
Supplemental Materials

Supplemental Figure 1: Histogram showing the number of SAMAFS pedigrees that have the given number
of genotyped samples.
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Values that map to degree: Expected

Degree φ k(0) Relationship # Meioses k(0) k(1) k(2) φ

0 > 1
23/2

< 0.1 Monozygotic (MZ) twin 0 0 0 1 1
2

1
( 1
25/2

, 1
23/2

] < 0.1 Parent-child 1 0 1 0 1
22

( 1
25/2

, 1
23/2

] [0.1, 0.365) Full sibling (not MZ twin) 2 (×2) 1/4 1/2 1/4 1
22

Grandparent-grandchild 2 1/2 1/2 0 1
23

2 ( 1
27/2

, 1
25/2

] [0.365, 1− 1
23/2

)
Avuncular 3 (×2) 1/2 1/2 0 1

23

Double-cousin 4 (×4) 9/16 3/8 1/16 1
23

Half-sibling 2 1/2 1/2 0 1
23

First cousin 4 (×2) 3/4 1/4 0 1
24

3 ( 1
29/2

, 1
27/2

] [1− 1
23/2

, 1− 1
25/2

)
Great-grandparent 3 3/4 1/4 0 1

24

Grand-avuncular 4 (×2) 3/4 1/4 0 1
24

Half-avuncular 3 3/4 1/4 0 1
24

First cousin once removed 5 (×2) 7/8 1/8 0 1
25

4 ( 1
211/2

, 1
29/2

] [1− 1
25/2

, 1− 1
27/2

)
Great-great-grandparent 4 7/8 1/8 0 1

25

Great-grand-avuncular 5 (×2) 7/8 1/8 0 1
25

Half-grand-avuncular 4 7/8 1/8 0 1
25

First cousin twice removed 6 (×2) 15/16 1/16 0 1
26

5 ( 1
213/2

, 1
211/2

] [1− 1
27/2

, 1− 1
29/2

) Second cousin 6 (×2) 15/16 1/16 0 1
26

GGG-grandparent 5 15/16 1/16 0 1
26

6 ( 1
215/2

, 1
213/2

] [1− 1
29/2

, 1− 1
211/2

) Second cousin once removed 7 (×2) 31/32 1/32 0 1
27

7 ( 1
217/2

, 1
215/2

] [1− 1
211/2

, 1− 1
213/2

)
Second cousin twice removed 8 (×2) 63/64 1/64 0 1

28

Third cousin 8 (×2) 63/64 1/64 0 1
28

8 ( 1
219/2

, 1
217/2

] [1− 1
213/2

, 1− 1
215/2

) Third cousin once removed 9 (×2) 127/128 1/128 0 1
29

Supplemental Table 1: Degrees of relatedness with the ranges of kinship coefficients (φ) and genome propor-
tions inferred to be IBD0 (k(0)) that map to that degree. Includes example relationships for each degree and
the corresponding number of meioses that separate a pair of individuals with that relationship. Number of
meioses with text (×2) and (×4) correspond, respectively, to samples that are related along two (e.g., full
siblings) and four lines of descent, with the indicated meiotic distance on all lines. Also lists the proportions
of the genome that are expected to be IBD0, IBD1, and IBD2 between samples that have each relationship,
denoted k(0), k(1), and k(2), respectively; and the corresponding expected kinship coefficient φ. Table does
not include all possible relationship types for these degrees of relatedness.

Supplemental Note

SAMAFS data and quality control procedures

Our analysis focuses on SNP array data from the San Antonio Mexican American Family Studies1–3

(SAMAFS). The 2,490 samples were genotyped via one of the following Illumina arrays: the Human660W,
Human1M, Human1M-Duo, or both the HumanHap500 and the HumanExon510S array which together pro-
vide roughly the same content as the Human1M array. We began by using data that had quality control
measures carried out in a prior study4. In brief, sites with non-Mendelian errors were set to missing and
we used BWA5 v0.7.5a-r405 to map the SNP array probe sequences to human reference sequence GRCh37.
Only SNPs with probe sequences that aligned with no mismatches at exactly one genomic position and that
do not align to any other location with either zero or one mismatches were kept. We omitted SNPs for
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which any of the following was true: (1) multiple probes aligned to the same location (we retained only one
SNP for any location), (2) dbSNP reported either more than two variants or had non-simple alleles (i.e.,
not A/C/G/T), (3) the raw genotype data had differing alleles as compared to those reported in the mani-
fest files, (4) the manifest file listed SNP alleles that differed from those in dbSNP at the aligned location,
(5) dbSNP listed the SNP as having multiple locations or as ‘suspected’, (6) the SNP location is outside
the ‘accessible genome’ as reported by the 1000 Genomes Project6, (7) the site occurs in a region that is
segmentally duplicated with a Jukes-Cantor K-value of <2%, or (8) the site occurs within a total of 17 Mb
of the genome that received excess reads aligned using 1000 Genome Project data7.

