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Supplementary Note 1. Illustration of our gMCSs methodology for predicting gene 

essentiality and conceptual comparison with existing approaches in the literature . 

Our gMCSs approach is illustrated in Supplementary Figure 1. We first explain how 

gene expression data is integrated into our gMCS framework, and, second, the need to 

move from MCSs to gMCSs. Note here that MCSs, as defined in Klamt et al.
1
, are 

minimal subsets of reactions (and not genes) whose simultaneous removal disrupts a 

particular metabolic task. Given the non-trivial nature of gene-protein-reaction (GPR) 

rules, we illustrate below that the mapping of MCSs at the gene level does not 

necessarily lead to gMCSs. 

Supplementary Figure 1a shows an example metabolic network consisting of 9 reactions 

(r2 is reversible). Here, for simplicity, we will suppose that each reaction is associated to 

a single gene and vice versa. As a consequence, in this case, computing MCSs will be 

equivalent to calculating gMCSs. We denote L the subset of reactions associated with 

lowly expressed genes. Similarly,   is the complement of L, which includes reactions 

associated to moderately/highly expressed genes or reactions lacking gene annotation. 

The target reaction in this network is r8. Assume that, as a result of previous research, 

the gene associated to r2 is of interest and potentially related with r8 in the context 

analyzed. Our objective is to compute MCSs containing r2 which make reaction r8 be 

inactive. As in Tobalina et al.
2
, our approach is sufficiently flexible to directly search 

for MCSs involving a particular gene/reaction knockout of interest. 



 

Supplementary Figure 1: Illustrative example of the effect of gene expression data in the 

computation of MCSs and the need for gMCSs. (a) Example metabolic network and reaction 

classification based on gene expression data. Blue dashed lines represent reactions associated with lowly  

expressed genes, L={4, 5, 9}, and red solid lines represent reactions associated with moderately/highly 

expressed genes or reactions lacking gene annotation,  ={1, 2, 3, 6, 7}. The target reaction is r8; (b) 

Enumeration of MCSs involving r2 based on reaction length, following Tobalina et al.
2
. Our approach, 

based on gene expression data, only determines MCS2 (green dashed box), which explains the essentiality 

of r2; (c-d) Contextualized networks when using iMAT
3
 and GIMME

4
 algorithms, respectively; (e) Non-

trivial gene-protein-reaction (GPR) rules scenario for Supplementary Figure 1a; (f) Resulting gMCSs 

involving g2 given the GPR rules in Supplementary Figure 1e. 

 

There exist 3 MCSs which fulfill the aforementioned requirements: MCS1={r2, r3}; 

MCS2={r2, r4, r5}; and MCS3={r2, r4, r6}. Using the method presented in Tobalina et 

al.
2
, these MCSs would be enumerated in the order they have been written above 

(Supplementary Fig. 1b). Notice that, in spite of being the shortest one, MCS1 is formed 

by two reactions in   and, therefore, it is not able to explain the potential lethality of r2. 

MCS2, on the other hand, consists of one reaction in   and two reactions in L. Despite 

the fact that it contains more reactions than MCS1, it is a much more interesting 



synthetic lethal as it will only require blocking r2 to prevent the activity of r8, justifying 

the essential role of r2 in this context.  

With respect to Tobalina et al.
2
, our approach directly calculates MCSs (if any exist) of 

this type, namely where all their reactions involved are in L, except for the one we are 

interested to target (r2). This is particularly suitable for large metabolic networks, where 

full enumeration of MCSs is not computationally viable and the direct search of 

solutions of interest is required. Using this strategy, we can more efficiently evaluate the 

essentiality of a gene knockout for biomass production in a given context characterized 

by gene expression data.  

In summary, when applied our methodology to this toy example, the second MCS 

involves r2 ( ), r4 (L) and r5 (L), meaning that, as r4 and r5 have low activity according 

to gene expression data, r2 plays an essential role. In other words, the single knockout of 

r2 would render impossible any flux through the target reaction, namely, r8. It is 

interesting to highlight that the computation of MCSs (or gMCSs) allows us, apart from 

predicting essentiality, to explain why a given reaction (or gene) is essential in a 

particular context. In this case, r2 is essential for the activity of r8 because r4 and r5 have 

low activity according gene expression data. 

Reconstruction-based algorithms for gene essentiality analysis . The aim of the 

reconstruction methods is to identify a subset of reactions from the reference metabolic 

network that best fits to available expression data and satisfies steady-state condition, 

thermodynamic constraints and biomass production (in our case r8). Once the reference 

network is contextualized using gene expression data, gene essentiality analysis is 

conducted, i.e. identification of single gene knockouts that disrupt biomass production. 

In particular, we will focus on two of the most common algorithms in the literature: 



GIMME
4
 and iMAT

3
. For illustration, we will evaluate the essentiality of r2 in the 

resulting contextualized networks from these two approaches. 

iMAT. In this method a particular reaction is removed from the reference metabolic 

network if, when it is blocked, its consistency with gene expression data is strictly 

higher than when it is forced to be active. To measure the consistency with gene 

expression data, iMAT gives the same weight to include a reaction in H (subset of 

highly expressed reactions) as to exclude a reaction in L.  

