopping was associated with 
the greatest values of acceleration and deceleration, and was preferentially associated 
with stopping. Video is played back at 1/15x speed. 
 

 

File Name: Supplementary Movie 2 

Description: Jaculus jaculus displaying the skipping gait. Skipping exhibited the most 
symmetrical variation in mean acceleration across the broadest range of speeds. Video 
is played back at 1/15x speed. 
 

 

File Name: Supplementary Movie 3 

Description: Jaculus jaculus displaying the running gait. Running showed the least 
variation in mean acceleration, and was used primarily at lower speeds. Video is played 
back at 1/15x speed. 
 

 

File Name: Supplementary Movie 4  

Description: Jaculus jaculus displaying a gait transition. Frequent transitions between 
gaits that exhibit distinct dynamic functions may increase the jerboa’s capacity for 
maneuverability. Video is played back at 1/15x speed. 
 

 

File Name: Supplementary Movie 5  

Description: Video clip of quadrupedal Meriones sp. locomotion in response to simulated 
predation. These videos were also used to perform the OpenField Anxiety test. 
 

 

File Name: Supplementary Movie 6 

Description: Video clip of bipedal Allactaga elater locomotion in response to simulated 
predation. These videos were also used to perform the OpenField Anxiety test. 
 

 

 



File Name: Supplementary Movie 7  

Description: Video clip of quadrupedal Meriones unguiculatus locomotion during Light-
Dark Box Exploration test in a laboratory. Video is played back at 10x speed. 
 

 

File Name: Supplementary Movie 8  

Description: Video clip of bipedal Jaculus jaculus locomotion during Light-Dark Box 
Exploration test in a laboratory. Video is played back at 10x speed. 
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Supplementary Figures
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Supplementary Figure 1: Components of fore-aft force sorted by gait. A) Peak fore-aft force
did not differ significantly between gaits (F2,77 = 0.22, p = 0.801, one-way ANOVA), B) Peak
magnitude of vertical force was highly significant, indicating that negative fore-aft force differs
significantly between gait (F2,77 = 9.32, p = 0.000237, one-way ANOVA), C) Mean fore-aft
force did not differ significantly between gait (F2,77 = 2.06, p = 0.135, one-way ANOVA), D)
Minimum fore-aft force was highly significant (F2,77 = 7.10, p = 0.00148, one-way ANOVA),
though not as significant as the magnitude of vertical force, indicating that both large negative
and positive fore-aft forces contribute to the significant differences between gait. The boxes span
the interquartile range, the bold line represents the median, the whiskers extend to 1.5 times the
interquartile range, and the open circles show outlier values outside of the whiskers.
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Supplementary Figure 2: Components of vertical force sorted by gait. A) Peak vertical force
trended towards significantly different between gaits (F2,77 = 2.51, p = 0.0876, one-way ANOVA),
B) Peak magnitude of vertical force was exactly the same, indicating that magnitude of positive
vertical force was greater than the magnitude of negative vertical force (F2,77 = 2.51, p = 0.0876,
one-way ANOVA), C) Mean vertical force was not significantly different between gaits (F2,77 =
0.003, p = 0.997, one-way ANOVA), D) Minimum vertical force was near zero, indicating accurate
balancing of bridges and minimal ringing, and was not significantly different between gaits
(F2,77 = 1.43, p = 0.246, one-way ANOVA). The boxes span the interquartile range, the bold line
represents the median, the whiskers extend to 1.5 times the interquartile range, and the open
circles show outlier values outside of the whiskers.
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Supplementary Figure 3: Flowchart describing the test for significant difference between species
(A, B, and C) and the test for sensitivity to tracking error (D, E, and F in gray). A) The true
entropy of each species, H(species) was calculated from all of the trajectory data for a given
species as described in the Methods and Supplementary Methods. B) Sample datasets were
created to test the null hypothesis that the species are not significantly different from each other
by randomly sampling 50 trials from each unique species pair. The entropy of this combined
dataset was measured, Hs(species pair). C) The sample datasets were randomly recreated 10,000
times, and the entropy of each sample dataset was stored in a sampling distribution. The true
entropy, H(species), for each species compared was then plotted on the sampling distribution.
The proportion of the sampling distribution lying outside of the true entropy for each species
(colored vertical lines in C), divided by the total number of sample datasets (10,000), provided
the p-value for each species in the comparison. To understand how tracking error would affect
the relationship between the species trajectory entropies, we added random error and repeated
the significance test. D) First, we calculated the noisy entropy Hn(species) for a single species
by randomly sampling error from a Gaussian distribution and adding error to each frame of
data. We repeated this 100 times to provide the sampling distribution for the noisy entropy of a
single species, and calculated the mean, H̄n(species). E) We repeated the creation of the sample
datasets for each species pair as in B), added randomly sampled error to each frame of data,
and measured the entropy of the noisy sample dataset, Hsn(species pair). F) We repeated the
creation of noisy sample datasets 10,000 times to generate a noisy sampling distribution, and
compared the mass of the distribution to the mean noisy entropy of a single species, H̄n(species)
from D), to determine the p-value for each species in the comparison. Note, the distributions in
C, D, and F are to scale.
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Supplementary Table

