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text S1. Primary, secondary, and compounded extinction rates. 

Dobson et al. (24) provide the following values for mean host specificity (top) and parasite 

species richness (bottom): 

 

table S1. Host specificity and parasite species richness. 

 
Chondrichthyes Osteichthyes Amphibia Reptilia Aves Mammalia 

Trematoda 

2 

(51) 

6.35 

(5,831) 

5.4 

(1,170) 

1.77 

(3,773) 

2.97 

(9,862) 

2.01 

(3,714) 

Cestoda 

1.69 

(1,352) 

6.38 

(4,466) 

4.75 

(283) 

2.21 

(1,112) 

2.36 

(14,058) 

1.89 

(4,637) 

Acanthocephala — 

14.95 

(1,226) 

6.74 

(140) 

12.5 

(212) 

8.35 

(779) 

4.32 

(301) 

Nematoda 

2.67 

(152) 

10.28 

(2,631) 

5.27 

(2,662) 

2.12 

(6,389) 

3.28 

(9,150) 

6.07 

(2,979) 

 

Using a formula for coextinction rates, some simple math allows an updated estimation from 

different levels of host extinction risk, based on other estimates than IUCN data. Koh et al.’s 

(101) method for affiliate extinction probability from host risk 𝐸 and specificity s estimates 

 

𝐴̅ = (0.35𝐸 − 0.43)𝐸 ln 𝑠 + 𝐸 

 

Plugging in a 15-37% extinction risk for hosts (an extreme scenario) and the values for host 

specificity give a best case scenario: 

 

 

 

 

 

 

 



table S2. Thomas best-case scenario coextinction rates. 

 Chondrichthyes Osteichthyes Amphibia Reptilia Aves Mammalia 

Trematoda 11.08% 4.53% 5.45% 11.77% 8.84% 11.05% 

Cestoda 12.03% 4.51% 6.18% 10.51% 10.14% 11.40% 

Acanthocephala — 0% 4.20% 0.70% 2.98% 6.71% 

Nematoda 9.44% 1.81% 5.59% 10.75% 8.27% 4.79% 

 

And a worst case scenario: 

 

table S3. Thomas worst-case scenario coextinction rates. 

 Chondrichthyes Osteichthyes Amphibia Reptilia Aves Mammalia 

Trematoda 29.29% 16.45% 18.25% 30.65% 24.90% 29.24% 

Cestoda 31.17% 16.40% 19.68% 28.18% 27.45% 29.92% 

Acanthocephala — 6.93% 15.79% 8.92% 13.40% 20.73% 

Nematoda 26.08% 11.09% 18.52% 28.65% 23.79% 16.95% 

 

Weighting these each by the relative richness of different host groups gives the following final 

assessment: 

 

table S4. Thomas total coextinction rates. 

 

Clade Richness 
CI based on 

Thomas et al. 

Trematoda 24,401 8.4% to 24.1% 

Cestoda 25,908 9.5% to 26.1% 

Acanthocephala 2,658 1.9% to 11.0% 

Nematoda 23,963 7.5% to 22.3% 

 



And a total: 76,930 species of helminths with a weighed estimate of 8.3% to 23.8% extinction 

rate. If specialist parasites are disproportionally hosted by low-risk species, this may explain 

some of the reason parasite extinction is less prevalent than predicted (25). But a more 

parsimonious explanation is that the low projected rate comes from the use of incomplete IUCN 

red list data that underestimates host vulnerability. 

 

We focus in the above analysis on providing a less conservative estimate of how extinction rates 

might compound with host vulnerability, and maintaining a consistent estimate based on the 

Thomas et al. SAR for both hosts and parasites. However, we could just as easily implement the 

same analysis using the conservative meta-analysis based figure Urban recently published (7). 

Estimates based on the SAR suggest a 22% extinction rate and estimates based on expert opinion 

are similarly high. But Urban suggests an overall extinction baseline across plants and animals of 

approximately 7.9%. Using that metric, we can once again calculate by-group estimates, but we 

can refine it even further by using Urban’s by-group estimates for amphibians (12.9%), reptiles 

(9.0%), mammals (8.6%), fish (7.6%, using the same value for chondrichthyes and osteichthyes) 

and birds (6.3%). We can even use the 95% credible interval, once again, to generate a best-case 

scenario table: 

 

 

table S5. Urban best-case scenario coextinction rates. 