Following these procedures, we filtered the dataset to include SNPs with less than 2% missingness and
individuals with less than 10% missingness. This resulted in data for a total of 2,485 individuals at 521,184
SNPs that overlap between the two types of arrays and are of high quality. To run methods that require
independent SNPs, we used the PLINK command --indep-pairwise 1000 25 0.25 which uses a sliding
window method that considers blocks of 1,000 SNPs and removes SNPs with r2 > 0.25, afterward shifting
the window by 25 SNPs. This process yielded a total of 140,314 SNPs after linkage disequilibrium (LD) was
filtered. We explore the effect of different filtering thresholds below in the “Varying linkage disequilibrium
filters” section.

For the ADMIXTURE8 analyses described below, we merged the above LD-pruned SAMAFS dataset with
HapMap phase 3 samples9 and again filtered to include SNPs with less than 2% missingness from the
combined dataset. This resulted in a sample with 102,527 SNPs.

After an initial analysis, we discovered several pairs of individuals reported as unrelated but inferred to
be first or second degree relatives based on the output from Refined IBD. When these individuals are in
the same SAMAFS pedigree, relatedness degrees between their descendants can be inflated relative to that
implied by the reported relationships. In order to reduce this effect, we excluded from consideration reported
pairs of relatives in which both samples descend from one of the unexpected relatives. Specifically, for a
given pair of inferred but unreported relatives from the same pedigree, (ind1, ind2), we found the sets D1

and D2 of all descendants of ind1 and ind2, respectively. Then for each d1 ∈ D1 and d2 ∈ D2, we removed
from the set of relatives to be analyzed each pair (d1, d2), as well as all pairs of the forms (ind1, d2) and
(d1,ind2). This resulted in the removal of 2,618 pairs of individuals: 3, 80, 322, 625, 763, 554, 120, and 151
pairs reported as second through eighth degree relatives and unrelated, respectively.

Some reported relationships in the dataset have an expected kinship coefficient that does not map to a
specific degree of relatedness. For example, three-quarter-siblings share one parent in common and have
unshared parents that are first degree relatives (such as full siblings); their expected kinship coefficient is
intermediate between first and second degree relatives, and as a result their degree of relatedness is unclear.
We omit all such relatives from the analysis, with a total of 91 pairs removed.

Although monozygotic (MZ) twins have a degree of relatedness of 0, for the analyses in this paper, we
combine the 10 reported pairs of MZ twins with the set of first degree relatives and call all individuals with
estimated kinship φ > 1

25/2
as first degree relatives.

Effects of the SAMAFS relatedness structure on inference quality

As the SAMAFS data consist of numerous large families, allele and haplotype frequencies estimated from
the sample may be biased, potentially affecting the inference results in a way that is not representative
of the methods’ accuracy in other datasets. To assess how severely this may impact the results of the
allele frequency-based methods on all of SAMAFS, we tested PLINK10 on datasets composed primarily
of individuals with fairly low level relatedness. To generate these sample sets, we first determined a set
of distantly related individuals using FastIndep11, a program that uses estimated kinship coefficients and
a maximum allowed relatedness threshold to identify a set of individuals in which no pairwise relatedness
exceeds the given threshold. For pairs reported as unrelated, we use the kinship coefficients from PLINK,
and for pairs reported as related, we use the expected kinship coefficient (Supplemental Table 1) value for
that pair. We input these kinship coefficients to FastIndep with the relatedness threshold set to 0.015, which
is roughly the expected kinship coefficient for fifth degree relatives. This produced a set of 529 individuals,
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Degree Number of Pairs

1 4,510

2 5,999

3 7,030

4 5,991

5 2,496

Unrelated 1,997,907

Total 2,023,933

Supplemental Table 2: Number of pairs of individuals that passed quality filters, are reported to have first
through fifth degree relatedness, and which we included in at least one of the 1,000 datasets composed pri-
marily of individuals with PLINK-estimated kinship less than 0.015. (See the “Effects of reducing relatedness
in input data” section.) Pairs counted as unrelated for this analysis are from distinct pedigrees. We include
reported MZ twins with the set of first degree relatives.