For instance, if we delete r4, the maximum consistency score with gene expression data 

would be 6 (agreement with r1, r2, r3, r4, r6, r7), while, if we activate r4, this score would 

be 5 (agreement with r1, r2, r3, r6, r7). In light of this, r4 is excluded from the 

reconstruction. The same procedure is applied to each reaction. If both scores obtain the 

same result, the reaction is included in the reconstruction.  

When applying iMAT to our toy example, we obtain the sub-network shown in 

Supplementary Figure 1c. The essentiality of r2 is not predicted following the iMAT 

algorithm, since it has an escape pathway through r3, r5, r6. 

Note here that, in order to evaluate the performance of iMAT in the Results section of 

the main text, given its high computational demand, we had to introduce modifications 

with respect to the original version of the iMAT presented in Shlomi et al.
3
 (see 

Supplementary Note 2). 

GIMME. This approach first calculates an inconsistency score for each reaction in L, as 

a function of the difference between its expression level and the threshold which 

determines if a reaction is expressed or not. As reactions in L are not supposed to take 

part in the reconstruction, this algorithm includes all reactions in   and some reactions 

in L which minimize the sum of inconsistency scores. This minimization problem must 

satisfy steady-state condition, thermodynamic constraints and biomass production.  



Supplementary Figure 1d shows the reconstructed network obtained following GIMME. 

This method does predict the essential role of r2, that is, there are not alternative 

pathways to reach r8 after knocking out r2. Nevertheless, GIMME is not able to explain 

the reason why r2 is essential, since when the reconstruction is conducted, r4 and r5 are 

removed from the solution network and, therefore, this information is lost. 

Note here that, in order to evaluate the performance of GIMME in the Results section of 

the main text, we implemented the algorithm presented in Becker et al.
4
. As done with 

our gMCS approach, we used the Gene Expression Barcode 3.0 (ref. 5) to obtain the set 

lowly expressed genes, L.  

Extending MCSs at the gene level (gMCSs). In contrast with existing methods for 

MCS computation
2,6

, we extend the analysis to the gene level and determine gMCSs. It 

is important to emphasize that the subset of genes associated with the reactions involved 

in a particular MCS, determined using Gene-Protein-Reaction (GPR) rules, does not 

necessarily constitute a minimal knockout strategy. This is due to the fact that GPR 

rules are not always trivial (one-to-one association) and may involve complex 

relationships. In Recon2.v04 (ref. 7), for instance, this is the case for 88% of genes 

included. For illustration, assume that we are concerned in finding gMCSs involving g2 

for the toy metabolic network in Supplementary Figure 1a in a slightly more complex 

GPR rules scenario (Supplementary Fig. 1e). In this case, g2 is only related to r2, which 

can be catalyzed by one additional enzyme encoded by g3; the rest of reactions are 

catalyzed by only one enzyme. In order to delete r2 (the only potential effect over the 

network of knocking out g2), we need to suppress g2 and g3 simultaneously and, when 

this is achieved, r3 is indirectly deleted. As g2 is necessarily coupled to g3 to have any 

effect and they form a synthetic lethal, the knockout of g4, g5 or g6 is not necessary any 

more to disrupt r8.  



Therefore, if we obtain the genes associated to MCS1-MCS3 using GPR rules, the only 

true minimal gene knockout solution would be gMCS1={g2, g3} (Supplementary Fig. 

1f). As g3 is not included in the L set, our approach would lead to an ‘infeasible’ 

problem, i.e. with no solution. We conclude that g2 is not essential for the activation of 

r8 in this scenario, in disagreement to the solution previously achieved when the 

analysis restricted at the reaction level. With the use of gMCSs, our approach 

generalizes MCSs at the gene level, enabling the integration of complex GPR rules and 

overcoming issues considered above. Full details as to how the methodology presented 

in Tobalina et al.
2
, was adapted to calculate gMCSs and incorporate gene expression 

data can be found in the Methods section of the main text.  

Note here that for the study of RRM1 in Multiple Myeloma (MM) conducted in the 

main text, we also calculated MCSs for RRM1 (instead of gMCSs) for the four cell lines 

considered. When returned MCSs were mapped to the gene level, the obtained solutions 

in all cases were incorrect (6 out 6) (see Supplementary Data 1), i.e. certainly they were 

not gMCSs. This illustrates the importance of moving from MCSs to gMCSs, as we 

propose here. 

 

 

  



Supplementary Note 2. Computational implementation of iMAT. The central 

optimization model proposed by iMAT for network reconstruction is the following 

mixed-integer linear programing (MILP): 
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, where H and L represents the subset of highly and lowly expressed reactions, 

respectively. For reactions in H, binary variables   
    if     , 0 otherwise; and 

  
    if      , 0 otherwise. For reactions in L,   

    if     , 0 otherwise. We 

fixed the same values of vmin and vmax used in our gMCS approach. Finally,         
   

represents the minimum flux required through the biomass reactions (here 0.001) and n 

denotes the number of reactions. 



These optimization problem aims to strike a balance between the inclusion of H 

reactions and the exclusion of L reactions. Aware of the possible existence of alternative 

solutions, iMAT proposes an iterative solution scheme to assign a confidence score for 

the inclusion or exclusion of each reaction, namely comparing the objective value when 

i)      and ii)      (     or      ). With the current size of Recon2.v04 (ref. 

