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Supplementary Tables 

Table S1. Variables contained in the dataset 

Variable Type Code (in bold) attributed to each category 

FIGO stage dummy variable* - Dependent variable (y) 
   I  → 0 

> I  → 1 

HE4 quantitative variable - Covariate - 

CA125 quantitative variable - Covariate - 

Age (years) quantitative variable - Covariate - 

BMI quantitative variable - Covariate - 

Number of children quantitative variable - Covariate - 

Menopause status dummy variable - Covariate 
No   → 0 

Yes  → 1 

Contraception dummy variable - Covariate 
No   → 0 

Yes  → 1 

HRT dummy variable - Covariate 
No   → 0 

Yes  → 1 

Hypertension dummy variable - Covariate 
No   → 0 

Yes  → 1 

Grading from biopsy categorical variable - Covariate 

Hyperplasia  → 0 

G1  → 1 

G2  → 2 

G3  → 3 

Clinical stage (pre-surgical) dummy variable - Covariate 
Early (FIGO ≤ I)        → 0 

Advanced (FIGO>I)  → 1 

Histotype   dummy variable 
Non endometrioid  → 0 

Endometrioid         → 1 

Surgical Grading categorical variable 

G1  → 1 

G2  → 2 

G3  → 3 

Myometrial invasion categorical variable 

M0  → 1 

M1  → 2 

M2  → 3 

Extension to cervix dummy variable 
No   → 0 

Yes  → 1 

Ovarian metastases dummy variable 
No   → 0 

Yes  → 1 

Lymph nodes status dummy variable 
Negative  → 0 

Positive    → 1 

Lymphovascular invasion dummy variable 
Absent  → 0 

Present  → 1 

Positive peritoneal cytology dummy variable 
No   → 0 

Yes  → 1 

*Dummy variables means a variable that assumes only two values (e.g. 0 or 1) 

BMI = Body Mass Index; HRT = Hormone Replacement Therapy  
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Table S2. Association between preoperatively-available quantitative variables and surgical FIGO 

stage (I vs >I) 

Variables 

Surgical FIGO stage 

Median Range 95th perc 

I >I p-value I >I I >I 

HE4 (pmol/L) 66.10 107.40 1.84E-11 6.50 - 346.70 34.50 - 653.00 197.40 526.60 

CA125 (U/ml) 15.90 25.00 6.26E-06 2.40 - 238.00 3.90 - 2922 58.12 299.90 

Age (years) 64.50 65.00 0.1372 32.00 - 82.00 28.00 - 87.00 80.00 82.10 

BMI 27.10 25.50 0.1927 14.00 - 47.83 16.70 - 44.90 37.48 37.26 

Number of children 2.00 2.00 0.6455 0.00 - 8.00 0.00 - 6.00 4.00 3.10 

p-values were computed using non-parametric Wilcoxon-Mann-Whitney test. Missing values are not considered in the 

test procedure. In bold p-values<0.05 

 

 

Table S3. Association between preoperatively-available qualitative variables and surgical FIGO 

stage (I vs >I) 

Variables 

Surgical FIGO stage 

n. (%) 

I >I p-value 

Menopause status    

     No 27 (9%) 8 (3%)  

     Yes 167 (57%) 90 (31%) 0.1529 

Contraception    

     No 125 (61%) 68 (33%)  

     Yes 8 (4%) 5 (2%) 0.8138 

HRT    

     No 148 (56%) 75 (28%)  

     Yes 27 (10%) 14 (6%) 0.9490 

Hypertension    

     No 95 (32%) 48 (16%)  

     Yes 99 (34%) 51 (18%) 0.9375 

Grading from biopsy    

     Hyperplasia 6 (2%) 0 (0%)  

     G1 65 (24%) 17 (6%)  

     G2 57 (21%) 34 (13%)  

     G3 52 (20%) 35 (14%) 0.0096* 

Clinical stage (pre-surgical)    

     Early 183 (63%) 63 (22%)  

     Advance 9 (3%) 35 (12%) 3.25E-12 

p-values were computed using Pearson’s Chi-squared test. In bold p-values<0.05 
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Table S4. P-values of the DeLong’s test for the comparison of two AUC (symmetric matrix). The 

AUCs were computed considering all 293 EC patients. 