denoted as L, in which all sample pairs are expected or estimated to share no more than 3% of their genome
IBD. We note that PLINK is somewhat biased in inferring relatedness and identifies a non-trivial proportion
of samples that are reported to be unrelated as fifth degree or closer relatives (Figure 1). Therefore, using
PLINK kinship estimates should provide an aggressive filter against potential relatedness in these sample
sets. Next, we created 1,000 datasets containing the base set of samples L merged with no more than one
randomly selected pair of related individuals from each SAMAFS pedigree, resulting in a total of 26,026
pairs of fifth degree or closer relatives, and nearly two million pairs from distinct pedigrees so reported as
unrelated (Supplemental Table 2). When adding a related pair of individuals to the dataset, we checked if
either of the individuals is reported to be a fifth degree or closer relative of a sample in L, and in that case,
removed the sample in L from the dataset. Finally, we ran PLINK on each of the 1,000 datasets and show
performance accuracy results in comparison to running PLINK on the full SAMAFS dataset in Supplemental
Figure 2. While some differences exist between the two analyses, the accuracy results differ by less than
3% for all considered relatedness classes, indicating that the relatedness structure within SAMAFS has little
affect on allele frequency estimates and resulting relatedness measures.

In the presence of multiple copies of various haplotype segments that stem from the numerous relatives in
the full SAMAFS dataset, phasing and therefore IBD accuracy may be inflated compared to non-pedigree
samples. This may increase the inference quality of IBD segment-based programs (which utilize either internal
phasing models or pre-phased data) compared to the other programs. To assess the performance of the IBD
segment-based methods in a setting with relatively outbred data, we again used datasets comprised mostly
of individuals with low relatedness. Specifically, starting with the 1,000 datasets with the base set of samples
contained in L as outlined above, we merged genotypes from 580 HapMap phase 3 individuals (83 individuals
of African ancestry in Southwest USA [ASW], 165 Utah residents with Northern and Western European
ancestry from the CEPH collection [CEU], 77 samples of Mexican ancestry in Los Angeles, California [MXL],
88 Toscani in Italia individuals [TSI], and 167 Yoruba in Ibadan, Nigeria samples [YRI]) in order to increase
the sample size. This provides a baseline level of phase accuracy that should be achievable for most studies
as all these datasets contain between 1,127−1,204 individuals. Results from this analysis are presented in
Supplemental Figure 3. The accuracy of the IBD segment-based methods does drop for higher degrees of
relatedness in the reduced datasets compared to all of SAMAFS, in some cases by as much as 9.6%. In this
case the performance of IBD segment methods and allele frequency methods are more similar, suggesting
that for smaller datasets, phasing errors can reduce the efficacy of IBD segment methods for inferring
relatedness. Still, the IBD segment-based methods are comparable to or more accurate than the allele
frequency methods even in this setting. Moreover, for larger datasets where it is possible to achieve phase
accuracy at the megabase-scale12, the results from the full dataset indicate that IBD segment-based methods
provide greater accuracy than allele frequency-based methods for inferring relatives with third degree or more
distant relatedness.
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Supplemental Figure 2: Accuracy results from PLINK run on the entire SAMAFS dataset (labeled “Full”),
and from PLINK run on 1,000 reduced datasets composed mostly of individuals with PLINK-derived kinship
estimates of less than 0.015 (labeled “Reduced”). When a pair of relatives is present in more than one reduced
dataset, we selected results from an arbitrary dataset to determine accuracy. We combined results for pairs
inferred to have sixth degree or more distant relatedness in one class for this analysis.

Addressing population structure while including data from diverse samples

Samples that have admixed ancestry can confound relatedness estimation methods due to some individuals
having more or less similar population-level ancestry, thus inducing an increased or decreased correlation in
genotypes among admixed samples that may or may not be recently related13,14. While methods such as
REAP13 and RelateAdmix15 adjust for admixture, they rely on the output of model-based ancestry inference
methods such as ADMIXTURE8 which have difficulty distinguishing between ancestral populations and more
recent relatedness among samples14.

