
Reviewers' comments:  

 

Reviewer #1 (Remarks to the Author):  

 

In their work, Apaolaza et al. present an approach to identify genetic minimal cut sets (gMCSs) to 

prevent cancer proliferation. Using their approach they study the essentiality of a particular 

enzyme, RRM1, in a specific cancer type for which three cell l ines are available. While the 

application of the concept of gMCSs to study cancer metabolism and its vulnerabilities is quite 

interesting my feeling is that the scope of the application is to limited to really demonstrate its 

usefulness.  

 

Major points:  

Throughout the discussion, the authors concentrate mostly on a single gCMS though they 

calculated 18 in total. It does not really become clear why this gCMS was chosen but it would be 

more sensitive to discuss all gCMs and not just those that one that probably fit the story line well. 

In that case, the authors should think about which type of summary statistics they provide in order 

to show that gCMSs indeed provide more information than what was known before.  

 

While an experimental validation is definitively something that can help validating computational 

predictions, in the present case it doesn’t really add to the manuscript. As the authors already 

acknowledge it has already been reported that RRM1 is a promising target in multiple myeloma 

(MM) and that’s the reason why they chose that enzyme as the focus of their study. In 

consequence it is expected that MM cell lines show slower growth if that enzyme is silenced. 

Hence, the argument becomes circular as the author’s approach does not return RRM1 as a 

promising target but rather they already chose it a priori. It would be more sensible to consider 

other targets just than the single one and show that promising targets beyond RRM1 are indeed 

more often reflected in gCMSs containing many lowly-expressed genes. As it stands, the 

experimental part does not really provide much novel information and should be toned much down 

since it is not a validation but just a confirmation of the basic a priori assumption that RRM1 is 

important in those cell lines as previously reported for MM in general.  

 

While the analysis of the RRM1 over a large number of cancer cell lines (Achilles data) is a more 

robust way of validation there are some uncertainties regarding the statistics reported. The author 

mostly discuss a single gCMS and provide some p-values. However, the authors have a total of 18 

gCMSs and it is not mentioned in the manuscript whether they have actually corrected the 

corresponding p-values for multiple testing (there was no mention of multiple test correction in the 

manuscript) and hence it is unclear whether any of these p-values is indeed significant after test 

correction. Again, it would be more sensitive to provide information across all gCMSs and not just 

a selected one and subsequently move to that gCMSs to probably discuss some details.  

 

It is not clear whether the comparison to other approaches is really fair (see also my comment on 

the exclusion of iMAT in the list of minor points). The authors call GIMME less accurate since it 

predicts essentiality of RRM1 only in ten out of 18 of the considered data sets. First, this 

comparison is considerably inflated since basically only three cell lines are considered (some with 

several instances of expression data, some of them replicates from the same experiment). Thus, 

the test should rather be performed on the level of cell lines or at least expression data should be 

grouped according to experiment. Second, results from the gCMS approach are not really 

comparable to results returned from GIMME since they basically return different things – networks 

returned from GIMME allow to directly determine essentiality of RRM1 while based on the gCMS 

approach the authors check whether for each data set there exists at least one gCMSs that only 

contains lowly expressed genes besides RRM1. Thus, one would already by chance expect that 

gCMSs more likely reports lethality (since for each data set there are 18 gCMSs that are tested).   

 

Minor points:  

The coloring scheme in Fig. 2A is misleading. If 5 is the cut-off for an enzyme to be expressed, this 



should be white. Otherwise it is quite difficult to grasp what particular shade of red actually 

indicates the cut-off for considering an enzyme as expressed.  

 

In l. 241 the authors state that they did not consider iMAT due to its high computational demand 

and GIMME providing better results in a previous test of several methods for building context-

specific metabolic networks. There is some criticism concerning the fairness of these previous tests 

(Machado & Herrgard, 2014) including that they have been performed on prokaryotic metabolic 

networks (which are focused on growth and the validation data considering fluxes in growing 

bacteria) while methods for reconstructing context-specific metabolic networks have typically been 

developed for eukaryotic networks (where rapid growth typically is not an ultimate imperative). 

