Supplement to "Exact calculation of the joint allele frequency spectrum for isolation with migration models"

And rew D. Kern^1 and Jody Hey^2

June 30, 2017

 $^1 \rm Department$ of Genetics, Rutgers University, Piscataway, NJ 08554, USA $^2 \rm Department$ of Biology, Temple University, Philadephia, PA 19122 USA

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$95\% \text{ CI } t_{div}$	255.89	239.69	254.84	253.81	1122.92	358.13	424.92	430.50	525.89	375.11
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	95% UI 4/V m21	0.13	0.22	0.17	0.24	6.87	0.58	1.90	0.43	0.65	0.49
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$95\% \text{ CI } 4Nm_{12}$	0.14	0.16	0.10	0.23	2.14	0.39	0.98	0.25	0.47	0.33
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	95% UL NA	3703.80	5267.41	3896.12	3885.39	20344.21	3644.12	5092.39	4889.41	6175.22	3173.21
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	95% UL N2	13663.32	14956.00	15014.74	12351.57	94002.97	21183.04	27632.06	20473.44	24895.30	11359.69
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	t_{div}	3939.55	4332.84	5577.46	3628.34	8496.82	9985.27	7203.86	10582.02	8325.86	9257.11
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$4Nm_{21}$	0.16	0.79	1.56	0.73	14.87	7.91	9.93	6.87	2.60	1.97
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$4Nm_{12}$	4.98	4.33	2.56	4.91	17.20	0.37	12.17	1.97	12.92	12.61
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	N_A	80613.58	118095.48	88823.47	76674.47	150614.71	120165.22	108844.22	166976.94	138162.32	111410.91
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	N_2	222269.94	207423.81	214161.24	162379.37	395230.05	429910.17	348198.95	432935.59	339789.04	231793.18
pop1 pop2 lik ED GU -104955.7618 ED RG -133735.87618 ED NG -133735.8763 ED NG -133735.8763 ED NG -133735.8763 ED NG -1316974.0971 ED NG -92419.45582 GU NG -186862.1182 GU NG -186862.1183 GU VG -186863.1183 GU VG -140765.3032 NG VG -140765.3032 NG VG -164929.6795 SP -151679.0982 SP	N_1	63834.11	67163.37	56695.62	63696.49	312427.87	334285.47	419695.00	295844.35	285763.09	396609.71
Popl Pop2 ED GU ED GU ED NG GU NG GU SP NG UG NG SP NG UG SP NG UG	IIK	-104955.7618	-133735.8783	-116974.0971	-92419.45582	-186862.1182	-178614.0678	-140765.3032	-215684.7144	-164929.6795	-151679.0982
Popl Popl SP SP SP SP	Zdod	GU	ŊĊ	$_{\rm SP}$	UG	ŊĊ	$_{\rm SP}$	UG	$_{\rm SP}$	UG	UG
	1 dod	ED	ED	ED	ED	GU	GU	GU	Ŋ	Ŋ	SP

Table S1: Parameter estimates from IM-CLAM for pairwise combinations of populations. Estimates of 4Nmare scaled in N_1 for each population comparison respectively. t_{div} is given in years, assuming 15 generations per year and and $u = 5.49 \times 10^{-9}$.

Figure S1: Calculation time of the AFS as a function of sample size. Here we show the time it takes to calculate the AFS as sample size for both populations increases equivalently. All jobs were run on 12 cores. The y-axis is shown on a log scale.

Figure S2: Accuracy of parameter estimates across divergence time. Here we show the root mean square error (RMSE) across all parameter estimates as a function of the three parameter sets used in Figure 6. Migration rates, $m_{12} = 1.0$; $m_{21} = 1.0$, and divergence time varies from left to right $t_{div} = 0.1, 0.5, 1.0$.

Figure S3: Accuracy of parameter estimates across divergence time. Here we show the root mean square error (RMSE) across all parameter estimates as a function of the three parameter sets used in Figure 7. Migration rates, $m_{12} = 1.0; m_{21} = 0.1$, and divergence time varies from left to right $t_{div} = 0.1, 0.5, 1.0$.

Figure S4: Distance tree of population divergence times. Using estimated divergence time in pairwise comparisons as a distance metric, we constructed a tree using UPGMA clustering. Times are in years, as depicted on the x-axis, assuming 15 generations per year, and $u = 5.49 \times 10^{-9}$.