SUPPLEMENTAL MATERIAL

Data S1. Literature search terms:

The following search terms used were in the Medline database:

(adherence [All Fields] OR medication adherence [Mesh] OR patient compliance [Mesh] OR persistence [All Fields])

AND (hypertension [Mesh] OR antihypertensive agents [Mesh] OR angiotensin-converting enzyme inhibitors [Mesh] OR calcium channel blockers [Mesh] OR angiotensin receptor antagonists [Mesh] OR adrenergic beta-antagonists [Mesh] OR diuretics [Mesh] OR antihypertensive medications [All Fields])

AND (stroke [Mesh] OR cerebrovascular disorders [Mesh] OR cardiovascular diseases [Mesh]).

The search strategy for the Embase database was similar to that used for the Medline database.

First author (year of	Data source	Diseases
publication)		classification
Yang 2016 ¹	MarketScan Medicaid database from 11	ICD-9
	geographically dispersed states in the USA	
Kim 2016 ²	Korea National Health Insurance program in Korea	ICD-10
Herttua 2016 ³	The Statistics Finland Labor Market database;	ICD-10
	National Death Register in Finland;	
	National Drug Reimbursement Register in Finland;	
	the Drug Prescription Register by the Social	
	Insurance Institution of Finland;	
	National Institute for Health and Welfare in Finland	
Krousel–Wood 2015 ⁴	The Cohort Study of Medication Adherence in Older	ICD-9
	Adults (CoSMO) in the southeastern Louisiana, USA	
Gosmanova 2015 ⁵	Racial and Cardiovascular Risk Anomalies in CKD	ICD-9
	(RCAV) study examining risk factors of incident	
	CKD in USA veterans	
Xu 2013 ⁶	The China National Stroke Registry database	Self-reported
Wong 2013 ⁷	A territorywide database in Hong Kong	ICD-9
Shin 2013 ⁸	Korean National Health Insurance	ICD-10
	Claims Database	
Herttua 2013 ⁹	The Statistics Finland Labor Market database;	ICD-10
	National Drug Reimbursement Register in Finland;	
	the Drug Prescription Register by the Social	
	Insurance Institution of Finland;	
	National Institute for Health and Welfare in Finland	
Perreault 2012 ¹⁰	A linked administrative health database from the	ICD-9
	RAMQ (Régie Assurance Maladie Québec) in	

Table S1 The data source and diseases classification in each included study

Quebec, Canada

Degli 2011 11	Medications Prescription Database maintained by the	ICD-9	
	Local Health Unit of Florence, Italy		
Corrao 2011 ¹²	The health service databases of Lombardy in Italy	Self-reported	
Khan 2010 ¹³	The Registry of the Canadian Stroke Network	Self-reported	
Bailey 2010 ¹⁴	Tennessee's Medicaid program in USA	ICD-9	
Mazzaglia 2009 ¹⁵	The Health Search/Thales Database in Italy	ICD-9	
Liu 2009 ¹⁶	NHI Research Database in Taiwan	ICD-9	
Kettani 2009 ¹⁷	A linked administrative health database from the	ICD-9	
	RAMQ (Régie Assurance Maladie Québec) in		
	Quebec, Canada; Med-Echo databases in Canada		
Breekveldt–Postma	PHARMO Record Linkage System in Netherlands	ATC codes	
2008 ¹⁸			

ICD, International Classification of Diseases; CKD, chronic kidney disease; ATC, Anatomical Therapeutic Chemical.