7), this approach is prohibitive in terms of computation time, as we need to solve at 

least 2*n MILPs of similar complexity as the one shown above for each sample. To 

overcome this issue, we carried out the following implementation: 

1) Solve the MILP shown above (equations (S1)-(S10)), extract the value of fluxes 

in the solution found (henceforth denoted as u) and include non-zero fluxes in the 

output reconstruction. These active reactions must be part of the reconstruction since no 

better objective value can be found and, therefore, if they are knocked out, the objective 

value will be less or equal than the current one.  

2) Evaluate whether other reactions without expression data available (set E), 

currently not part in the reconstruction, can be included. To that end, we force the fluxes 

in the same direction found as in the previous solution (u), force to zero fluxes in H and 

L inactive in the previous solution and maximizes the number of reactions in E, which 

leads to the following MILP:   
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With this second step, we keep the objective value found in Step 1 (given by reactions 

in H and L) and identify alternative pathways through reactions in E. This approach 

constitutes a computationally tractable approximation to iMAT. In terms of gene 

essentiality analysis, this approximation results in a best-case scenario, as we may have 

additional reactions in H and L that could be part of the reconstruction, which add new 

escape pathways and, therefore, would reduce the list of essential genes. In other words, 

with this implementation, a predicted non-essential gene is certainly non-essential in 

iMAT; however, a predicted essential gene could be non-essential in iMAT.    



Supplementary Note 3. GPR rules for RRM1. As reported in the literature
8
, RRM1 

constitutes the large regulatory subunit of the enzyme ribonucleotide reductase (RNR), 

which catalyzes the conversion of ribonucleoside diphosphates into 

deoxyribonucleoside diphosphates. RRM1 binds to RRM2 or RRM2B to conduct 

metabolic activity. Recon2.v04 (ref. 7) correctly includes 4 cytosolic and 2 

mitochondrial reactions for this conversion. However, their GPR rules are flawed. They 

are defined as (RRM1 and RRM2) or (RRM2B), when it should read (RRM1) and (RRM2 

or RRM2B). The GPR rules for these reactions were corrected accordingly. 

Recon2.v04 includes 4 additional cytosolic reactions associated with human RNR. 

These reactions convert ribonucleoside triphosphates into their corresponding 

deoxyribonucleoside triphosphates. These reactions, however, are not annotated in the 

literature to the human RNR
9
. In fact, these reactions are annotated in KEGG

10
 to a 

different type of RNR, discovered in other organisms (http://www.genome.jp/dbget-

bin/www_bget?ec:1.17.4.2). Given the complexity of biosynthesis and degradation 

pathways of deoxyribonucleotide triphophates, where new enzymes and reactions are 

discovered day by day
11

, we used a conservative strategy and decided to keep these 

reactions with unknown GPR rules. Note that if these reactions were deleted from the 

reference metabolic network, RRM1 becomes an essential gene for any type of cell, 

which is not in consonance with functional studies of RRM1 silencing
12

. 

  

http://www.genome.jp/dbget-bin/www_bget?ec:1.17.4.2
http://www.genome.jp/dbget-bin/www_bget?ec:1.17.4.2


Supplementary Note 4. G matrix. As noted in the main text, we introduce the binary g 

x n matrix G, which defines for each row the set of blocked reactions arising from the 

knockout of a particular subset of genes in L. Genes associated with each row in G must 

be functionally interrelated and their simultaneous knockout is required to delete at least 

one of the reactions in the metabolic network.  

For illustration, let us consider the toy example in Supplementary Figure 2, where we 

have four genes and six reactions. Blue color represents genes in L and reactions that 

become inactive when genes in L are knocked out (lowly expressed reactions). Red 

color shows genes in   and reactions potentially active even when genes in L are 

knocked out. For example, r4 is not inactivated when genes in L are knocked out.  

For matrix G, we only consider genes in L.  For example, g3 is not considered. Potential 

knockouts consist on all combinations without repetition of the genes in L. In our case, 

we have to analyze 7 different cases, namely, {g1}, {g2}, {g4}, {g1, g2}, {g1, g4}, {g2, 

g4} and {g1, g2, g4}. 

 

Supplementary Figure 2: Example GPR Rules and the calculation of its G Matrix. Enzyme encoded 

by g1 catalyzes three different reactions: r1, r2 and r3; r3 is catalyzed by two different enzymes encoded by 

g1 and g2; r4 is catalyzed by two different enzymes encoded by g2 and g3; r5 is catalyzed by an enzymatic 

complex that comprises g2 and g3; r6 is catalyzed by enzyme encoded by g4. 

 



The first step is about calculating which reactions become inactive when carrying out 

each of the 7 gene knockout combinations and introducing this information in the 

intermediate matrix G’. Regarding the GPR rules in Supplementary Figure 2, this will 

result in the following: 
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Notice that, for example, r3 can only be inactivated when knocking out g1 and g2 

simultaneously, but either single deletion of these genes does not affect to the 

aforementioned reaction. However, just the contrary happens with {g1, g4}, {g2, g4}, 

{g1, g2, g4}, meaning that the same set of reactions becomes inactive by combining at 

least two different rows in G’. For example, the combination of {g1} and {g4} inactivate 

the same set of reactions as {g1, g4}. As a consequence, the last three rows of G’ are 

removed. The final G matrix is shown in equation (S21). 
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    (S21) 

The naïve approach considered above which calculates all the possible combinations of 

genes in L is not computationally tractable. To overcome this issue, we have only 

calculated the combinations of genes in L related to each lowly expressed reaction. In 

the example discussed above, r1, r2, r3, r5 and r6 are lowly expressed (colored blue), so 

the combinations of genes to study will be: g1 related to r1 and r2; g2 related to r5; g4 

related to r6; and {g1, g2} related to r3.  