 Chondrichthyes Osteichthyes Amphibia Reptilia Aves Mammalia 

Trematoda 2.41% 0.77% 2.61% 4.21% 2.47% 4.21% 

Cestoda 2.65% 0.77% 3.03% 3.71% 2.90% 4.36% 

Acanthocephala  0% 1.89% 0% 0.54% 2.37% 

Nematoda 2.00% 0.09% 2.69% 3.80% 2.29% 1.54% 

 

And, a worst-case scenario:  

 

 

 



table S6. Urban worst-case scenario coextinction rates. 

 Chondrichthyes Osteichthyes Amphibia Reptilia Aves Mammalia 

Trematoda 11.93% 4.98% 7.76% 10.71% 5.16% 9.59% 

Cestoda 12.94% 4.95% 8.67% 9.55% 5.99% 9.90% 

Acanthocephala  0% 6.17% 0.48% 1.41% 5.74% 

Nematoda 10.19% 2.08% 7.93% 9.77% 4.80% 4.02% 

 

And, aggregated by group: 

 

table S7. Urban total coextinction rates. 

Clade Richness CI based on Urban 

Trematoda 24,401 2.61% to 6.79% 

Cestoda 25,908 2.82% to 7.05% 

Acanthocephala 2,658 0.31% to 1.35% 

Nematoda 23,963 2.40% to 6.11% 

 

These numbers may represent a more literature-based estimation of helminth co-extinction rates, 

but we present the Thomas et al. based numbers in the main text to maintain consistency of 

methods across hosts and parasites, and to present a true worst-case scenario for how severe the 

threats parasites face might become. 

 

To determine how these different projections affect total extinction rate projections, we 

implement a combinatorics formula that assumes (with no prior knowledge) zero covariance 

between host and parasite extinction from climate change (or, more accurately, no covariance 

between primary and secondary extinctions) 

 

𝑃(𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛) = 100% − (100% − 𝑝𝑑𝑖𝑟𝑒𝑐𝑡 𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑐𝑙𝑖𝑚𝑎𝑡𝑒 𝑐ℎ𝑎𝑛𝑔𝑒) ∗ (100% − 𝑝𝑐𝑜𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛) 

 

Giving us the estimates presented in the main text with dispersal: 



table S8. Cumulative extinctions with dispersal. 

 

Primary 

Extinction 

Secondary 

(Urban) 

1° + 2° 

(Urban) 

Secondary 

(Thomas) 

1° + 2° 

(Thomas) 

Trematoda 0.11% to 1.2% 2.61% to 6.79% 2.72% to 7.91% 8.4% to 24.1% 8.50% to 25.0% 

Cestoda 0.07% to 0.07% 2.82% to 7.05% 2.89% to 7.12% 9.5% to 26.1% 9.56% to 26.15% 

Acanthocephala 0.21% to 0.60% 0.31% to 1.35% 0.52% to 1.94% 1.9% to 11.0% 2.11% to 11.53% 

Nematoda 1.3% to 3.3% 2.40% to 6.11% 3.67% to 9.21% 7.5% to 22.3% 8.70% to 24.86% 

 

And without dispersal: 

 

table S9. Cumulative extinctions with dispersal. 

 

Primary 

Extinction 

Secondary 

(Urban) 

1° + 2° 

(Urban) 

Secondary 

(Thomas) 

1° + 2° 

(Thomas) 

Trematoda 3.8% to 6.0% 2.61% to 6.79% 6.31% to 12.38% 8.4% to 24.1% 11.88% to 28.65% 

Cestoda 3.6% to 4.0% 2.82% to 7.05% 6.32% to 10.77% 9.5% to 26.1% 12.76% to 29.06% 

Acanthocephala 3.8% to 4.9% 0.31% to 1.35% 4.10% to 6.18% 1.9% to 11.0% 5.63% to 15.36% 

Nematoda 5.4% to 9.3% 2.40% to 6.11% 7.67% to 14.84% 7.5% to 22.3% 12.50% to 29.53% 

 

We note one particular difference of interest to researchers – by incorporating the covariance 

between different host group extinction rates and their specificity, the gap between 

acanthocephalans and other more threatened helminths emerges very clearly. 