First author (year of	Adjustment for confounders
publication)	
Yang 2016 ¹	Age, sex, race, previous CVD, and comorbidities (dyslipidemia, diabetes,
	chronic respiratory disease, chronic kidney disease, depression)
Kim 2016 ²	Age, sex, income, residential regions, comorbidities (diabetes,
	dyslipidemia, and CCI), and the number of AHM
Herttua 2016 ³	Age, sex, education, comorbidity (diabetes), and a history of cancer
Krousel–Wood 2015 ⁴	Age, sex, race, marital status, education, comorbidities (depressive
	symptoms and CCI), the number of AHM, BMI, and lifestyle behaviors
Gosmanova 2015 ⁵	Age, sex, race, marital status, income, public service, baseline glomerular
	filtration rate, BMI, SBP and DBP, and comorbidities (diabetes, CAD,
	PAD, chronic respiratory disease, dementia, liver disease, cancers,
	HIV/AIDS, and depression)
Xu 2013 ⁶	Age, education, income, marital status, a history of stroke, comorbidities
	(myocardial infarction, atrial fibrillation, and diabetes), AHM history, the
	class of AHM at discharge, severity of stroke, dysphagia, co-medication at
	discharge (antiplatelet agents, anticoagulants, lipid-lowering agents, and
	antidiabetic agents)
Wong 2013 ⁷	Age, sex, public service, and the class of first AHM
Shin 2013 ⁸	Age, sex, type of health insurance, cardiovascular risk at baseline,
	comorbidities (diabetes, dyslipidemia, and CCI), and the number and class
	of AHM
Herttua 2013 ⁹	Age, sex, length of AHM, education, income, comorbidity (diabetes), and
	a history of cancer
Perreault 2012 ¹⁰	Age, sex, adherence to other medications (e.g. statins, antidiabetic agents,
	proton pump inhibitors, and antiresorptive agents for osteoporosis)

 Table S2 The confounders adjusted for the multivariate analysis in each included study.

- Degli 2011¹¹ Age, sex, comorbidities (diabetes, dyslipidemia, heart disease, and atherosclerotic disease), and use of antidiabetic agents, lipid-lowering agents, cardiac therapy, and antiplatelet agents
- Corrao 2011¹² Sex, age, the number of AHM, comorbidity (CCI), and drugs prescribed for heart failure or coronary heart disease
- Khan 2010¹³ Age, AHM history, comorbidities (depression and other conditions), total number of baseline drugs used, socioeconomic status, and severity and type of previous stroke
- Bailey 2010¹⁴ Age, sex, race, income, residential regions, type of health insurance, comorbidities (obesity, diabetes, dyslipidemia, CHF, myocardial infarction, atrial fibrillation, TIA, and CCI), history of substance abuse, the class of AHM
- Mazzaglia 2009¹⁵ Age, sex, use of antithrombotics, \geq 5 concurrent medications, and comorbidities (diabetes, dyslipidemia, and PAD), prior hospitalization, and the number of AHM
- Liu 2009¹⁶ Age, sex, the number of AHM, and comorbidities (diabetes, CAD, other heart, dyslipidemia, and renal diseases)
- Kettani 2009¹⁷ Sex , public assistance, comorbidities (CAD, CHF, PAD, other CVD, diabetes, and dyslipidemia), antiplatelet agents, antidiabetic agents, and lipid-lowering agents

Breekveldt–Postma Sex, age, type of prescriber, cardiovascular co-medication, initial AHM and number of AHM classes, and comorbidity (myocardial infarction)

AHM, antihypertensive medication; CVD, cardiovascular disease; CCI, Charlson Comorbidity Index; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; HIV, human immunodeficiency virus; AIDS, acquired immune deficiency syndrome; CHF, congestive heart failure; PAD, peripheral artery diseases; CAD, coronary artery disease.

