Title

Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology

Author Affiliation

Martino Bertoni ^{1,2}, Florian Kiefer ^{1,2}, Marco Biasini ^{1,2}, Lorenza Bordoli ^{1,2}, Torsten Schwede ^{1,2}

¹SIB Swiss Institute of Bioinformatics, Basel, Switzerland

² Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland

Supplementary Table S1. Interface distance measures developed in the last years. For each we report the measure name, the reference paper, whether is suitable for binary interfaces or multimeric interfaces and a short summary of the method.

Measure	Reference	Binary	Multimeric	Method Summary			
f _{nat}	CAPRI assessment ⁴³⁻	Х	-	Fraction of correctly predicted contacts			
L_rms	47	Х	-	RMSD of ligands (smallest chains)			
I_rms		Х	-	RMSD of interface atoms			
iRMSD	Aloy et al ³³	Х	-	RMSD calculated on 14 predefined coordinates (independent chain superposition)			
iTM- score	Gao and Skolnick ⁴⁶	Х	-	Geometric distance of interface residues			
IS-score	Gao and Skolnick ⁴⁶	Х	-	Contacts similarity of interface residues			
MM-align	Mukherjee and Zhang	Х	Х	Structural alignment by chain-joining			
Q-score	Xu et al ⁴⁹⁻⁵¹	Х	-	Geometric distance differences between equivalent interfacial residue			

Supplementary Table S2. Summary of the features used in this study. For each feature the group to which is belonging, its name and its definition are provided.

Feature	Feature Name	Definition			
Group					
Sequence	Sequence	The fraction of identical residues divided by the total number			
	Identity	aligned residues in the target-template alignment (gaps are			
		ignored).			
	Sequence	Given two aligned sequences A, B:			
	Similarity				
		$sim(A,B) = \frac{1}{L} \sum_{i=1}^{L} M(a_i, b_i)$ (S1)			
		Where L is the number of columns in the alignment (gaps are ignored).			
		$M(a,b) = \begin{cases} \frac{m(a,b) - \min(m)}{\max(m) - \min(m)} & \text{if } a \neq \text{gap and } b \neq \text{gap} \\ 0 & \text{otherwise} \end{cases} $ (S2)			
		Where $m(a,b)$ are the BLOSUM62 scores, $min(m)$ and $max(m)$ are the lowest and highest scores available in the substitution matrix.			
	Secondary	Predicted secondary structure is computed for the target and the			
	Structure Agreement	template (with PSIPRED), and the one letter code states are mapped on the target-template alignment. The agreement is computed as the fraction of matching secondary structure states, over the total number of aligned residues			
	Accessibility	Analogous to "Secondary Structure Agreement" but predicted			
	Agreement	solvent accessibility (with SSpro4) is used.			
	Surface	Analogous to "Sequence Identity". "Sequence Similarity".			
	Sequence	"Secondary Structure Agreement", and "Accessibility Agreement"			
	Identity	respectively. Only residues belonging to the surface (see			
	Surface	"Interface Definition" in Material and Methods) of the template			
	Sequence	are considered.			
	Similarity				
	Surface				
	Secondary				
	Structure				
	Agreement				
	Surface				
	Accessionity				
	Core Sequence	Analogous to "Sequence Identity" "Sequence Similarity"			
	Identity	"Secondary Structure Agreement" and "Accessibility Agreement"			
	Core Sequence	respectively. Only residues belonging to the core (see "Interface			
	Similarity	Definition" in Material and Methods) of the template are			
	Core	considered.			

	Secondary	
	Structure	
	Agreement	
	Core	
	Accessibility	
	Agreement	
	Interface	Analogous to "Sequence Identity", "Sequence Similarity",
	Sequence	"Secondary Structure Agreement", and "Accessibility Agreement"
	Identity	respectively. Only residues belonging to the interface (see
	Interface	"Interface Definition" in Material and Methods) of the template
	Sequence	are considered.
	Similarity	
	Interface	
	Secondary	
	Structure	
	Agreement	
	Interface	
	Accessibility	
	Agreement	
Multiple	PPI Fingerprint	The interface and surface residues of a template are mapped on
Sequence	minimum	the target's MSA. The lowest value in the PPI Fingerprint curve
Alignment		(calculated as in "Conservation Score" in Materials and Methods)
		is considered.
	PPI Fingerprint	Analogous to "PPI Fingerprint minimum", but the highest value of
	absolute	the absolute (modulus) PPI Fingerprint curve is considered.
	maximum	
	PPI Fingerprint	Analogous to "PPI Fingerprint minimum", but the value of PPI
	full MSA	Fingerprint curve at 0% sequence identity inclusion threshold
		(the complete MSA) is considered.
	PPI Fingerprint	Analogous to "PPI Fingerprint minimum", but the area of the PPI
	Area	Fingerprint curve (integral of the curve using the composite
		trapezoidal rule) is considered.
	Profile Average	Arithmetic mean of column entropies in the HHblits generated
	Entropy	MSA. Column entropy is defined as:
		∇
		$H = -\sum p_a \log(p_a) \qquad (S3)$
		a
		On all amino acids a in the column and p_a is the frequency
		Occurrence of that amino acid in the column.
00	Profile E-value	The \log_{10} E-value returned by HHblits.
QS consensus	State	Given a template and the set of templates identified during the
	Concensus	search step, the ongoineric state consensus is the fraction of
	Consensus	state with the templates of interest
	Staichiamatur	State with the templates of fillerest.
	Conconsus	Analogous to the origometric state consensus, but expressing
	Consensus	tomplate of interest
	Intonface	Analogous to the "Oligomoria State Concensus" but comparing
1	interface	Analogous to the ongoineric state consensus, but expressing