Note that all combinations containing g3 have not been included because it is not lowly 

expressed. As a consequence, following this method we obtain the same G matrix in a 

more straightforward way.  

The G matrix is used in our algorithm to define the potential list of reaction knockouts 

arising from the combination of genes in L (see equation (4) in the main paper).   



Supplementary Figures. 

 

Supplementary Figure 3: gMCS1 analysis. (a) Heatmap of Barcode z-scores
5
 of RRM1 and its partner 

genes (involved in gMCS1) in different MM samples analyzed; (b) Number of MM samples where RRM1 

and its partner genes (involved in gMCS1) are expressed/unexpressed, according to Barcode threshold of 

expression (z≥5). This gMCS explains the essentiality of RRM1 in 3 samples; (c) Spearman´s correlation 

analyzing the dependence of RRM1 ATARiS score on gene expression levels of partner genes in gMCS1; 

(d) Bar plot of RRM1 ATARiS score when partner genes are (or not) expressed in gMCS1. To decide 

whether a gene is expressed, we used the standard threshold provided by the Gene Expression Barcode 

algorithm 3.0. 

a b 

c d 



 

Supplementary Figure 4: gMCS2 analysis. (a) Heatmap of Barcode z-scores
5
 of RRM1 and its partner 

genes (involved in gMCS2) in different MM samples analyzed; (b) Number of MM samples where RRM1 

and its partner genes (involved in gMCS2) are expressed/unexpressed, according to Barcode threshold of 

expression (z≥5). This gMCS explains the essentiality of RRM1 in 15 samples; (c) Spearman´s correlation 

analyzing the dependence of RRM1 ATARiS score on gene expression levels of partner genes in gMCS2; 

(d) Bar plot of RRM1 ATARiS score when partner genes are (or not) expressed in gMCS2. To decide 

whether a gene is expressed, we used the standard threshold provided by the Gene Expression Barcode 

algorithm 3.0. 

 

a b 

c d 



 

Supplementary Figure 5: gMCS3 analysis. (a) Heatmap of Barcode z-scores
5
 of RRM1 and its partner 

genes (involved in gMCS3) in different MM samples analyzed; (b) Number of MM samples where RRM1 

and its partner genes (involved in gMCS3) are expressed/unexpressed, according to Barcode threshold of 

expression (z≥5). This gMCS explains the essentiality of RRM1 in 15 samples; (c) Spearman´s correlation 

analyzing the dependence of RRM1 ATARiS score on gene expression levels of partner genes in gMCS3; 

(d) Bar plot of RRM1 ATARiS score when partner genes are (or not) expressed in gMCS3. To decide 

whether a gene is expressed, we used the standard threshold provided by the Gene Expression Barcode 

algorithm 3.0. 

 

a b 

c d 



 

Supplementary Figure 6: gMCS4 analysis. (a) Heatmap of Barcode z-scores
5
 of RRM1 and its partner 

genes (involved in gMCS4) in different MM samples analyzed; (b) Number of MM samples where RRM1 

and its partner genes (involved in gMCS4) are expressed/unexpressed, according to Barcode threshold of 

expression (z≥5). This gMCS explains the essentiality of RRM1 in 15 samples; (c) Spearman´s correlation 

analyzing the dependence of RRM1 ATARiS score on gene expression levels of partner genes in gMCS4; 

(d) Bar plot of RRM1 ATARiS score when partner genes are (or not) expressed in gMCS4. To decide 

whether a gene is expressed, we used the standard threshold provided by the Gene Expression Barcode 

algorithm 3.0. 
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c d 



 

Supplementary Figure 7: gMCS5 analysis. (a) Heatmap of Barcode z-scores
5
 of RRM1 and its partner 

genes (involved in gMCS5) in different MM samples analyzed; (b) Number of MM samples where RRM1 

and its partner genes (involved in gMCS5) are expressed/unexpressed, according to Barcode threshold of 

expression (z≥5). This gMCS explains the essentiality of RRM1 in 6 samples; (c) Spearman´s correlation 

analyzing the dependence of RRM1 ATARiS score on gene expression levels of partner genes in gMCS5; 

(d) Bar plot of RRM1 ATARiS score when partner genes are (or not) expressed in gMCS5. To decide 

whether a gene is expressed, we used the standard threshold provided by the Gene Expression Barcode 

algorithm 3.0. 
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Supplementary Figure 8: gMCS6 analysis. (a) Heatmap of Barcode z-scores
5
 of RRM1 and its partner 

genes (involved in gMCS6) in different MM samples analyzed; (b) Number of MM samples where RRM1 

and its partner genes (involved in gMCS6) are expressed/unexpressed, according to Barcode threshold of 

expression (z≥5). This gMCS explains the essentiality of RRM1 in 13 samples; (c) Spearman´s correlation 

analyzing the dependence of RRM1 ATARiS score on gene expression levels of partner genes in gMCS6; 