Reference	Is the exposed	Selection of	Ascertainment	Demonstration that	Comparability of	Assessment	Follow	Adequacy	Total
	cohort	the non-	of exposure	outcome of interest	important factors*	of outcome	up	of follow	quality
	representative?	exposed		was not present at			period	up of	scores
		cohort		start of study				cohorts	
Yang 2016 ¹	\$			$\overline{\lambda}$	**		\$	${\leftrightarrow}$	8
Kim 2016 ²	\$		$\overset{\wedge}{\succ}$	Å	**	$\overset{\wedge}{\sim}$	☆	${\swarrow}$	9
Herttua 2016 ³	$\stackrel{\wedge}{\bowtie}$	$\overleftarrow{\lambda}$		$\overline{\lambda}$	**		☆	${\swarrow}$	9
Krousel–Wood 2015 ⁴	$\stackrel{\wedge}{\bowtie}$	$\overleftarrow{\lambda}$		$\overline{\lambda}$	**		☆	${\swarrow}$	9
Gosmanova 2015 ⁵	Δ		$\vec{\lambda}$	2	**		☆	${\swarrow}$	9
Xu 2013 ⁶	$\stackrel{\wedge}{\bowtie}$	$\overleftarrow{\lambda}$		$\overline{\lambda}$					6
Wong 2013 ⁷	Δ		$\vec{\lambda}$	2	_		☆	${\swarrow}$	7
Shin 2013 ⁸			$\mathbf{\hat{x}}$	$\overline{\lambda}$	**	$\mathbf{\hat{x}}$			7
Herttua 2013 ⁹	$\stackrel{\wedge}{\bowtie}$	$\overleftarrow{\lambda}$		$\overline{\lambda}$	**		☆	${\swarrow}$	9
Perreault 2012 ¹⁰			$\mathbf{\hat{x}}$	$\overline{\lambda}$	**	$\mathbf{\hat{x}}$	☆	${\swarrow}$	9
Degli 2011 ¹¹	Δ		$\vec{\lambda}$	Å			☆	${\swarrow}$	8
Corrao 2011 ¹²			$\mathbf{\hat{x}}$	$\overline{\lambda}$		$\mathbf{\hat{x}}$	☆	${\swarrow}$	8
Khan 2010 ¹³			$\mathbf{\hat{x}}$	$\overline{\lambda}$	_	$\mathbf{\hat{x}}$		${\swarrow}$	6
Bailey 2010 ¹⁴	Δ		$\vec{\lambda}$	Å	_		☆	${\swarrow}$	7
Mazzaglia 2009 ¹⁵	$\stackrel{\wedge}{\bowtie}$	$\overleftarrow{\lambda}$		$\overline{\lambda}$			☆	${\swarrow}$	8
Liu 2009 ¹⁶	Δ	$\overleftarrow{\mathbf{x}}$	$\overleftarrow{\lambda}$		**		☆	${\swarrow}$	9
Kettani 2009 ¹⁷	\$		$\stackrel{\wedge}{\sim}$	$\overset{\wedge}{\sim}$	$\sum_{i=1}^{n}$	$\overleftarrow{\mathbf{x}}$	\$	\$	8

Table S3 Quality assessment of the included studies*

Breekveldt–Postma 2008 ¹⁸ ${\mbox{$\pi$}$}$ ${\mbox{$\pi$}$$ ${\mbox{$\pi$}$}$ ${\mbox{$\pi$}$}$ <th>9</th>	9
--	---

*Newcastle-Ottawa Scale was used to assess the study quality in this meta-analysis. The full score was 9 stars, and the high-quality study was defined as a study with 8 awarded stars.

† A maximum of two stars could be awarded for this item. One star with adjustment for age and sex, two stars if there was additional comorbidity.

Group	No. of studies	RR	95% CI	<i>I</i> ² ,%	PI
Adjusted for the number of AHM					0.188
Yes	7	0.69	0.62-0.76	64.0	
No	11	0.76	0.68-0.84	86.4	
Adjusted for the class of AHM					0.020
Yes	5	0.82	0.74-0.91	83.0	
No	13	0.69	0.64-0.74	55.9	
Adjusted for other co-medications					
Yes	6	0.73	0.65-0.81	68.3	0.997
No	12	0.72	0.65-0.81	87.9	

Table S4 Sensitivity analysis for the main confounders*

AHM, antihypertensive medication; RR, relative risk; CI, confidence interval; PI, P interaction.

* Pooled RRs and 95% CIs were estimated using a random-effects model.

[†]Other co-medications included antiplatelet agents, antidiabetic agents, lipid-lowering agents, and anticoagulants.

Figure S1. Funnel plot for publication bias test.

Figure S2. Publication bias test for the association between antihypertensive agents adherence and stroke risk. Begg's test, z = 0.680 (continuity corrected); p > |z| = 0.495 (continuity corrected).