  

Future work relating coextinction to parasite primary extinction rates will require an approach 

that links host and parasite distributions and accounts for the missing covariance. While a few 

odd winners in any group will have the pre-existing niche breadth to benefit from climate 

change, theory predicts that the majority of species should suffer at least partial range loss – both 

hosts and parasites included – and at its most extreme this means that vulnerability should 

compound across parasites and obligate hosts. In our study, fragmented host information and the 

heavy bias towards agricultural and human-infectious species makes such an approach 



impractical or uninformative; however, we outline a targeted approach for subsequent studies 

that focus on smaller specialist clades. Key to that approach is simulating the simultaneous shift 

of hosts and parasites and searching for potential discrepancies between their ranges, an 

approach notably used by Pickles et al. (32). Host information is readily available for mammals 

and many reptiles and amphibians from the IUCN (102), and for birds by BirdLife International 

range maps (103). Projecting the joint shift of hosts and parasites can be used to calculate a host-

constrained projection of parasite future ranges, which accounts for potential independence in 

shifting habitat suitability.  

 

This approach also allows another, more conceptual approach to exploring parasite vulnerability; 

in this approach, the Thomas et al. method can be implemented for hosts alone (following an 

identical procedure for projecting range shifts) and converted into parasite vulnerability using 

Koh et al. (2004)’s method for affiliate extinction probability from host risk 𝐸 and specificity s 

(which can be calculated from host-parasite association network data). This host-as-proxy 

regional estimation can then be compared against a reimplementation of the Thomas et al. 

method using parasite areal changes (with or without host ranges as constraints, corresponding to 

total and intrinsic vulnerability to extinction). We term the relative fraction of vulnerability 

driven by hosts (the Koh-converted extinction risk divided by the constrained parasite-based 

extinction risk) the compounded risk factor and suggest that future analyses using our global 

parasite database could explore how much greater than 1.0 those values are for parasites with 

different levels of specificity in different ecosystems. For highly specialized species with a single 

host, the extinction rates should have a rough 1:1 correspondence; however, generalist and 

parasitic species with several free-living stages should be more severely affected by their 

intrinsic vulnerability to extinction and have a smaller proportional compounded risk factor.  

  



text S2. Canonical and MaxEnt approaches to the SAR. 

 

In the canonical Arrhenius species area relationship (SAR) 

 

𝑆 = 𝑐𝐴𝑧 

 

a slope z of 0.25 provides a convenient solution to extinction rate estimation in the Thomas et al. 

method. Despite the substantial criticism the method has faced, especially in a seminal series of 

papers by Harte and Kitzes (41, 94, 104), the canonical SAR is still valid under a very specific 

set of circumstances. Harte and Kitzes suggest that for an island SAR in particular, the slope can 

be predicted as 0.25 if “(i) total abundance in the new area A is proportional to area, (ii), 

individuals found in A are chosen by a random draw of all individuals in A0, and (iii) the number 

of individuals of each species in A0 follows a canonical lognormal abundance distribution” (104). 

Moreover, they draw a parallel to predicting extinction from climate change, recommending the 

nested SAR is more applicable to loss of native range (shrinking suitable habitat of an entire 

region) while the island SAR may be more applicable to ranges shifting into novel habitat. 

 

There is, in the Harte & Kitzes method (the Maximum Entropy Theory of Ecology, or METE), a 

method for deriving a nested SAR that accurately predicts its curvature towards z = 0 at 

continental scales. They define a probability of survival P (compared to the original probability 

of survival P0) that, in the original canonical SAR, is 

 

𝑃 = 𝑃0 (
𝐴

𝐴0
)

𝑧

 

 

The METE formulation of P accounts for initial abundance n0 and suggests species face certain 

extinction when the ratio of abundance n and n0 drops below a threshold rc (i.e., the pseudo-

extinction threshold or minimum viable population). For a single species 

 



𝑃 (
𝑛

𝑛0
≤ 𝑟𝑐) = 1 −

[
𝑛0𝛽

1 + 𝑛0𝛽
]

𝑟𝑐𝑛0

 − [
𝑛0𝛽

1 + 𝑛0𝛽
]

𝑛0

(1 + 𝑛0𝛽) ln(1 +
1

𝑛0𝛽
) 

 

 

where they substitute β for A/A0. This approach allows direct calculation of an extinction area 

relationship by evaluating each species’ fate (or, by making top-level assumptions about 

abundance distributions in the community) (41). We observe that analyses with uncertainty about 

abundance distributions and viable population sizes could easily be implemented in a Bayesian 

framework, with basic priors assumed for the demographic free parameters.  