Similarity	the fraction of templates having a structurally similar interface					
Consensus	a template of interest. Templates with similar interfaces are					
	defined as those having a QS-score > 0.8.					
Hydrophilic	Interface propensity give hydrophilic residues (D, N, E, Q, R)					
Propensity	composition in the template interface vs. the surface expressed					
	as:					
	$P_{phi} = ln \frac{1 + p_{phi,I}}{1 + p_{phi,S}} \tag{S4}$					
	Where $p_{phi,I}$ are $p_{phi,S}$ are the fraction of hydrophilic residues in the interface and surface respectively.					
Hydrophobic	Analogous to "Hydrophilic Propensities", but considering					
Propensity	hydrophobic residues (I, L, V, F, M, A, G).					
Average B-	The log odd ratio between the average B-factor of interface and					
factor Ratio	surface residues.					
	$B_{IS} = ln \frac{1 + \langle B \rangle_I}{1 + \langle B \rangle_S} \qquad (S5)$					
	Similarity Consensus Hydrophilic Propensity Hydrophobic Propensity Average B- factor Ratio					

Supplementary Figure S1. Distribution of mostly correct (red) and mostly incorrect (black) models for different template features used in this study. Mostly correct models are those having a QSscore with the known target structure of \geq 0.5 and mostly incorrect models are those with QS-score < 0.5.

Supplementary Figure S2. Fraction of top scoring models (x-axis) in each quality category using single features. As reference the result obtained using all the features is reported and the vertical bar spans from the 25th to the 75th quartile with the median highlighted by a vertical dashed line. The evaluation scheme is based on the comparison of the top ranked model in comparison to the native structure: "incorrect" (QS-score < 0.1), "low" ($0.1 \le QS$ -score < 0.3), "medium" ($0.3 \le QS$ -score < 0.7) and "high" (QS-score > 0.7). The features are sorted in descending order based on the median of the high quality category performance.

Supplementary Figure S3. Feature correlation plot. Each square of the triangular matrix represent the spearman correlation between pairs of features.

Supplementary Figure S4. Univariate feature selection. We analyzed the performances of different predictors trained with a subset of the original feature compared to the full set ("All Features"). Top 5, 10, 15, 25 features are selected by univariate linear regression tests. For each regressor we show the fraction of selected models falling in the different quality criteria described in the main text. The 95% confidence intervals are reported. Including more features result in a higher fraction of high quality models and lower fraction of incorrect, low and medium quality models.

Supplementary Table S3. Summary of the modeling performances of SWISS-MODEL Oligo (the server based on the current study), SWISS-MODEL, and Robetta. From 2015-07-31 to 2016-08-01 a total of 813 targets (427 monomeric and 386 homomeric) have been submitted by CAMEO to these servers. For each server we report the number of models returned, the number of true positives (i.e. the target is homomeric and the model as well), false positives (i.e. the target is monomeric but is predicted as oligomeric), true negatives (i.e. the target is a monomer and also the prediction is a monomer), false negatives (i.e. the target is an oligomer but the prediction was monomeric). The percentages refer to the targets modeled by each server. In the last column the Matthews correlation coefficient is reported.

	Models	ТР	FP	TN	FN	MCC
SWISS-MODEL Oligo	797	280 (35%)	92 (11%)	328 (41%)	97 (12%)	0.52
SWISS-MODEL	800	173 (21%)	28 (3%)	390 (48%)	209 (26%)	0.44
Robetta	789	167 (21%)	40 (5%)	379 (48%)	203 (25%)	0.40