% Exposed % Risk Assess % Out to In % Risk to In
Species+Individual (Nested) ***,* -,- ***,* ***,-
Species*Trial Number (Mixed) **,.,- -,-,* .,-,- ***,-,-
Species*Capture Time (Mixed) *,-,- -,-,- .,-,- ***,-,-
Species*Box Location (Mixed) *,-,- -,-,- .,-,- ***,-,-

Supplementary Table 1: A summary table showing the level of significance for the effect of each
independent variable on the behavior of animals in the Light-Dark Box Exploration test using
44 one-way ANOVAs. The dependent variables are the column headings, and the independent
variables and the type of model used are the row headings. Symbols indicate first the effect of the
species, then the effect of the additional variable, and, if present, the mixed effects of species and
the additional variable. - indicates p > 0.1, . indicates 0.1 > p > 0.05, * indicates 0.05 > p > 0.01,
** indicates 0.01 > p > 0.001, *** indicates 0.001 > p > 0. All models were designed prior to
performing the experiment.
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Supplementary Notes
Laboratory-Based Light-Dark Box Exploration Test
Species was the main determinant of microhabitat preference (Nested ANOVA) for the percentage
of time spent in the exposed area and the number of times the animal returned to the box after a
period of risk assessment (Supplementary Table 1). Variations specific to each individual and trial
number, or acclimation to the experiment, were marginally significant determinants of behavior.
We found that the box location, time it took to capture the animal, and the time in each animal’s
light cycle the experiment was performed had no measurable effect on the difference between
species (α = 0.05) on percentage of time spent in the exposed area, the number of times the
animal went into the box, or the number of times the animal returned to the box after a period
of risk assessment (Mixed-effects ANOVA). The percentage of time in risk-assessment only varied
significantly with the combined effect of species and trial number.

Supplementary Methods
Note on Mathematical Proofs for Continuous Entropy Calculation
In this section we elaborate on the optimization problem (6) that seeks to find a continuous
probability density function that matches the trajectory data from a given species. We use
optimization to ensure that the distribution simultaneously maximizes the differential entropy
while matching the empirical moments of the trajectory data. Note, we make substantial use of
measure theory, and the unfamiliar reader may wish to consult Folland1 for an introduction.

Notation
Here we introduce notation to describe polynomial equations, using the dummy variables y and p
for the purpose of generalization.

Rn×m denotes the set of matrices that have n rows and m columns. Given A ∈ Rn×m, let
Aij denote the (i, j)-th component of A. By N we denote the nonnegative integers and let Nnk
refer to those ααα ∈ Nn with |ααα| =

∑n
i=1αααi ≤ k. In other words, Nnk represents the n-dimensional

non-negative integers whose sum is less than or equal to k.
Every polynomial on Rn with x = (x1, . . . ,xn), can be expanded in the monomial bases via:

p(x) =
∑
ααα∈Nn

pαααxααα (1)

where xααα denotes xααα1
1 · · ·xαααn

n and (pααα)ααα∈Nn is the vector of coefficients of p. For example,
the polynomial p(x1,x2) = 1 + 2x1x2 + 7x2

1 can also be written in the form p(x1,x2) =∑
α∈N2 pααα1,ααα2xααα1

1 xααα2
2 , where ααα represents the exponent of each variable, and pααα1,ααα2 are the

coefficients of the variables of each power. In this example, p0,0 = 1, p1,1 = 2, p2,0 = 7, and
pααα1,ααα2 = 0 for every other ααα1 and ααα2.