 

To do that, or to use the METE approach in general, requires assumptions about the population 

trajectory and aggregation of parasites, the distribution of their abundances within a community 

(log-normal or not), and the critical population size below which extinction is certain. For 

endoparasite helminths, critical population sizes might be easily solved through conventional 

epidemiological methods (105). The host density threshold is a frequently used metric in 

epidemiology, and basic assumptions about parasite aggregation within a single infected 

individual might make relating the HDT to rc readily possible. But the data to inform such 

assumptions is absent at broad scales in parasite ecology; only a couple or a few species in our 

study have such data.  

 

In summary, implementing the SAR to predict extinction for parasites is unprecedented, and so 

poses a number of problems. The applicability of the SAR with a slope of 0.25 or higher to 

parasites is assumed (given its applicability to their hosts), and is supported for use in our study 

by the limited literature applying SARs to parasites (105). We make the explicit choice to adhere 

to the Thomas et al. implementation of the SAR approach with z = 0.25 to avoid further 

entangling our estimates in unsubstantiated assumptions about parasite demography, or about 

how parasite aggregation among hosts (which can follow a negative binomial distribution, and in 

the context of climate change, will be non-independent from host area and abundance declines) 

would affect the validity of the METE. The derivation and empirical validity of the METE has 

already been the subject of one book and numerous articles, and exploring its applicability to 

parasites could require similar multi-year efforts, using data that is by-and-large missing from 



current parasitology databases. Harte and Kitzes suggest three major tasks to refine their 

methods: 

“1. Develop better projection methods for the number of species shared among 

sets of disjointed habitat patches. 

2. Enrich understanding of the shapes and slopes of SARs at large spatial scales. 

3. Enrich understanding of secondary species losses due to trophic web-induced 

and other interaction-induced cascades.” (104) 

and we concur that these are critical tasks before the SAR and extinction area relationship for 

parasites can be better refined beyond the Thomas et al. methodology.  



text S3. A more restrictive analysis based on 50+ point-per-species models. 

 

Sample size is an important limiting factor in all ecological niche modeling (ENM), and detailed 

attention to the role sample size plays in model accuracy is a key part of due diligence for 

researchers building and applying ENMs. In our analyses in the main text, we present results for 

species that have a minimum of 20 unique occurrences. However, in other work, 50 or more 

occurrences is a more stringent threshold that some might use. Here, we present the key analyses 

from our main text, re-analyzed for the subset of species with 50 unique occurrences. That 

reduces the sample size from 457 species down to 196; at the clade scale, the effects of that 

reduction are most apparent.  

 

In the restrictive analysis (versus the 20 point analysis in the main text), climate scenarios have 

essentially the same effect on habitat loss, with an average native range loss of 21.4% (vs. 

20.2%) in the optimistic RCP 2.6 scenario, and of 41.2% (vs. 37.4%) in the pessimistic RCP 8.5 

scenario. Across scenarios, species lose an average of 31.5% (vs. 29%) of total habitat without 

dispersal. Of 196 species, 36 lost more than 50% of their range, and one lost more than 80% of 

its range. Even allowing for dispersal, 106 of 196 (versus 202 of 457) species lost range by 2070, 

and 14 species lost more than half of their global suitable range; despite those losses, species 

gained an average of 0.3% suitable habitat (vs. 16.2%; the only noticeable difference from the 

main analysis); four species doubled the extent of their range, and none tripled. Strictly-wildlife 

parasites experienced an average of 10% more range gain (vs. 17%) than zoonoses. That effect 

still originates in endoparasite vs. ectoparasite differences, with endoparasites gaining 31% (vs. 

36%) more range than ectoparasites with dispersal (p < 0.001), and losing 12% less native range 

(vs. 10%; p < 0001). Clade differences are still significant (one-way ANOVA: F = 8.287, p < 

0.001 vs. F = 15.441, p < 0.001).  