Moreover, from personal experience I know that depending on the choice of cut-offs applying iMAT 

typically requires only seconds and rarely in some severe cases (depending on the choice of 

parameters) probably a couple of hours for determining context-specific networks in Recon v2.04. 

Thus, it should be possible to build these networks for the just 18 samples the authors are 

considering and include iMAT in the comparison.  

 

In l. 265-270 the authors state that they used the gene with highest expression as the one most 

important for each gCMS. As there is no one-to-one relationship between abundance and 

importance of a gene, the authors should check whether they probably haven’t always used the 

expression of the same gene as proxy for the expression strength of partner genes of RRM1. 

Beyond that it would also be more sensible to probably consider an aggregate of expression of 

partner genes of RRM1 and not just a single one.  

 

The authors state that they used all gene expression data originating from a specific chip for 

determining lowly expressed genes. Since gene expression in cancer cell lines is probably strongly 

different from gene expression in normal human tissue or cell lines, they should check how robust 

their results are if considering, for instance, just gene expression from cancer cell lines (e.g. NCI -

60).  

 

 

Reviewer #2 (Remarks to the Author):  

 

Summary  

 

In the manuscript by Apaolaza et al., the authors present a method that uses the concept of gene 

minimum cut sets (gMCSs) to predict and exploit synthetic lethality in cancer metabolism. They 

first introduce a novel method to expand the concept of minimum cut sets from the reaction level 

to the gene level. Then, they apply this method to explore the effect of knock down of the RRM1 

gene in 18 different gene expression contexts/instances involving three cell lines of multiple 

myeloma. Their method predicts RRM1 to be essential in 17 of these 18 samples. Next, they 

validate experimentally the essentiality of RRM1 using shRNA in the three cell lines experiments. 

Finally, they report a correlation between the expression of the gMCSs group in 30 different cell 

lines and the ATARiS essentiality score of RRM1 measured in shRNA screens.  

 

We believe that this is innovative work with a potentially promising route to personalized medicine 

and, especially, for the much needed patient stratification application. Nevertheless, we feel that 

the method presented here requires considerable additional experimental validation to establish its 

predictive power before we can support its publication in Nature Communications.  

 

Major Comments  

 

1. Further experimental validation of the method. In this work, the authors present a method that 

can be used to predict the essentiality of a gene in a certain context. This can be easily tested 

using publically available shRNA screens for multiple gene knockdowns. To establish the general 

predictive power of their method, the authors should prove the ability of this method to predict the 



essentiality of genes other than RRM1 in multiple cell lines using shRNA screens and the gene 

expression of these cell-lines. Only then, and if and only if, this approach may be of interest to the 

wide readershop of Nature Communication. Note that this does not require new experiments! Just 

take a published collection of genome wide knockdowns of genes across many different cell -lines 

(e.g., like Achilles) and the associated cell-line transcriptomics, and overlay that expression data 

on the predicted gMCs of the different genes, and show that you can predict their essentiality!...   

 

2. As the shRNA validation of the RRM1 gene essentiality is performed in cell lines and not 

samples, it would be preferred if the authors would predict essentiality in a cell line specific 

manner.  

 

3. To establish the clinical relevance of this method, the authors could show that the expression 

level of the gMCS groups that they find is also relevant in in clinical data, e.g. in predicting patient 

survival in the TCGA cohort (its quite stragithforward to test).  

 

Minor Comments  

 

1. Please check the writing style so that methods are all described in the methods section and the 

results are listed subsequent order in the results section.  

 

2. Please provide statistical estimates for the reported finding. E.g in line 201 to line 203, there 

should be a p-value representing he significance of these results.  



Response to the Reviewer’s comments 
(manuscript NCOMMS-16-24429-T) 

 
 

We would like to thank the reviewers for their thorough revision, constructive criticisms and 
suggestions on our manuscript. We believe that this revised version of our study has clearly 
improved following the reviewer’s advice. 
 
Below you can find the detailed answers to all the issues raised by the distinguished reviewers. 
Note that the major changes introduced in the main text have been highlighted in red colour. 
 