We sought to determine whether adding genotypic variance corresponding to the populations relevant to
the ancestry of the SAMAFS samples would enable ADMIXTURE to reliably estimate ancestral population
proportions despite the relatedness in the full dataset. To that end, we generated a dataset containing the
entire (LD-pruned) SAMAFS sample together with 372 unrelated HapMap individuals. These HapMap indi-
viduals are a subset of the 580 individuals described above (including samples with African, European, and
Native American ancestry pertinent to SAMAFS), but with samples filtered out by FastIndep using previ-
ously estimated kinship coefficients16 as input and a filtering threshold of 0.015. We then ran ADMIXTURE
on this dataset with K = 3. Next, we ran ADMIXTURE with K = 3 on another dataset containing the 372
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Supplemental Figure 3: Accuracy results from the full dataset for all IBD segment-based methods, PC-Relate,
and PREST-plus along with results from running ERSA, GERMLINE, and IBDseq on 1,000 reduced datasets
composed mostly of individuals with inferred kinship values of less than 0.015. Results from programs run
on both types of data are indicated with a label “(F)” and red text for the full dataset and “(R)” and blue
text for the reduced datasets. The accuracies in all cases are for pairs of samples that were included in at
least one reduced dataset so that the results are directly comparable between data types. We report sample
pairs inferred as sixth degree or more distant together here.

unrelated HapMap samples and the set L (above) containing 529 SAMAFS samples inferred by PLINK to
have kinship less than 0.015. As this latter dataset has little relatedness structure, ADMIXTURE should
readily infer the samples’ ancestral proportions from African, European, and Native American populations.
Consistent with this, we located the inferred ancestry components likely to correspond to these three groups
using individuals from the HapMap YRI, CEU, and MXL populations in the two different ADMIXTURE
runs. We then computed correlations separately for each component between the set L of 529 SAMAFS
samples contained in both datasets. These correlations are extremely high at >0.97 for all three popula-
tions, indicating that the output from ADMIXTURE run on all of SAMAFS together with the 372 unrelated
HapMap individuals reliably infers population-level ancestry proportions.

Building on this analysis, we used the ADMIXTURE results from the dataset containing the full SAMAFS
and unrelated HapMap samples, extracting only the ancestry estimates for SAMAFS, in order to examine
whether the accuracy of REAP and RelateAdmix improve using these ancestry estimates. Additionally, we
ran KING and PC-Relate (the other methods that address population structure) on this same combined
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Supplemental Figure 4: Accuracies from running KING, PC-Relate, REAP, and RelateAdmix on: a dataset
containing all of SAMAFS and unrelated HapMap individuals, with a label “(F+H)” in blue text; and on
the full SAMAFS sample, with an added label “(F)” in black text. Red horizontal bars under a bar plot
indicate that the corresponding inferences agree with the reported relationships.

dataset to compare their performance using this more diverse sample to that from the SAMAFS-only data.
As shown in Supplemental Figure 4, the accuracy of REAP and RelateAdmix increase, indicating that the
ADMIXTURE results improve when using the augmented dataset. In contrast, the performance of KING
and PC-Relate are generally consistent in both analyses. As PC-Relate identifies a set of individuals with
little relatedness and uses these to infer principal components (PCs), it is less susceptible to confounding
due to relatedness in the input data, and appears not to require aids to distinguish shared variation due to
population ancestry from recent relatedness. Notably, in the case of seventh degree relatives PC-Relate’s
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accuracy increases to 41.1% compared to 27.4% in the original dataset. While this increase is striking, our
analysis includes fewer than 100 seventh degree relatives, and it is unclear to what extent this result may be
due to stochastic factors. Overall, PC-Relate performs well in both settings, and indeed outperforms REAP
and RelateAdmix regardless of whether we include HapMap samples with SAMAFS.

Additional analyses of PC-Relate

We further examined the potential for improving accuracy in PC-Relate by (1) using different methods to
produce the kinship coefficients given to PC-Relate as input, testing PLINK and Refined IBD as well as the
recommended method KING17 (as used in the main analysis); (2) changing the relatedness threshold that
determines the set of samples used to infer PCs, varying this between the default of excluding fourth degree
relatives or closer to excluding seventh degree relatives or closer; and (3) iterating PC-Relate by using its
own inferred kinship coefficients as input to a second round inference, using either KING or Refined IBD as
the initial input, an approach the authors suggested previously17. As shown in Supplemental Figure 5, all
tested scenarios produce similar accuracy, with sizeable variation only observed in seventh degree relative
inference, potentially driven by noisy results for this smaller number of distant relatives. We conclude that
the results in Figure 1 are representative of PC-Relate’s optimal performance in SAMAFS.