(d) Bar plot of RRM1 ATARiS score when partner genes are (or not) expressed in gMCS6. To decide 

whether a gene is expressed, we used the standard threshold provided by the Gene Expression Barcode 

algorithm 3.0. 
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Supplementary Figure 9: gMCS7 analysis. (a) Heatmap of Barcode z-scores
5
 of RRM1 and its partner 

genes (involved in gMCS7) in different MM samples analyzed; (b) Number of MM samples where RRM1 

and its partner genes (involved in gMCS7) are expressed/unexpressed, according to Barcode threshold of 

expression (z≥5). This gMCS explains the essentiality of RRM1 in 10 samples; (c) Spearman´s correlation 

analyzing the dependence of RRM1 ATARiS score on gene expression levels of partner genes in gMCS7; 

(d) Bar plot of RRM1 ATARiS score when partner genes are (or not) expressed in gMCS7. To decide 

whether a gene is expressed, we used the standard threshold provided by the Gene Expression Barcode 

algorithm 3.0. 
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Supplementary Figure 10: gMCS8 analysis. (a) Heatmap of Barcode z-scores
5
 of RRM1 and its partner 

genes (involved in gMCS8) in different MM samples analyzed; (b) Number of MM samples where RRM1 

and its partner genes (involved in gMCS8) are expressed/unexpressed, according to Barcode threshold of 

expression (z≥5). This gMCS explains the essentiality of RRM1 in 9 samples; (c) Spearman´s correlation 

analyzing the dependence of RRM1 ATARiS score on gene expression levels of partner genes in gMCS8; 

(d) Bar plot of RRM1 ATARiS score when partner genes are (or not) expressed in gMCS8. To decide 

whether a gene is expressed, we used the standard threshold provided by the Gene Expression Barcode 

algorithm 3.0. 
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Supplementary Figure 11: gMCS9 analysis. (a) Heatmap of Barcode z-scores
5
 of RRM1 and its partner 

genes (involved in gMCS9) in different MM samples analyzed; (b) Number of MM samples where RRM1 

and its partner genes (involved in gMCS9) are expressed/unexpressed, according to Barcode threshold of 

expression (z≥5). This gMCS explains the essentiality of RRM1 in 11 samples; (c) Spearman´s correlation 

analyzing the dependence of RRM1 ATARiS score on gene expression levels of partner genes in gMCS9; 

(d) Bar plot of RRM1 ATARiS score when partner genes are (or not) expressed in gMCS9. To decide 

whether a gene is expressed, we used the standard threshold provided by the Gene Expression Barcode 

algorithm 3.0. 
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Supplementary Figure 12: gMCS10 analysis. (a) Heatmap of Barcode z-scores
5
 of RRM1 and its partner 

genes (involved in gMCS10) in different MM samples analyzed; (b) Number of MM samples where 

RRM1 and its partner genes (involved in gMCS10) are expressed/unexpressed, according to Barcode 

threshold of expression (z≥5). This gMCS explains the essentiality of RRM1 in 3 samples; (c) Spearman ś 

correlation analyzing the dependence of RRM1 ATARiS score on gene expression levels of partner genes 

in gMCS10; (d) Bar plot of RRM1 ATARiS score when partner genes are (or not) expressed in gMCS10. 

To decide whether a gene is expressed, we used the standard threshold provided by the Gene Expression 

Barcode algorithm 3.0. 
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Supplementary Figure 13: gMCS11 analysis. (a) Heatmap of Barcode z-scores
5
 of RRM1 and its partner 

genes (involved in gMCS11) in different MM samples analyzed; (b) Number of MM samples where 

RRM1 and its partner genes (involved in gMCS11) are expressed/unexpressed, according to Barcode 

threshold of expression (z≥5). This gMCS explains the essentiality of RRM1 in 13 samples; (c) 

Spearman´s correlation analyzing the dependence of RRM1 ATARiS score on gene expression levels of 

partner genes in gMCS11; (d) Bar plot of RRM1 ATARiS score when partner genes are (or not) expressed 

in gMCS11. To decide whether a gene is expressed, we used the standard threshold provided by the Gene 

Expression Barcode algorithm 3.0. 

 

a b 

c d 



 

Supplementary Figure 14: gMCS12 analysis. (a) Heatmap of Barcode z-scores
5
 of RRM1 and its partner 

genes (involved in gMCS12) in different MM samples analyzed; (b) Number of MM samples where 

RRM1 and its partner genes (involved in gMCS12) are expressed/unexpressed, according to Barcode 

threshold of expression (z≥5). This gMCS explains the essentiality of RRM1 in 2 samples; (c) Spearman ś 

correlation analyzing the dependence of RRM1 ATARiS score on gene expression levels of partner genes 

in gMCS12; (d) Bar plot of RRM1 ATARiS score when partner genes are (or not) expressed in gMCS12. 

To decide whether a gene is expressed, we used the standard threshold provided by the Gene Expression 

Barcode algorithm 3.0. 
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Supplementary Figure 15: gMCS13 analysis. (a) Heatmap of Barcode z-scores
5
 of RRM1 and its partner 

genes (involved in gMCS13) in different MM samples analyzed; (b) Number of MM samples where 

RRM1 and its partner genes (involved in gMCS13) are expressed/unexpressed, according to Barcode 

threshold of expression (z≥5). This gMCS explains the essentiality of RRM1 in 2 samples; (c) Spearman ś 

correlation analyzing the dependence of RRM1 ATARiS score on gene expression levels of partner genes 

in gMCS13; (d) Bar plot of RRM1 ATARiS score when partner genes are (or not) expressed in gMCS13. 