Reviewer #1 (Remarks to the Author): 
In their work, Apaolaza et al. present an approach to identify genetic minimal cut sets (gMCSs) 
to prevent cancer proliferation. Using their approach they study the essentiality of a particular 
enzyme, RRM1, in a specific cancer type for which three cell lines are available. While the 
application of the concept of gMCSs to study cancer metabolism and its vulnerabilities is quite 
interesting my feeling is that the scope of the application is too limited to really demonstrate its 
usefulness.  
 
Major points: 
 
Throughout the discussion, the authors concentrate mostly on a single gMCS though they 
calculated 18 in total. It does not really become clear why this gMCS was chosen but it would 
be more sensitive to discuss all gMCSs and not just those that one that probably fit the story 
line well. In that case, the authors should think about which type of summary statistics they 
provide in order to show that gMCSs indeed provide more information than what was known 
before. 

Response: We completely agree with the comment of the reviewer. In the section “RRM1 
essentiality in Multiple Myeloma”, we show one of the 18 gMCSs that better explains the 
essentiality of RRM1 in Multiple Myeloma (gMCS6). A more general discussion is carried out in 
the section “Achilles data and RRM1”. However, we recognize that this discussion is certainly 
incomplete and acknowledge the points made by both reviewers in order to improve and clarify 
this part of the manuscript. Note here that after improving the analysis in this new version of the 
manuscript (by considering one additional cell line), we obtained 20 gMCSs (see Results 
section, Page 8, 2nd paragraph) 
 
First, in the section “RRM1 essentiality in Multiple Myeloma”, we now provide a statistical 
significance analysis of identified gMCSs. In particular, for each gMCS, we calculated an 
adjusted p-value using the one-sided Binomial test, namely to evaluate whether its frequency in 
the MM samples considered is statistically significant. In particular, for the null hypothesis, we 
used a conservative strategy and fixed p=0.25, based on the analysis conducted in the previous 
subsection “Minimal Cut Sets at the gene level (gMCSs) and cancer-specific essential genes”, 
where we could infer (using Achilles data as gold-standard) the probability of obtaining a false 
positive with our gMCS approach, namely: p (nonessential in Achilles| essential gene in gMCS 
approach) (see “Statistical Analyses” in Methods section). In order to correct the p-values, we 
used the FDR approach available in the function p.adjust of R software. As a result, 6 gMCSs 
remain significant (gMCS2-4, gMCS6, gMCS9, gMCS11, FDR ≤5%) (Supplementary Table 5, see 
below), among which the one shown in Figure 2 is included (gMCS6). We included this analysis 
in the main text (1st paragraph, page 9). Note here that these gMCS explains the essentiality of 
RRM1 in MM samples significantly more often than expected by chance, according to the null 
hypothesis. 
 
Secondly, as suggested by the reviewer below, we corrected the p-values of identified gMCSs 
for multiple hypothesis testing in the section “Achilles data and RRM1” (now “Synthetic lethality 
and RRM1”). Again, we used the FDR approach available in the function p.adjust of R software. 
In this case, 5 gMCSs remain significant after the correction (gMCS5, gMCS6, gMCS8, gMCS10, 
gMCS18, FDR ≤5%) (Supplementary Table 5), among which the one shown in Figure 2 is 
included (gMCS6). These results have also been added in the main text (Results section, page 
13, 2nd paragraph). 
 



Taking into account these two independent analyses (Supplementary Table 5), we have 
rephrased the discussion previously included in the main text (4th paragraph, page 13). 
Interestingly, the only gMCS being statistically significant in both analyses is gMCS6, precisely 
the one previously shown in Figure 2 and Figure 4. In light of the cell lines analyzed, our main 
conclusion is that the essentiality of RRM1 in MM and possibly in cancer (we add a similar study 
in a single cell line in lung cancer) is dependent on the expression of its partner genes in 
gMCS6. In our view this conclusion reveals an important new insight about RRM1 and cancer.  