Varying linkage disequilibrium filters

For methods that are designed to handle only independent SNPs, LD filtering of the genotype data is
necessary, but the parameters used in filtering have the potential to affect inference quality. We consider
the accuracy of inferring relatedness using genotypes with r2 up to 0.05, 0.1, 0.2, and our original threshold
of 0.25. Using the original SAMAFS dataset, we filtered using the --indep-pairwise 1000 x option in
PLINK, where x is the upper bound for r2. This resulted in datasets with 23,761, 57,198, and 114,541 SNPs
for r2 set to 0.05, 0.1, and 0.2, respectively. Supplemental Figure 6 shows the rates for inferring sample pairs
to have the same degree of relatedness as reported in SAMAFS as well as one degree higher and lower. In
general, changes in accuracy for inferring individuals to have the reported relatedness degree are minimal.
Some larger differences exist for seventh degree relative inference, but as previously noted, this is a smaller
set of relative pairs and differences may be due to random fluctuations. No clear trend exists among the
methods, as some have improved performance for lower r2 thresholds, while some perform best with the
highest value.

Samples with inferred relatedness different from that reported in SAMAFS

We sought to identify relationships that are reported as either first degree, second degree, or unrelated,
but are inferred to have a substantially different degree of relatedness. Using unanimous agreement from
ERSA, GERMLINE, and Refined IBD to locate confidently inferred relationships, we located several pairs
of samples with such differences. For inferred relationships that differ by more than one degree from the
reported relationship (e.g., reported as second degree but inferred as sixth degree), we assumed that the
inference is valid as this is unlikely to occur due to data errors or statistical fluctuations. For relationships
that are inferred to differ by only one degree from the reported relationship, we further required that either:
(1) the discrepant relatedness call be supported by a consistent call involving at least one other sample
(example follows); (2) in cases of reported siblings inferred to be second degree relatives, that their IBD2
proportion be less than 1

25/2
; or (3) in cases of reported half-sibling pairs inferred to be first degree relatives,

that their IBD2 proportion be greater than 1
25/2

. As an example of an inference supported by another sample,
given a set of three or more reported siblings, if the methods infer a pair of siblings as likely second degree
relatives (presumably half-siblings), we checked that one of the other siblings also support a second degree
relatedness inference involving one of the two original samples to ensure consistency. We used results from
Refined IBD to quantify IBD2 levels. Note that the expected proportion of IBD2 between full siblings is 1

4 ,
and we used 1

25/2
as the cutoff for confirming full vs. half-sibling calls.
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Supplemental Figure 5: Inference results from running PC-Relate with different input and parameter settings.
Labels indicate the method used to supply input kinship coefficients—KING, Refined IBD, or PLINK—that
PC-Relate uses to identify samples with which it infers PCs. Labels in green with “+ iter” text correspond
to results from iterating by rerunning PC-Relate using its own kinship estimates as input for a second round
of inference. Labels in blue with “(7)” are from running PC-Relate with a threshold set to exclude seventh
degree or closer relatives rather than the default of excluding fourth degree or closer relatives. Red horizontal
bars under a bar plot indicates that the corresponding inferences agree with the reported relationships.

The IBD2 levels of two reported half-siblings from two pedigrees were greater than that seen for most half-
siblings but less than typical for full siblings, and appear to be best explained as being a less commonly
described class of relatives known as three-quarter-siblings defined earlier (see “SAMAFS data and quality
control procedures”). Individuals with this class of relatedness share non-trivial proportions of IBD2 but at
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Supplemental Figure 6: Accuracies of KING, PC-Relate, PLINK, REAP, and RelateAdmix using four differ-
ent LD filtering thresholds: 0.05, 0.1, 0.2, and 0.25. Depicts the proportion of sample pairs inferred to have
the same degree of relatedness as reported as well as inferred to have one higher and one lower relatedness
degree.

a lower level than for full siblings. For the potential three-quarter-siblings we identified, we did not have
genotype data for one of the fathers in both cases and therefore could not validate whether the fathers were
siblings. As the degree of relatedness for such pairs is ambiguous, and because other factors may explain
these findings, we do not count these pairs as inconsistent. As shown in Supplemental Table 3, the majority
of pairs in the dataset have inferred relatedness consistent with the reported relationships. However, we find
a few discrepancies, including unrelated individuals inferred to be closely related (Supplemental Figure 7),
and even some second degree relatives inferred to have sixth degree or more distant relatedness. This latter
group could be explained by sample swaps or possibly by the individuals being adopted.
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Inferred
1st 2nd 6th Degree or Further

1st 4,919 23 0
2nd (HS) 10 380 6

Reported
2nd (A) 2 4,725 3
2nd (GP) 0 933 0
2nd (DC) 0 8 0
Unrelated 5 23 3,051,455

Supplemental Table 3: Pairs of relationships that are confidently inferred using unanimous agreement from
three programs and further checks described in the text (for some discrepant relationships) in SAMAFS.
(HS) are half-sibling pairs, (A) are avuncular pairs, (GP) are grandparent-grandchild pairs, and (DC) are
double cousin pairs. Bold numbers indicate agreement between reported and inferred relationships. We only
count pairs whose relationships are unanimously agreed upon by the methods and, when discrepant, could
be verified as probable misreports using the described checks.