 

Recreating Table 1 for this analysis yields roughly comparable results (next page). The most 

significant difference between these analyses comes for mites and lice, which experience 

substantially less gain, and for which the sign of average habitat loss is flipped from positive to 

negative (and the upper bounds of potential habitat gain are substantially reduced). This is likely 

due to the reduction of sample size to 2 species each for both clades, on which grounds, we note  



table S10. 50+ points subanalysis-based habitat loss rates. 

CLADE NSPECIES 
HABITAT LOSS 

(MEAN) 

HABITAT LOSS RANGE 

(5TH-95TH PERCENTILE) 

% COMMITTED TO 

EXTINCTION  

0% DISPERSAL 

ACANTHOCEPHALA 5 -19.8% (-52.3%, 0.0%) 5.2% / 5.4% / 6.2% 

ASTIGMATA (*) 2 -37.0% (-44.1%, -0.3%) 9.2% / 10.9% / 11.0% 

CESTODA 8 -20.4% (-29.6%, -10.3%,) 6.1% / 5.6% / 5.7% 

IXODIDA 98 -34.5% (-55.3%, -2.6%) 8.5% / 10.0% / 10.7% 

NEMATODA 37 -24.2% (-55.5%, -5.1%) 5.5% / 6.7% / 7.3% 

PHTHIRAPTERA (*) 2 -57.9% (-62.1%, -53.7%) 19.9% / 19.4% / 19.5% 

SIPHONAPTERA 30 -37.1% (-51.7%, -16.7%) 9.4% / 10.9% / 11.3% 

TREMATODA 14 -23.8% (-63.4%, -2.2%) 6.0% / 6.8% / 8.8% 

100% DISPERSAL 

ACANTHOCEPHALA 5 +38.2% (-17.0%, +78.2%) 0.7% / 1.5% / 1.7% 

ASTIGMATA (*) 2 -32.3% (-43.1%, -21.5%) 6.8% / 9.3% / 9.6%  

CESTODA 8 +30.6% (-2.0%, +70.8%) 0.2% / 0.2% / 0.2% 

IXODIDA 98 -12.6% (-53.3%, +47.6%) 4.9% / 6.0% / 6.6% 

NEMATODA 37 +13.6% (-37.1%, +47.0%) 0.7% / 1.5% / 1.8% 

PHTHIRAPTERA (*) 2 -0.53% (-60.1%, -45.9%) 17.9% / 17.2% / 17.4% 

SIPHONAPTERA 30 -0.03% (-41.2%, +43.1%) 1.6% / 3.5% / 3.8% 

TREMATODA 14 +43.3% (-24.9%, +138.4%) 0.2% / 1.2% / 1.7% 

 

that the results marked with an asterisk should likely be entirely disregarded (especially as the 

extinction estimators are unlikely to be at all meaningful). More generally, restricting sample 

size even further produces a minor increase in habitat loss, and therefore extinction rates; overall, 

the patterns of extinction risk are comparable, with 7.2-9.8% of species committed to extinction 

without dispersal (vs. 5.7%-9.2%), and 2.3%-4.6% with dispersal (vs. 1.7%-4.0%). For our 

“IUCN classification” analysis, with dispersal, none would be critically endangered (vs. 0.7%), 

7.1% (vs. 6.3%) of species would be endangered, 26.5% (vs. 18.8%) vulnerable, and 66.3% (vs. 

74%) least concern; without dispersal, 0.5% (vs. 1.8%) would be critically endangered, 17.8% 

(vs. 17.1%) endangered, 42.8% (vs. 49.5%) vulnerable, and 38.8% (vs. 31.7%) least concern, 

continuing to reflect an overall subtle increase in risk associated with the restricted sample size. 

 



For poorer-sampled clades (Astigmata and Phthiraptera, and to a lesser extent, Acanthocephala 

and Cestoda), reducing the sample size is likely to have substantially reduced the validity of the 

analyses we present in the main text. More generally, it may be the case that models with more 

occurrence data better capture the equilibrium realized niche of the species, and therefore find 

less “novel habitat” for species to expand into. Alternatively, it may be that other subtle biases in 

data collection (such as spatial autocorrelation between sample sites) have produced more 

detailed data for species with overall more restricted niches or ranges. Speculation as to the 

mechanisms of the pattern is likely to be unsuccessful given the combination of data sources 

assembled in the study, each contributing their own intrinsic pattern of sampling bias. However, 

the more restricted analysis only further confirms that every group in our study is likely to have a 

handful of species experiencing devastating range loss, leading to significant extinction risk. 