 

 
CA125 HE4 

RERT with 

CV 

Logistic 

Regression 

RT with 

CV 

CA125 -     

HE4 0.0360 -    

RERT with CV 
5.79E-

07 
0.0004 -   

Logistic 

Regression 
0.0218 0.0002 4.84E-10 -  

RT with CV 0.0452 0.8567 0.0009 0.0002 - 

In bold p-values<0.05. RT with CV stands for Regression Tree with Cross-Validation 

 

 

 

Table S5. Metrics to assess the performance of the proposed methods evaluated in 246 EC patients 

clinically (pre-surgery) classified as early stage. 

Metrics CA125 HE4 
RERT 

with CV 

Logistic 

Regression 

RT with 

CV 

ROC-AUC 0.60*** 0.72** 0.86 0.50*** 0.67*** 

Threshold (Youden Index) 13.55 81.80 0.28 0.14 0.21 

Specificity 0.40 0.66 0.82 0.82 0.54 

Sensitivity 0.78 0.70 0.83 0.38 0.76 

Accuracy 0.50 0.67 0.82 0.71 0.60 

PPV 0.31 0.42 0.61 0.42 0.36 

NPV 0.84 0.86 0.93 0.79 0.87 

** p-value=0.003, *** p-values<0.0001: p-values of the DeLong’s test or Bootstrap test (underlined) for the 

comparison of two AUCs (RERT with CV vs other methods). For major details see Supplementary Table S6. RT with 

CV stands for Regression Tree with Cross-Validation 
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Table S6. P-values of the DeLong’s test or Bootstrap test* for the comparison of two AUC 

(symmetric matrix). The AUCs were calculated considering 246 EC patients clinically (pre-surgery) 

classified as early stage. 

 

 
CA125 HE4 

RERT 

with CV 

Logistic 

Regression 

RT with 

CV 

CA125 -     

HE4 0.0104 -    

RERT with CV 4.85e-07 0.0030 -   

Logistic 

Regression 
0.1714* 0.0020* 8.49e-08* -  

RT with CV 0.1618 0.0577 7.38e-05 0.0253* - 

In bold p-values<0.05. RT with CV stands for Regression Tree with Cross-Validation 

 

 

 

Table S7. P-values of the DeLong’s test or Bootstrap test* for the comparison of two AUC 

(symmetric matrix). The AUCs were calculated considering 219 EC patients preoperatively classify 

as early stage (clinical stage) and with endometrioid histotype. 

 

 
CA125 HE4 

RERT 

with CV 

Logistic 

Regression 

RT with 

CV 

CA125 -     

HE4 0.0047 -    

RERT with CV 4.14e-06 0.0203 -   

Logistic Regression 0.9130* 0.0385* 9.65e-05* -  

RT with CV 0.0584 0.0584 0.0014 0.2287* - 

In bold p-values<0.05. RT with CV stands for Regression Tree with Cross-Validation 
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Supplementary Methods 

Regression Tree 

Regression Tree1 is a non-parametric methoda that recursively partitions the predictor space into 

disjoint and homogeneous regions (called nodes or leaves) with respect to the response variable Y by 

means of a series of subsequent splits. At each step, the algorithm chooses the variable that best 

divides the data in homogeneous subgroups having the objective to minimize the prediction error 

within each node, finally computing predictions as the average of the Y values within each terminal 

nodes. The estimation process is based on the v-fold cross-validation2, through which the data are 

partitioned into v equally (or nearly equally) sized folds, next running v interactions of training and 

validation in such an extent that within each interaction a different fold of the data is held-out for 

validation, while the remaining (v – 1) folds are used for learning. 