Supplemental Figure 7: Relationships discovered between individuals from different SAMAFS pedigrees.
Bands on the perimeter of the elliptical plot indicate distinct pedigrees within SAMAFS with band size pro-
portional to the number of individuals in the pedigree. Curves between two bands correspond to discovered
relative pairs with curve color indicating the degree of relatedness: red for first degree, green for second
degree, and blue for third degree. Points where the curves end correspond to specific individuals, and a
single point may have multiple curves running to it, indicating several relationships between that individual
and others in the dataset.
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Method testing details

Details on how we ran each of the methods appears below. Note that these descriptions apply to the inference
results presented in Figure 1. We performed several additional analyses using altered input or parameters
to the methods that are described above. In all cases, we provided methods with genotype data only and
removed all reported family relationships.

ERSA: We ran ERSA using output from GERMLINE run with the recommended parameters of -err_het 2

-err_hom 1 -min_m 1.

fastIBD: Following recommended practices18, we ran fastIBD using the default settings 10 times using a
different seed each time and took the union of the called IBD segments from the multiple runs as our final
set of IBD regions.

GERMLINE: We phased the data using Beagle 4.1 and ran GERMLINE on the inferred haplotypes with
the parameters recommended for ERSA (-err_het 2 -err_hom 1 -min_m 1) as well as with the -haploid
option to reduce over-calling of IBD segments and to enable detection of IBD2 regions.

HaploScore: We ran HaploScore with the default settings using the same GERMLINE output as for
ERSA.

IBDseq: We ran IBDseq with the default settings.

KING: We ran KING with the --kinship flag in order to run KING-robust (i.e., the version that allows
for population structure) using the LD-filtered dataset.

PC-Relate: We used the LD-filtered dataset and the pairwise relatedness matrix inferred by KING-robust
as input to PC-AiR14 (as recommended by the authors17). PC-Relate expects input PCs inferred using
PC-AiR, and the latter outputs 20 PCs by default. We examined the eigenvalues and scatter plots of these
PCs and determined that three PCs is a suitable number to use for capturing the variation in SAMAFS;
three PCs also gives nearly identical results to using 20 PCs (not shown). We used the defaults for all other
settings.

PLINK: We used the --genome full option in PLINK to infer relatedness using the LD-filtered dataset.

PREST-plus: We used the LD-pruned data and default settings with the -aped -wped flags. These flags,
respectively, instruct the program to calculate IBD estimates across and within pedigrees.

REAP: We ran ADMIXTURE with K = 3 on the LD-pruned dataset to provide ancestry estimates to
REAP. We then ran REAP with the flags -k 3 -t 0, where -k 3 corresponds to analyzing with three
ancestral populations and -t 0 instructs REAP to output all estimated pairwise kinship coefficients.

Refined IBD: As recommended by the authors19, we ran Refined IBD three times using the default settings
and different seeds for each run. Reported regions of IBD were considered IBD2 when two reported segments
on different haplotypes overlapped. After finding IBD2 regions in each individual run, we took the union of
these IBD2 regions across all three runs as our final set of IBD2 regions. Regions reported as IBD in any of
the three methods but not included in the set of IBD2 regions constitute the final set of IBD1 regions.

RelateAdmix: We provided RelateAdmix the same ADMIXTURE results as REAP and ran it on the
LD-pruned dataset.

Method inclusion criteria

Our analysis considers only pairwise inference methods, and does not include those that combine informa-
tion across pairs of related individuals such as PRIMUS20, PADRE21, AKT22, and a recently developed
simulated annealing method23. We further omit methods that focus only on inferring first and second degree
relationship types such as RELPAIR24 and RelCla25. Several papers describe statistical approaches for in-
ferring relatedness26–30 but to our knowledge no released program exists that we could evaluate. A number
of other methods31–37 are either not available for download, provided incomplete documentation, failed to
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complete the analysis due to apparent bugs, and/or required the purchase of a license to run, and we did
not include these in our study.
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