 

As a final precaution, we compared accuracy metrics for models under and above 50 points, to 

examine whether models might be failing using the 20-or-more criterion. A very small effect is 

detectable in the AUC (mean under 50: 0.945; mean over 50; 0.948; t = -3.235, df = 8221.5, p = 

0.00122, 95% CI = (-0.0051,-0.0013)), but AUC is also a comparatively unreliable metric of 

model performance, and the overall effect is minimal as both groups appear to perform 

extremely well on average. (Moreover, the lowest AUC recorded in the entire study is 0.728, 

which is still within the range of well-performing, published models, and certainly gives no 

indication of objective model failure.) An opposite effect is detectable for the true skill statistic 

(means 0.815 vs. 0.797; t = 6.6715; df = 08053.5; p < 0.0001; 95% CI = (0.0127, 0.0232)), for 

which models under 50 points appear to perform slightly better, but again, with minimal effect. 

Based on both of these simple tests, we find no strong evidence to suggest models with between 

20 and 50 points perform noticeably poorly and might introduce non-trivial error into our main 

results (again, noting that 20 or more points is a common threshold in the literature; see also van 

Proosdij et al. [2016] Ecography 39:542-552).  

 

Given that extinction estimates for at least two clades (Astigmata and Phthiraptera) would 

become invalid with a more restricted analysis, and others would likely have been noticeably 

weakened, we elected to present results drawn from all 457 species in the main text. Our study 

highlights the challenges of data availability in parasitology research; the fact that two clades’ 



extinction rates would be essentially unmeasurable with a more restrictive sample size rule only 

highlights those challenges. However, we note that researchers interested in using the results of 

the more restricted analysis can find them here, and can also obtain individual sample sizes and 

accuracy metrics for every species and model in the supplemental datasets.  



 

fig. S1. Final data set breakdown by source and clade. Values are taken from the final 457 

species dataset available in table S2. 

  



 

 

fig. S2. Example presentation of species distribution and conservation status on PEARL. 

Real results are shown for Abbreviata bancrofti (Nematoda), a representative species in our 

study and the first available on the website alphabetically. 



 

fig. S3. Loss of native habitat broken down by RCP and GCM. Results are broken down into 

all models and the subset of models that “perform well” (with a true skill statistic over 0.6). 

 



 

fig. S4. Trade-offs between biodiversity loss and emergence across parasite clades. 

Discrepancies between current and future range size are projected as averages across all GCMs 

and RCPs at the species level, with (y-axis) and without (x-axis) dispersal, and broken down by 

our eight clades. Most clades are likely to be subject to moderate-to-extreme range loss; but the 

species with projected extreme expansions are mostly helminth endoparasites (in particular, 

nematodes and trematodes).  

 



 

fig. S5. Sources and distribution of occurrence data. (a). Data from the US National Parasite 

Collection (grey: not included in final dataset; black: included in the study based on minimum 

sample size, taxonomic cleaning, etc.). (b). Data from VectorMap (blue) and the Global 

Biodiversity Informatics Facility (orange). (c). Data from the Bee Mites database (blue), the 

Cumming tick database (red), and georeferenced data of the feather mite database (black).  



 

 

fig. S6. Loss of native habitat broken down by feature classes and regularization multiplier. 

Results are broken down into all models and the subset of models that “perform well” (with a 

true skill statistic over 0.6). Models are built from a combination of five feature classes: linear 

(L), quadratic (Q), hinge (H), product (P), and threshold (T). 

 

 

  



 

fig. S7. Visualizing spatial bias in species richness gradients. (a to c), From the distribution of 

points included in our global parasite database, we constructed a global compiled map of species 

richness (a) calculated by layering every species distribution model. But with biased sampling 

that map may reflect false patterns; so we also present the density of points smoothed with a 

Gaussian filter with σ = 1 (b), and subtract the latter from the former to show richness relative to 

sampling intensity (c). 



 

fig. S8. Parasite richness gradients by human health concern. (a), Species richness gradients 

for species in our study with human health relevance (zoonotic endoparasites and ectoparasites 

with records of feeding on humans) compared to (b), richness gradients for strictly-wildlife or 

free-living species. 

 