In order to avoid the problem of overfittingb, Regression Tree uses the pruning technique as a stopping 

criteria, by growing a large tree and then prune it back until it reaches an optimal size. In doing so, 

the algorithm uses a cost-complexity parameter criterion that balances the size of the tree with the 

goodness of fit by finding the “right” compromise between simplicity and efficiency of the model. 

One of the main advantage of Regression Trees is the interpretability of their results: the output 

provides a visual representation in which each observation “travels” from the root node (the node 

containing the entire training set) to one of the leaves where the prediction is made. The result is a 

series of Rules of Thumb where the algorithm automatically identifies the most important variables 

and corresponding thresholds useful, for example, for clinicians during a decision process. 

 

 

                                                           
a It does not require assumption on the distribution of the dependent variable Y. 
b Overfitting problems arise when the model is excessively complex, having too many parameters relative to the number 

of observations used in the analysis. A model in overfitting provides bad predictions which are extremely sensitive to 

small perturbations in the data. 
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Technical issues on Regression Trees 

Let 𝐗 = [(𝑋1, … , 𝑋𝑟)] be a collection of r vectors of predictors, both quantitative and qualitative. Let 

T denote a tree with Mm ,,1  terminal nodes, i.e. the disjoint regions 𝑇̃𝑚, and by Θ = 𝜃1, … , 𝜃𝑚 

the parameter that associates each m-th   value with the corresponding node. A generic dependent 

variable Y conditional on Θ assumes the following distribution 

𝑓(𝑦𝑖|Θ) = ∑ 𝜃𝑚𝐼(𝐗 ∈ 𝑇̃𝑚)

𝑀

𝑚=1

 

where 𝜃𝑚 represents a specific 𝑇̃𝑚 region and I denotes the indicator function that takes the value of 

1 if 𝐗 ∈ 𝑇̃𝑚, 0 otherwise. This signifies that predictions are computed by the average of the Y values 

within the terminal nodes, i.e. 

𝑦̂𝑖 = 𝜃𝑚 ⟹
1

𝑁𝑚
∑ 𝑦𝑖

𝐱𝒊∈𝑻̃𝒎

 

with 𝑖 = 1, … , 𝑁 the total number of observations and 𝑁𝑚 the number within the m-th region. 

Computationally, the general problem for finding an optimal tree is solved by minimising the 

following loss function 

argmin
Ξ={𝑇,Θ}

𝐿 = [𝑌 − 𝑓(𝑌|Θ)]2. 

This entails selecting the optimal number of regions and corresponding splitting values. 

Let 𝑠∗ be the best split value and 𝑅(𝑚) = 𝑁𝑚
−1 ∑ (𝑦𝑖 − 𝑐̂𝑚)𝐱𝑖∈𝑇̃𝑚

2
 be the measure of the variability 

within each node, where 𝑐̂𝑚 is the average of yi’s within the m-th node. Thus, the fitting criterion is 

given by 

∆𝑅(𝑠∗, 𝑚) = max
𝑠∗

∆𝑅(𝑠, 𝑚) 

with 

∆𝑅(𝑠, 𝑚) = 𝑅(𝑚) − [𝑅(𝑚1) + 𝑅(𝑚2)]. 
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It is important to note that the optimization is local. It means that in the greedy methods there is no 

assurance that successive locally optimal decisions lead to the global optimum3. Moreover, 𝑅(𝑇) =

∑ 𝑅(𝑚)
𝑚∈𝑇̃̃ , is the loss function of the entire tree, where 𝑇̃̃ is the set of its terminal nodes. 

Having found the best split 𝑠∗, the data are partitioned into two regions and the splitting process is 

repeated on each of them. This procedure can be carry until when in each leaves there is only 1 case; 

in this way, we are in presence of overfitting and the tree, denoted Tmax, is not a good predictor. Hence, 

an important issue is the choose of the tree size. 