To decide whether a gene is expressed, we used the standard threshold provided by the Gene Expression 

Barcode algorithm 3.0. 
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Supplementary Figure 16: gMCS14 analysis. (a) Heatmap of Barcode z-scores
5
 of RRM1 and its partner 

genes (involved in gMCS14) in different MM samples analyzed; (b) Number of MM samples where 

RRM1 and its partner genes (involved in gMCS14) are expressed/unexpressed, according to Barcode 

threshold of expression (z≥5). This gMCS explains the essentiality of RRM1 in 4 samples; (c) Spearman ś 

correlation analyzing the dependence of RRM1 ATARiS score on gene expression levels of partner genes 

in gMCS14; (d) Bar plot of RRM1 ATARiS score when partner genes are (or not) expressed in gMCS14. 

To decide whether a gene is expressed, we used the standard threshold provided by the Gene Expression 

Barcode algorithm 3.0. 
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Supplementary Figure 17: gMCS15 analysis. (a) Heatmap of Barcode z-scores
5
 of RRM1 and its partner 

genes (involved in gMCS15) in different MM samples analyzed; (b) Number of MM samples where 

RRM1 and its partner genes (involved in gMCS15) are expressed/unexpressed, according to Barcode 

threshold of expression (z≥5). This gMCS explains the essentiality of RRM1 in 3 samples; (c) Spearman ś 

correlation analyzing the dependence of RRM1 ATARiS score on gene expression levels of partner genes 

in gMCS15; (d) Bar plot of RRM1 ATARiS score when partner genes are (or not) expressed in gMCS15. 

To decide whether a gene is expressed, we used the standard threshold provided by the Gene Expression 

Barcode algorithm 3.0. 
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Supplementary Figure 18: gMCS16 analysis. (a) Heatmap of Barcode z-scores
5
 of RRM1 and its partner 

genes (involved in gMCS16) in different MM samples analyzed; (b) Number of MM samples where 

RRM1 and its partner genes (involved in gMCS16) are expressed/unexpressed, according to Barcode 

threshold of expression (z≥5). This gMCS explains the essentiality of RRM1 in 3 samples; (c) Spearman ś 

correlation analyzing the dependence of RRM1 ATARiS score on gene expression levels of partner genes 

in gMCS16; (d) Bar plot of RRM1 ATARiS score when partner genes are (or not) expressed in gMCS16. 

To decide whether a gene is expressed, we used the standard threshold provided by the Gene Expression 

Barcode algorithm 3.0. 
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Supplementary Figure 19: gMCS17 analysis. (a) Heatmap of Barcode z-scores
5
 of RRM1 and its partner 

genes (involved in gMCS17) in different MM samples analyzed; (b) Number of MM samples where 

RRM1 and its partner genes (involved in gMCS17) are expressed/unexpressed, according to Barcode 

threshold of expression (z≥5). This gMCS explains the essentiality of RRM1 in 3 samples; (c) Spearman ś 

correlation analyzing the dependence of RRM1 ATARiS score on gene expression levels of partner genes 

in gMCS17; (d) Bar plot of RRM1 ATARiS score when partner genes are (or not) expressed in gMCS17. 

To decide whether a gene is expressed, we used the standard threshold provided by the Gene Expression 

Barcode algorithm 3.0. 
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Supplementary Figure 20: gMCS18 analysis. (a) Heatmap of Barcode z-scores
5
 of RRM1 and its partner 

genes (involved in gMCS18) in different MM samples analyzed; (b) Number of MM samples where 

RRM1 and its partner genes (involved in gMCS18) are expressed/unexpressed, according to Barcode 

threshold of expression (z≥5). This gMCS explains the essentiality of RRM1 in 3 samples; (c) Spearman ś 

correlation analyzing the dependence of RRM1 ATARiS score on gene expression levels of partner genes 

in gMCS18; (d) Bar plot of RRM1 ATARiS score when partner genes are (or not) expressed in gMCS18. 

To decide whether a gene is expressed, we used the standard threshold provided by the Gene Expression 

Barcode algorithm 3.0. 
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Supplementary Figure 21: gMCS19 analysis. (a) Heatmap of Barcode z-scores
5
 of RRM1 and its partner 

genes (involved in gMCS19) in different MM samples analyzed; (b) Number of MM samples where 

RRM1 and its partner genes (involved in gMCS19) are expressed/unexpressed, according to Barcode 

threshold of expression (z≥5). This gMCS explains the essentiality of RRM1 in 3 samples; (c) Spearman ś 

correlation analyzing the dependence of RRM1 ATARiS score on gene expression levels of partner genes 

in gMCS19; (d) Bar plot of RRM1 ATARiS score when partner genes are (or not) expressed in gMCS19. 

To decide whether a gene is expressed, we used the standard threshold provided by the Gene Expression 

Barcode algorithm 3.0. 



 

Supplementary Figure 22: gMCS20 analysis. (a) Heatmap of Barcode z-scores
5
 of RRM1 and its partner 

genes (involved in gMCS20) in different MM samples analyzed; (b) Number of MM samples where 

RRM1 and its partner genes (involved in gMCS20) are expressed/unexpressed, according to Barcode 

threshold of expression (z≥5). This gMCS explains the essentiality of RRM1 in 6 samples; (c) Spearman ś 

correlation analyzing the dependence of RRM1 ATARiS score on gene expression levels of partner genes 

in gMCS20; (d) Bar plot of RRM1 ATARiS score when partner genes are (or not) expressed in gMCS20. 