Optimization Problem (6)
Solving optimization problem (6) requires finding an object defined on a continuum. Fortunately,
one can prove (refer to Lemma 1) that this optimization problem has a solution parameterized by
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a finite-dimensional vector. That is, this optimization problem has a solution of the following
form:

f∗(λ∗,x) = exp(
∑
ααα∈N3

2k

λ∗αααxααα), (2)

where λ∗ is a real-valued vector of size
(3+2k

2k
)
, that is 3+2k choose 2k, whose ααα-component

is denoted by λ∗ααα for each ααα ∈ N3
2k. Note that asterisks indicate an optimal value for the

accompanying variable. λ∗ is a vector of coefficients of the polynomial solution to problem
(6). By searching for the dimensional vector λ∗ that maximizes the differential entropy while
matching the empirical moments, one has solved for the continuous probability distribution that
best describes the empirical data while making the fewest assumptions about the data.

Lemma 1 There exists a finite vector λ∗ = (λ∗ααα)|ααα|≤2k ∈ R(3+2k
2k ) such that:

f∗(λ∗,x) = exp(
∑
ααα∈N3

2k

λ∗αααxααα), (3)

is a solution to Problem (6).

Proof: Suppose g ∈ L1 ([−1, 1]3
)
has moments with order less than or equal to 2k that are

identical to f∗ which is given by Equation (3):

H[g] = −
∫

[−1,1]3

g(x) ln
(
g(x)f

∗(λ∗,x)
f∗(λ∗,x)

)
dx (4)

= −KL(g||f∗)−
∫

[−1,1]3

g(x) ln f∗(λ∗,x)dx (5)

≤ −
∫

[−1,1]3

g(x)

 ∑
ααα∈N3

2k

λ∗αααxααα
 dx (6)

= −
∑
ααα∈N3

2k

λ∗αααmααα (7)

= −
∫

[−1,1]3

f∗(λ∗,x)

 ∑
ααα∈N3

2k

λ∗αααxααα
 dx (8)

= −
∫

[−1,1]3

f∗(λ∗,x) ln f∗(λ∗,x)dx (9)

= H[f ], (10)

where in the second lineKL denotes the Kullback-Leibler Divergence,2 which is always nonnegative,
and the fourth line follows since g and f have identical moments for all moments with order less
than or equal to 2k. �

As a result of Lemma 1 and by applying the Legendre-Fenchel Transformation, one can prove
that solving Equation (6) reduces to solving the concave finite-dimensional optimization problem:3

sup
λ∈R(3+2k

2k )

 ∑
ααα∈N3

2k

m̂αααλααα − fd(λ)

 , (11)
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where fd : R(3+2k
2k ) → R is defined as:

fd(λ) =
∫

[−1,1]3

f(λ,x)dx. (12)

One can efficiently solve the optimization problem in Equation (11) by relying on Newton’s
method as described in Algorithm 1. Applying this method requires the second derivative of fd
which is called the Hessian. To compute this Hessian, let us denote the ααα ∈ N3 moment of f(λ,x)
as m̃ααα(λ) where:

m̃α(λ) =
∫

[−1,1]3

xαf(λ,x)dx. (13)

Given λ ∈ R(3+2k
2k ) one can compute m̃ααα(λ) using numerical integration. Given this definition,

one can compute the Hessian of fd according to the following Lemma:

Lemma 2 The Hessian of fd which is denoted by ∇2fd : R(3+2k
2k ) → R(3+2k

2k )×(3+2k
2k ) is given by:

∇2fd(λ)j,k =
∫

[−1,1]3

xj+kf(λ,x)dx = m̃j+k(λ) (14)

for all j,k ∈ N3
2k.

Proof: This follows directly from the Fundamental Theorem of Calculus. �

Require: λ0 ∈ R(3+2k
2k ) and ε ∈ (0,∞).

Set λ1 = λ0 +
[
∇2fd(λ0)

]−1 (m̂− m̃(λ0))
Set j = 1.
while ‖λj−1 − λj‖2 ≤ ε do

Set λj+1 = λj +
[
∇2fd(λj)

]−1 (m̂− m̃(λj))
Replace j by j + 1.

end while
return λj .

