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A.  Joint angle and torque calculation  12 

Definitions of angular displacements of the ankle, knee, and hip are shown in 13 

Figure A1. Ankle dorsiflexion, knee extension, and hip forward flexion were defined to 14 

be positive direction.  15 

Figure A1: A triple inverted pendulum model. A model for a human quiet standing in 16 

the sagittal plane. Each of four links represent shank (ankle–knee), thigh (knee–hip), 17 

and head-and-trunk segments, from the bottom. Joint angles were defined as relative 18 

angles between adjacent joints except for joint angle of the MP being relative to the 19 

vertical line. 20 

 21 

Joint torque was calculated by inverse dynamics. The x and y axes represent 22 
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anteroposterior and vertical directions, respectively. Due to the equilibrium of force at 23 

the lowest segment (i.e., the foot),  24 

 25 

 26 

where Rax and Ray represent the joint reaction force at the ankle in anteroposterior and 27 

vertical directions, respectively. Fx and Fy are the grand reaction force, where subscripts 28 

represent each direction of axis. The term mfg is gravitational force applied to the foot 29 

(i.e., mf is a mass of the foot). The equilibrium of moment around the center of mass 30 

(COM) of foot segment leads to the following equation, 31 

 32 

where Ma is the ankle moment in the planterflexion direction, and r and p are a 33 

horizontal distances between the ankle and foot COM and between foot COM and the 34 

center of pressure. Because we defined the ankle dorsiflexion direction to be positive, 35 

the ankle torque Ta is the opposite sign of Ma.  36 

The motion equation of the upper segments (i.e. shank, thigh, and upper body) is 37 

expressed as follows: 38 

 39 

 40 

where mi is a mass of ith segment, ax and ay are acceleration of ith segment’s COM in 41 

anteroposterior and vertical directions, respectively, Rxp and Ryp are joint reaction forces 42 

Rax + Fx = 0

Ray + Fy −mf g = 0

Ma + rRay − pFy = 0

miax = Rxp + Rxd

miay = Ryp + Ryd −mig



at the proximal end in the anteroposterior and vertical directions, and Rxd and Ryd are 43 

joint reaction forces at the distal end in the anteroposterior and vertical directions (i.e., 44 

joint reaction force at the ankle for the shank). These two equations lead the joint 45 

reaction force at the proximal end. Then, joint moment at the ith segment (equivalent to 46 

Md in the following equation) can be derived from the following Euler’s momentum 47 

equation:  48 

 49 

where the subscript i represents the ith segment, I is the inertial moment, θ is the 50 

angular displacement, Mp and Md are the joint moment in the backward direction (i.e., 51 

the ankle plantarflexion, knee flexion, and hip backward flexion) at the proximal and 52 

distal ends, respectively, r is a length between proximal end and segment COM, and l is 53 

a segment length. Because we defined the knee extension and hip forward flexion to be 54 

positive, the torque at the knee and hip is the opposite sign of Mp of shank and thigh 55 

segments, respectively. 56 

 57 

B.  Motion equation of the inverted pendulum 58 

B.1  Model definition 59 

 60 

	 	 	 	 	  61 

 62 

 Ii
!!θi = Mpi −Mdi + Rxpri cosθi − Rypri sinθi − Rxd (li − ri )cosθi + Ryd (li − ri )sinθi

M11 = I1 + I2 + I3 + r1
2m1 + r2

2m2 + l1
2m2 + 2l1m2r2

+r3
2m3 + l1

2m3 + l2
2m3 + 2l1m3l2 + 2l2m3r3 + 2l1m3r3

M12 = I2 + I3 + r2
2m2 + l1m2r2 + r3

2m3 + l2
2m3 + l1m3l2 + 2l2m3r3 + l1m3r3
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 78 

where Ii, mi, li, and ri represent the ith segment’s inertia moment around the distal end, 79 

the mass, the length, and the length between the distal end and center of mass, 80 

respectively. 81 

 82 

M13 = I3 + r3
2m3 + l2m3r3 + l1m3r3

M 21 = I2 + I3 + r2
2m2 + l1m2r2 + r3

2m3 + l2
2m3 + l1m3l2 + 2l2m3r3 + l1m3r3

M 22 = I2 + I3 + r2
2m2 + r3

2m3 + l2
2m3 + 2l2m3r3

M 23 = I3 + r3
2m3 + l2m3r3

M 31 = I3 + r3
2m3 + l2m3r3 + l1m3r3

M 32 = I3 + r3
2m3 + l2m3r3

M 33 = I3 + r3
2m3

G11 = −g r1m1 + l1m2 + l1m3 + r2m2 + l2m3 + r3m3( )

G12 = −g r2m2 + l2m3 + r3m3( )

G13 = −gm3r3

G21 = −g r2m2 + l2m3 + r3m3( )

G22 = −g r2m2 + l2m3 + r3m3( )

G23 = −gm3r3

G31 = −gm3r3

G32 = −gm3r3

G33 = −gm3r3



B.2  First order differential equation 83 

The passive joint torque in the motion equation (eq. 1) can be represented as 84 

follows:  85 

 86 

where K and B are vectors of elastic and viscosity components, respectively, and x is 87 

the state variable vector consisted of three joint angles and three angular velocities. 88 

The expression diag(v) is a diagonal matrix composed by vector v.  89 

Therefore, the motion equation (eq. 1) with no active torque can be written as a 90 

following six-dimensional ordinary first order differential equation: 91 

 92 

where E is a 3-by-3 unit matrix. This elicits the coefficient matrix A in eq. 2 as 93 

follows:  94 

 95 

 96 

B.3  PD gain and passive viscoelasticity 97 

PD gains and passive viscoelasticity coefficients were set to be as follows 98 

based on our previous study (Tanabe et al. 2016) and other simulation studies 99 

(Loram and Lakie 2002; Casadio et al. 2005; Maurer and Peterka 2005; Bottaro et al. 100 

Tpassive = − diag(K ) diag(B)⎡
⎣

⎤
⎦ ⋅ x

E O
O M

⎡

⎣
⎢

⎤

⎦
⎥ ⋅
dx
dt

= O E
−diag(K )+G −diag(B)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⋅ x

A = E O
O M

⎡

⎣
⎢

⎤

⎦
⎥

−1
O E

−diag(K )+G −diag(B)
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥



2008; Asai et al. 2009; Suzuki et al. 2012):  101 

𝑃! 𝑃! 𝑃! = 1.0 0.4 0.3 ∗𝑚𝑔ℎ 

𝐷! 𝐷! 𝐷! = 10 10 50  

𝐾! 𝐾! 𝐾! = 0.6 20 0.2 ∗𝑚𝑔ℎ 

𝐵! 𝐵! 𝐵! = 4 50 50  

We modified these values so that the joint oscillations of the pendulum shows the 102 

similar amplitude and variability as those of actual human quiet standing. It is 103 

important to set relatively larger value of Dh (> 50s) for preventing the model from 104 

falling down.  105 

 106 