To decide whether a gene is expressed, we used the standard threshold provided by the Gene Expression 

Barcode algorithm 3.0. 

 

 

 

 

 

 

 

 

 

 



 

  

 

Supplementary Figure 23: Apoptosis analysis of JJN-3, H929 and KMS-28-BM cell lines nucleofected 

with siRNAs targeted to RRM1 gene. Data represent mean ± standard deviation of at least three 

experiments. 

 

 

Supplementary Figure 24: Average RNAseq expression levels (fpkm) of all genes included in the 

gMCSs calculated from 11 MM samples and 4 samples of normal plasma cells
13

. The first 12 genes 

are part of the gMCS shown in the main paper. 

 



 

Supplementary Figure 25: Average Barcode expression levels (z-scores
5
) of all genes included in the 

gMCSs calculated from the 21 samples of MM cell lines analyzed in this work. The first 12 genes are 

part of the gMCS shown in the main paper. 

 

 

 

 

 

Supplementary Figure 26: Gene silencing analysis of RRM1 in H23 cell line. (a) mRNA expression of 

RRM1 gene 48h after transfection with the specific siRNAs. Data are referred to GUS gene and an 

experimental group nucleofected with negative control siRNA. (b) Proliferation of H23 cell line 

transfected with siRNAs targeted to RRM1 gene was studied by MTS. The proliferation percentage refers 

to cells transfected with a negative control siRNA. Data represent mean ± standard deviation of at least 

three experiments. 

 



Supplementary Table 1. List of the top 30 cell lines included in Project Achilles 

v2.4.3 and Cancer Cell Line Encyclopedia.  

Achilles Accession Cell Line GSM 

EFO21_OVARY EFO-21 GSM887000 

EFE184_ENDOMETRIUM EFE-184 GSM886997 

NCIH23_LUNG NCI-H23 GSM887421 

RKO_LARGE_INTESTINE RKO GSM887541 

HT29_LARGE_INTESTINE HT-29 GSM887141 

LAMA84_HAEMATOPOIETIC_AND_LYMPHOID_TISSUE LAMA-84 GSM887262 

SKCO1_LARGE_INTESTINE SK-CO-1 GSM887576 

HCC2218_BREAST HCC2218 GSM887049 

PANC0813_PANCREAS Panc 08.13 GSM887499 

ZR7530_BREAST ZR-75-30 GSM887751 

HCC1954_BREAST HCC1954 GSM887046 

HT55_LARGE_INTESTINE HT55 GSM887142 

TE10_OESOPHAGUS TE10 GSM887691 

HCC70_BREAST HCC70 GSM887058 

NCIH1299_LUNG NCI-H1299 GSM887355 

COV362_OVARY COV362 GSM886963 

AGS_STOMACH AGS GSM886864 

MDAMB453_BREAST MDA-MB-453 GSM887300 

MCF7_BREAST MCF7 GSM887291 

MONOMAC6_HAEMATOPOIETIC_AND_LYMPHOID_TISSUE MONO-MAC-6 GSM887338 

GP2D_LARGE_INTESTINE GP2d GSM887027 

NCIH661_LUNG NCI-H661 GSM887441 

EFM19_BREAST EFM-19 GSM886999 

SNU840_OVARY SNU-840 GSM887640 

JHOC5_OVARY JHOC-5 GSM887175 

BT474_BREAST BT-474 GSM886892 

NCIH1437_LUNG NCI-H1437 GSM887364 

PANC0327_PANCREAS Panc 03.27 GSM887496 

BT20_BREAST BT-20 GSM886891 

MIAPACA2_PANCREAS MIA PaCa-2 GSM887320 

 

  



 

 

Supplementary Table 2. Contingency table with the essentiality predictions of 

GIMME in the Project Achilles data. 

  
GIMME 

  Essential Non-Essential 

Achilles 
Essential 49 551 

Non-Essential 24 576 

 

 

 

Supplementary Table 3. Contingency table with the essentiality predictions of 

iMAT in the Project Achilles data. 

  
iMAT 

  
Essential Non-Essential 

Achilles 
Essential 35 565 

Non-Essential 29 571 

 

 

  



 

 

Supplementary Table 4. List of GSMs involved in the RRM1 analysis in Multiple 

Myeloma.  

Accession Cell Line GSM 

JJN3 -1- JJN-3 GSM229051 

JJN3 -2- JJN-3 GSM915718 

JJN3 -3- JJN-3 GSM915719 

JJN3 -4- JJN-3 GSM915720 

JJN3 -5- JJN-3 GSM1094684 

JJN3 -6- JJN-3 GSM1094685 

JJN3 -7- JJN-3 GSM1374579 

H929 -1- H929 GSM351746 

H929 -2- H929 GSM451261 

H929 -3- H929 GSM451264 

H929 -4- H929 GSM451267 

H929 -5- H929 GSM511161 

H929 -6- H929 GSM511162 

H929 -7- H929 GSM511163 

H929 -8- H929 GSM562817 

H929 -9- H929 GSM662887 

KMS-28BM KMS-28-BM GSM887227 

U266 -1- U266 GSM363377 

U266 -2- U266 GSM363399 

U266 -3- U266 GSM562821 

U266 -4- U266 GSM887721 

 

 

  



 

 

Supplementary Table 5. Summary of adjusted p-values for each gMCS found in 

the RRM1 essentiality study in Multiple Myeloma (MM) for different statistical 

analyses conducted in the main text.  

