Description of Supplementary Files

File name: Supplementary Information Description: Supplementary figures.

Supplementary Fig. 1 Activation of STING in distinct T helper cell subsets

(a) Immunoblot analysis of untreated or 10-carboxymethyl-9-acridanone (CMA)-stimulated wild-type T cells after 3 days of Th0, Th1, Th2 or Th17 differentiation of naïve T cells. Cells were rested in medium overnight and stimulated with 0.25 mg/ml CMA for 1 h. Th0 cells from STING^{gt/gt} served as control. (b) CD4⁺ or CD8⁺ T cells isolated from the spleen of wild-type mice were stimulated with CMA (0.25 mg/ml) overnight. Cell viability was assessed by CellTiter Blue assay. (c) T cells were differentiated as in (a) and stimulated with 0.25 mg/ml CMA overnight and the percentage of apoptotic cells was assessed by Annex-in V and 7-AAD staining. Mean and s.d. of technical replicates (n=2) are shown (b, c). Data are representative of n=2 independent experiments.

Supplementary Fig. 2 STING activation induces Caspase 3/7 activity in T cells

T cells from WT and STING^{gt/gt} mice were stimulated with 10-carboxymethyl-9-acridanone (CMA) or left untreated. After 6 h caspases 3/7 activity was determined. Mean and s.d. of n=2 technical replicates of one representative experiment from n=2 independent experiments are shown.

Supplementary Fig. 3 TBK1-dependent and IFN-β-independent regulation of proapoptotic genes in T cells (a) CD4⁺ T cells were pretreated with the TBK1 inhibitor BX795 (2 μM) or DMSO for 30 min and then stimulated with 10-carboxymethyl-9-acridanone (CMA) (0.25 mg/ml) for the indicated time points. Gene expression was analyzed by RT-qPCR. (b) CD4⁺ T cells were pretreated with the TBK1 inhibitor BX795 (2 μM) or DMSO for 30 min and then stimulated with CMA (0.25 mg/ml) for the indicated time points. Gene expression was analyzed by RT-qPCR. (b) CD4⁺ T cells were pretreated with the TBK1 inhibitor BX795 (2 μM) or DMSO for 30 min and then stimulated with CMA (0.25 mg/ml) for the indicated time points. Activation of indicated signaling molecules was assessed by immunoblot. (c, d) CD4⁺ T cells were incubated with 10 μg/ml anti-IFNAR1 (MARI-5A3) and stimulated with CMA or 100 U recombinant IFN-β (Biolegend) or left untreated. After overnight incubation cell viability was assessed by CellTiter Blue assay (c) or after 4 h mRNA expression of depicted genes was examined by RT-qPCR (d). Data are representative for two independent experiments (b) or mean and s.d. of n=2 technical replicates from n=2 independent experiments are shown (a, c, d).

Overexpression of STING renders macrophages susceptible to cell death

(a) T cells and BMDMs were stimulated with 10-carboxymethyl-9-acridanone (CMA) (serial diluation from 0.5 μ g/ml to 0.03125 μ g/ml) or DMSO. After overnight incubation cell viability was assessed by CellTiter Blue Assay. (b) Immortalized macrophages transduced with an inducible construct for mouse STING were treated with doxycycline (Dox) as indicated for 5 h. Cells were then stimulated with CMA (0.25 μ g/ml or 0.5 μ g/ml) or DMSO overnight and survival of macrophages was assessed by CellTiter Blue assay. (c) Immortalized macrophages transduced with an inducible construct for mouse STING (WT) or for a hyperactive mutant version of mouse STING (V154M) were incubated with doxycycline (0.1 μ g/ml) for 5 h. STING level and phosphorylation of TBK1 were assessed by immunoblot. (d) Macrophages expressing doxycycline-inducible V154M mmSTING were incubated with doxycyline (0.1 μ g/ml) for 5 h or 8 h and expression of indicated genes was quantified by RT-qPCR. (e) Survival of macrophages was measured by using CellTiter Blue Assay after overnight incubation with increasing doses of doxycycline (concentrations: 50 ng/ml, 100 ng/ml, 200 ng/ml). Representative results from n=2 independent experiments are shown (c) or mean and s.d. of technical replicates (n=2) of one representative experiments of n=2 independent experiments are shown (a, b, d, e).

Supplementary Fig. 5 Activation of STING in T cell-derived malignant cells induces apoptosis *in vitro* (a) Various primary murine T-ALL cell lines were incubated with 10-carboxymethyl-9-acridanone (CMA) for 16 h and cell viability was assessed by CellTiter Blue assay. (b) T-ALL Cpc46 cells were treated with DMSO or stimulated with CMA and percentages of apoptotic cells were determined by flow cytometry analysis after 6 h using Anexin V and 7-AAD staining. Data are representative of three independent experiments (b) or mean and s.d. of technical replicates (n=2) of one representative experiment of n=3 independent experiments are shown.

Supplementary Figure 6

(**a**, **b**) T cells from WT or STING^{g/gt} mice were incubated with empty viral particles (eVLPs) or cGAMP containing viral particles (cGAMP VLPs). mRNA abundance of indicated genes was quantified by RT-qPCR after 16 h (**a**) and cell viability was assessed by CellTiter Blue assay after 16 h (**b**). (**c**-**e**) Primary human CD4⁺ T cells from three donors were labeled with CFSE and either activated with PHA-L and IL-2 or cultured in T cell medium. At day 1, cGAMP VLPs were added to the cell culture medium. At day 5 CFSE dilution and Annexin V positive cells were assessed by FACS analysis (**c**, **d**). Human CD4⁺ T cells were expanded with PHA-L and IL-2 for 5 days, incubated with eVLPs or cGAMP VLPs and mRNA abundance of indicated genes was quantified by RT-qPCR after 4 h. Data are representative of three independent experiments (**c**) or mean and s.d. of technical replicates of n=3 distinct donors (**d**, **e**) are shown.

Cpc46 cells (upper panel) or EL4 cells (lower panel) were grown in Rag2^{-/-} $\gamma c^{-/-}$ mice. After overnight treatment with 10-carboxymethyl-9-acridanone (CMA) (500 μ g intratumoral injection) or vehicle (Ctrl., DMSO) tumours were collected and the presence of apoptotic cells was assessed by Annexin V staining via flow cytometry. Left: representative results are depicted; Right: mean and s.d. of percentages of Annexin V positive cells are shown (Cpc46, n = 3 for CMA, n = 2 for ctrl.; EL4, n = 3 per treatment group).

Supplementary Figure 8: Model of cell type-specific responses to STING signaling

Innate immune cells including macrophages ($M\Phi s$) and DCs display lower STING expression, thereby generating a balanced response towards STING activators, which leads to cellular activation and cytokine production. T cells express high levels of STING and display an intensified response to STING activators, which leads to apoptosis.

Fig. 1a

Fig. 1f

Fig. 2a

Fig. 5d

Fig. 6a

Fig. 6b

Uncropped images of western blots

Supplementary Fig. 10 FACS gating strategy

(a) CD4⁺CD44⁻ cell sorting strategy: Naive T cells were obtained by sorting CD4⁺CD44⁻ cells as shown below in experiments in Fig. 1a, e and Fig. 3a, b. (b) Annexin V⁺ cell analysis by FACS: Analysis strategy shown below was used to determine the Annexin V⁺ population in all experiments including in Fig. 1e; Fig. 3d; Fig. 4a-c and Fig. 6f.

а