Supplemental References

- 1. Yang Z, Howard DH, Will J, Loustalot F, Ritchey M, Roy K. Association of antihypertensive medication adherence with healthcare use and medicaid expenditures for acute cardiovascular events. *Med Care*. 2016;54:504-511
- 2. Kim S, Shin DW, Yun JM, Hwang Y, Park SK, Ko YJ, Cho B. Medication adherence and the risk of cardiovascular mortality and hospitalization among patients with newly prescribed antihypertensive medications. *Hypertension*. 2016;67:506-512
- 3. Herttua K, Martikainen P, Batty GD, Kivimaki M. Poor adherence to statin and antihypertensive therapies as risk factors for fatal stroke. *J Am Coll Cardiol*. 2016;67:1507-1515
- 4. Krousel-Wood M, Holt E, Joyce C, Ruiz R, Dornelles A, Webber LS, Morisky DE, Frohlich ED, Re RN, He J, Whelton PK, Muntner P. Differences in cardiovascular disease risk when antihypertensive medication adherence is assessed by pharmacy fill versus self-report: The cohort study of medication adherence among older adults (cosmo). J Hypertens. 2015;33:412-420
- Gosmanova EO, Molnar MZ, Alrifai A, Lu JL, Streja E, Cushman WC, Kalantar-Zadeh K, Kovesdy CP. Impact of non-adherence on renal and cardiovascular outcomes in us veterans. *Am J Nephrol.* 2015;42:151-157
- Xu J, Zhao X, Wang Y, Wang C, Liu L, Sun B, Wang A, Wang Y. Impact of a better persistence with antihypertensive agents on ischemic stroke outcomes for secondary prevention. *PLoS One*. 2013;8:e65233
- 7. Wong MC, Tam WW, Cheung CS, Wang HH, Tong EL, Sek AC, Yan BP, Cheung NT, Leeder S, Yu CM, Griffiths S. Drug adherence and the incidence of coronary heart diseaseand stroke-specific mortality among 218,047 patients newly prescribed an antihypertensive medication: A five-year cohort study. *Int J Cardiol.* 2013;168:928-933
- 8. Shin S, Song H, Oh SK, Choi KE, Kim H, Jang S. Effect of antihypertensive medication adherence on hospitalization for cardiovascular disease and mortality in hypertensive patients. *Hypertens Res.* 2013;36:1000-1005
- 9. Herttua K, Tabak AG, Martikainen P, Vahtera J, Kivimaki M. Adherence to antihypertensive therapy prior to the first presentation of stroke in hypertensive adults: Population-based study. *Eur Heart J*. 2013;34:2933-2939
- 10. Perreault S, Yu AY, Cote R, Dragomir A, White-Guay B, Dumas S. Adherence to antihypertensive agents after ischemic stroke and risk of cardiovascular outcomes. *Neurology*. 2012;79:2037-2043
- Degli Esposti L, Saragoni S, Benemei S, Batacchi P, Geppetti P, Di Bari M, Marchionni N, Sturani A, Buda S, Degli Esposti E. Adherence to antihypertensive medications and health outcomes among newly treated hypertensive patients. *Clinicoecon Outcomes Res.* 2011;3:47-54
- Corrao G, Parodi A, Nicotra F, Zambon A, Merlino L, Cesana G, Mancia G. Better compliance to antihypertensive medications reduces cardiovascular risk. J Hypertens. 2011;29:610-618
- 13. Khan NA, Yun L, Humphries K, Kapral M. Antihypertensive drug use and adherence after stroke: Are there sex differences? *Stroke*. 2010;41:1445-1449
- 14. Bailey JE, Wan JY, Tang J, Ghani MA, Cushman WC. Antihypertensive medication

adherence, ambulatory visits, and risk of stroke and death. J Gen Intern Med. 2010;25:495-503

- Mazzaglia G, Ambrosioni E, Alacqua M, Filippi A, Sessa E, Immordino V, Borghi C, Brignoli O, Caputi AP, Cricelli C, Mantovani LG. Adherence to antihypertensive medications and cardiovascular morbidity among newly diagnosed hypertensive patients. *Circulation*. 2009;120:1598-1605
- 16. Liu PH, Hu FC, Wang JD. Differential risks of stroke in pharmacotherapy on uncomplicated hypertensive patients? *J Hypertens*. 2009;27:174-180
- Kettani FZ, Dragomir A, Cote R, Roy L, Berard A, Blais L, Lalonde L, Moreau P, Perreault S. Impact of a better adherence to antihypertensive agents on cerebrovascular disease for primary prevention. *Stroke*. 2009;40:213-220
- Breekveldt-Postma NS, Penning-van Beest FJ, Siiskonen SJ, Falvey H, Vincze G, Klungel OH, Herings RM. The effect of discontinuation of antihypertensives on the risk of acute myocardial infarction and stroke. *Curr Med Res Opin*. 2008;24:121-127