 

 
Binomial Test Achilles Scatter Plot Achilles Bar Plot 

 

p-value adj. p-value p-value adj. p-value p-value adj. p-value 

gMCS1 0.9255 0.9810 0.7422 0.7624 0.7892 0.9285 

gMCS2 0.00001 0.0007 0.7624 0.7624 0.3587 0.4782 

gMCS3 0.00001 0.0007 0.7009 0.7624 0.3587 0.4782 

gMCS4 0.00001 0.0007 0.7009 0.7624 0.3587 0.4782 

gMCS5 0.4334 0.9631 0.0012 0.006 0.0062 0.031 

gMCS6 0.0004 0.0019 0.0018 0.0071 0.003 0.0298 

gMCS7 0.0206 0.0589 0.0953 0.1466 0.0922 0.2049 

gMCS8 0.0561 0.1404 0.0037 0.0122 0.0207 0.0694 

gMCS9 0.0064 0.0214 0.064 0.1067 0.1542 0.3085 

gMCS10 0.9255 0.9810 0.0004 0.0047 0.0208 0.0694 

gMCS11 0.0064 0.0214 0.1501 0.2001 0.3848 0.4810 

gMCS12 0.9810 0.9810 0.0318 0.0794 -* -* 

gMCS13 0.9810 0.9810 0.0318 0.0794 -* -* 

gMCS14 0.8083 0.9810 0.1919 0.2398 0.0375 0.1071 

gMCS15 0.9255 0.9810 0.0534 0.097 0.2521 0.4202 

gMCS16 0.9255 0.9810 0.117 0.1671 0.0529 0.1322 

gMCS17 0.9255 0.9810 0.0534 0.097 0.2521 0.4202 

gMCS18 0.9255 0.9810 0.0006 0.0047 0.0056 0.031 

gMCS19 0.9255 0.9810 0.0472 0.097 -* -* 

gMCS20 0.6326 0.9810 0.0007 0.0047 0.0008 0.0154 

* In these cases, all cell lines were assigned to a single class and, therefore, Mann-Whitney test could not 

be calculated.  



 

 

Supplementary Table 6. Prediction of the essentiality of RRM1 at the sample and 

cell line level in the MM study. Green coloring implies essentiality of RRM1, while 

red coloring non-essentiality. 

GSM gMCS GIMME iMAT Cell Line gMCS GIMME iMAT 

GSM229051       

JJN3     

  

GSM915718       

GSM915719       

GSM915720       

GSM1094684       

GSM1094685       

GSM1374579       

GSM351746       

H929     

  

GSM451261       

GSM451264       

GSM451267       

GSM511161       

GSM511162       

GSM511163       

GSM562817       

GSM662887       

GSM887227       KMS-28BM       

GSM363377       

U266   

    

GSM363399       

GSM562821       

GSM887721       

 

 

  



 

 

Supplementary Table 7. Summary of adjusted Spearman’s correlation p-values in 

Achilles Scatter plots of different gMCSs using max, mean and sum of the 

expression of the partner genes of RRM1. 

 

 

Achilles Scatter Plot - 

MAX 

Achilles Scatter Plot - 

MEAN 

Achilles Scatter Plot - 

SUM 

 

p-value adj. p-value p-value adj. p-value p-value adj. p-value 

gMCS1 0.7422 0.7624 0.7422 0.87315 0.7422 0.87315 

gMCS2 0.7624 0.7624 0.8914 0.89136 0.8914 0.89136 

gMCS3 0.7009 0.7624 0.8414 0.88566 0.8414 0.88566 

gMCS4 0.7009 0.7624 0.7894 0.8771 0.7894 0.8771 

gMCS5 0.0012 0.006 0.0012 0.00496 0.0012 0.00496 

gMCS6 0.0018 0.0071 0.004 0.01128 0.004 0.01128 

gMCS7 0.0953 0.1466 0.0151 0.03357 0.0151 0.03357 

gMCS8 0.0037 0.0122 0.0069 0.01727 0.0069 0.01727 

gMCS9 0.064 0.1067 0.1218 0.16238 0.1218 0.16238 

gMCS10 0.0004 0.0047 0.0006 0.004 0.0006 0.004 

gMCS11 0.1501 0.2001 0.1146 0.16238 0.1146 0.16238 

gMCS12 0.0318 0.0794 0.0039 0.01128 0.0039 0.01128 

gMCS13 0.0318 0.0794 0.1627 0.20338 0.1627 0.20338 

gMCS14 0.1919 0.2398 0.0361 0.0602 0.0361 0.0602 

gMCS15 0.0534 0.097 0.0210 0.0382 0.0210 0.0382 

gMCS16 0.117 0.1671 0.0205 0.0382 0.0205 0.0382 

gMCS17 0.0534 0.097 0.046 0.0707 0.046 0.0707 

gMCS18 0.0006 0.0047 0.0008  0.004 0.0008  0.004 

gMCS19 0.0472 0.097 0.0008 0.004 0.0008 0.004 

gMCS20 0.0007 0.0047 0.0004 0.004 0.0004 0.004 
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