Algorithm 1: Newton’s Method for Computing the Maximum Entropy Distribution

Entropy Significance Test
To determine whether there are significant differences in entropy between species pairs, we
compared the entropy computed for each species (H(species) in Supplementary Fig. 3 A) to the
entropy of a dataset containing trials from an equal number of trials from both species (i.e. A.
elater vs D. sagitta, A. elater vs. Meriones sp., and D. sagitta Vs. Meriones sp.). We tested the
null hypothesis that there is no difference between the trajectory entropy of the two species.

For each unique pair of species, we computed the entropy of a random sample of 50 trials
from the continuous probability distribution of each species, (100 trials sampled total, Hs(species
pair) in Supplementary Fig. 3 B). We repeated this process 10,000 times to generate a sampling
distribution (Supplementary Fig. 3 C). For each pair of species we determined the proportion
of the sampling distribution that is either greater than or less than the true entropy value of
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each species in the comparison (colored lines in Supplementary Fig. 3 C represent the H(species)
values from A). This outlying proportion divided by the total number of values (10,000) represents
the p-value, or how significantly the data reject the null hypothesis.

Entropy Divergence Sensitivity To Tracking Error
We performed an analysis to determine whether imprecise tracking of the animal center of mass
would affect the relationship between the entropy of trajectories performed by each species. All
three rodent species are approximately the same size — 8 cm long (x-axis), 4 cm wide (y-axis),
and 4 cm high (z-axis) — and all videos were tracked by the same individual, so we assumed that
the error in tracking the center of mass was similar for all videos. Error was modeled as random
samples from a Gaussian distribution centered at 0 for each axis, with a standard deviation of
1/8 the length of the body in each axis (1 cm for the x-axis, and 0.5 cm for the y- and z-axes).

To test whether our results were robust to this tracking error, we re-ran the significance test.
We randomly sampled an equal number of trials from each of two species to test for comparisons
between them (as in Section above), then added error (randomly sampled from the error
distribution) to each frame, measured the entropy of this noisy random sample (Hsn(species pair)
in Supplementary Fig. 3 E), and repeated 10,000 times to generate a noisy sampling distribution
(Supplementary Fig. 3 F). To determine the ‘true’ value for each species while incorporating
error, we added a randomly sampled error value to each frame from each species, measured
the entropy of the noisy single species distribution, and repeated this 100 times (Hn(species)
in Supplementary Fig. 3 D). To estimate the significance between species in the two species
comparisons, we measured the proportion of the sampling distribution lying outside of the mean
noisy single species entropy (H̄n(species) in Supplementary Fig. 3 D, and the colored vertical
lines in Supplementary Fig. 3 F).

We note that the introduction of random error should increase the entropy of a distribution.
For example, if the animal is stationary for several frames, the error would induce a small amount
of movement in the data. Consistent with this, we found that the entropy of each single species
distribution increased with the addition of error (H̄n(A. elater) = -8.5422, H̄n(D. sagitta) =
-9.3867, and H̄n(Meriones sp.) = -9.6453). Despite this change in the entropy of each species, the
overall pattern of significance in the differences between species was preserved (Supplementary
Fig. 3 E). In the noisy significance test between A. elater and D. sagitta, pn(A. elater) = 0.0081
and pn(D. sagitta) = 0, strongly significantly different. In the noisy significance test between A.
elater and Meriones sp., pn(A. elater) = 0 and pn(Meriones sp.) = 0, also strongly significantly
different. In the noisy significance test between D. sagitta and Meriones sp., pn(D. sagitta)
= 0.4378 and pn(Meriones sp.) = 0.0087, indicating that Meriones sp. is significantly more
predictable than a combined sampling distribution of noisy D. sagitta and noisy Meriones sp.
trajectories, but D. sagitta is not significantly more unpredictable than this combined noisy
sampling distribution.

Supplementary References
[1] Folland, G B (2013). Real analysis: modern techniques and their applications. Wiley.

[2] Cover, T M, Thomas, J A (2012). Elements of information theory. Wiley.

[3] Lasserre, J B (2009). Moments, positive polynomials and their applications (Vol. 1). World
Scientific.

8