Breiman and Stone4 proposed a method called pruning, based on the cross-validation. The idea is to 

choose subtrees using the loss function 𝑅(𝑇), adjusted by a complexity parameter 𝛼 ≥ 0: 

𝑅𝛼(𝑇) = 𝑅(𝑇) + 𝛼 |𝑇̃̃| 

where |𝑇̃̃| denotes the number of terminal nodes in T. The idea is to find, for each α, the subtree 𝑇𝛼 ⊂

𝑇𝑚𝑎𝑥 , where 𝑇𝑚𝑎𝑥 denotes the tree goes in overfitting, obtained by pruning Tmax in order to minimize 

𝑅𝛼(𝑇). The parameter of cost complexity α governs the trade- off between the size and its goodness 

of fit to the data. Large values of α result in smaller trees, and conversely for smaller values of α. 

 

Random Forest 

One of the major complaints of tree-based model is their instability. Small changes in the predictor 

distribution can drastically change the structure of the resulting tree. A consequence of unstable 

methods is that the prediction error is high. 

An approach that mitigates this problem and increases the accuracy of the predictors consists of 

developing a population of simple models, called base or weak learner (in our case trees), within the 

perturbed training set and combining them in order to form a composite predictor (see Figure S.M.1 

for a graphical representation of how these algorithms work). These models, known as ensemble 

learning, include, among others, Bagging5, Boosting6 and Random Forest7. The last one, repeatedly 

used in this paper, have become increasingly popular in medicine, genetics and in neurosciences. 
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Figure S.M.1: Graphical representation of how ensemble algorithms work 

The procedure used by Random Forest for combining different trees and obtaining accurate 

predictions are reported below. 

Random Forest Algorithm - Regression 

# Set parameters 
BOOT #number of replications 
nmin #identify a minimum node size 
g #number of variables selected by the algorithm at each node of the tree 
# 

For i=1 to BOOT { 
 (a) Draw a bootstrap sample booti of size N from the training data 
 (b) Grow a tree Tbooti to the bootstrapped data, by recursively repeating the following steps for each node of the tree, 

until the minimum node size nmin is reached. 
(i) Select g variables at random from the r covariates 
(ii) Take the best split/variable among the g variables available 
(iii) Split the node in two child nodes. 

} 
From the ensemble of trees, the prediction at a new point x is: 

𝑓𝑟𝑓
𝐵 (𝑥) =

1

𝐵𝑂𝑂𝑇
∑ 𝑇𝑖(𝑥)

𝐵𝑂𝑂𝑇

𝑖=1
 

From Random Forest is possible to extract two variable importance measures which identify the 

covariates that have a major impact on the prediction of the response variable. In this paper we 

consider only one of them, the Total Decrease in Node Impurity (known also with the name of Gini 
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Importance). For evaluating the discriminatory power of a variable, this measure accumulates the 

Gini gain over all splits of trees grown in the forest8. 

In detail, at each tree of Random Forest, the heterogeneity reductions due to variable Xr over the 

set of nonterminal nodes are summed up and the importance of Xr is computed averaging the results 

over all the trees of the ensemble. Formally, let 𝑑𝑟𝑚𝑐
𝑇𝑖  be the decrease in the heterogeneity index due 

to Xr at the nonterminal node 𝑚𝑐 ∈ 𝑀𝑐 of the Ti tree. The variable importance of r-th variable over 

all the trees is: 

𝑉𝐼̂𝑋𝑟
=

1

𝐵𝑂𝑂𝑇
∑ ∑ 𝑑𝑟𝑚𝑐

𝑇𝑖 𝐼𝑟𝑚𝑐
𝑇𝑖

𝑚𝑐∈𝑀𝑐

𝐵𝑂𝑂𝑇

𝑖=1

 

where 𝐼𝑟𝑚𝑐
𝑇𝑖  is the indicator function which equals 1 if the r-th variable is used to split node mc and 

0 otherwise. 
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