 
While an experimental validation is definitively something that can help validating computational 
predictions, in the present case it doesn’t really add to the manuscript. As the authors already 
acknowledge it has already been reported that RRM1 is a promising target in multiple myeloma 
(MM) and that’s the reason why they chose that enzyme as the focus of their study. In 
consequence it is expected that MM cell lines show slower growth if that enzyme is silenced. 
Hence, the argument becomes circular as the author’s approach does not return RRM1 as a 
promising target but rather they already chose it a priori. It would be more sensible to consider 
other targets just than the single one and show that promising targets beyond RRM1 are indeed 
more often reflected in gMCSs containing many lowly-expressed genes. As it stands, the 
experimental part does not really provide much novel information and should be toned much 
down since it is not a validation but just a confirmation of the basic a priori assumption that 
RRM1 is important in those cell lines as previously reported for MM in general. 

Supplementary Table 5: Summary of adjusted p-values for each gMCS found in the RRM1 essentiality study in 
Multiple Myeloma (MM) for different statistical analyses conducted in the main text.  

 

Binomial Test Achilles Scatter Plot Achilles Bar Plot 

p-value adj. p-value p-value adj. p-value p-value adj. p-value 

gMCS1 0.9255 0.9810 0.7422 0.7624 0.7892 0.9285 

gMCS2 0.00001 0.0007 0.7624 0.7624 0.3587 0.4782 

gMCS3 0.00001 0.0007 0.7009 0.7624 0.3587 0.4782 

gMCS4 0.00001 0.0007 0.7009 0.7624 0.3587 0.4782 

gMCS5 0.4334 0.9631 0.0012 0.006 0.0062 0.031 

gMCS6 0.0004 0.0019 0.0018 0.0071 0.003 0.0298 

gMCS7 0.0206 0.0589 0.0953 0.1466 0.0922 0.2049 

gMCS8 0.0561 0.1404 0.0037 0.0122 0.0207 0.0694 

gMCS9 0.0064 0.0214 0.064 0.1067 0.1542 0.3085 

gMCS10 0.9255 0.9810 0.0004 0.0047 0.0208 0.0694 

gMCS11 0.0064 0.0214 0.1501 0.2001 0.3848 0.4810 

gMCS12 0.9810 0.9810 0.0318 0.0794 -* - 

gMCS13 0.9810 0.9810 0.0318 0.0794 - - 

gMCS14 0.8083 0.9810 0.1919 0.2398 0.0375 0.1071 

gMCS15 0.9255 0.9810 0.0534 0.097 0.2521 0.4202 

gMCS16 0.9255 0.9810 0.117 0.1671 0.0529 0.1322 

gMCS17 0.9255 0.9810 0.0534 0.097 0.2521 0.4202 

gMCS18 0.9255 0.9810 0.0006 0.0047 0.0056 0.031 

gMCS19 0.9255 0.9810 0.0472 0.097 - - 

gMCS20 0.6326 0.9810 0.0007 0.0047 0.0008 0.0154 

 
* In these cases, all cell lines were assigned to a single class and, therefore, the Mann-Whitney test could not be 
calculated. 



Response: We agree with the reviewer that RRM1 has been previously implicated in Multiple 
Myeloma and this was indeed a criterion we chose for selection. However, to address this 
rightful concern from the reviewer we have performed 2 additional sets of experiments, firstly by 
identifying myeloma cells lines in which our gMCS algorithm does not predict RMM1 to be 
essential and other tumor cell lines in which RMM1 has not been described as being essential 
and in which our algorithm predicts its essentiality. In both cases experimental data 
demonstrate the prediction.  
 
In the first case, we identified a cell line in MM (U266) where our algorithm does not return 
RRM1 as essential. This was based on our analysis of gMCSs and gene expression data. More 
particularly, in all gMCSs considered, including gMCS6, we found at least one partner gene of 
RRM1 that is expressed in U266 (in contrast with JJN-3, H929 and KMS-28-BM). We provided 
experimental validation of the non-essentiality of RRM1 in U266 (see Figure 3 of the revised 
version of the manuscript). Therefore, our algorithm is able to capture in which cases the 
inhibition of RRM1 is (or not) lethal in MM. An additional experimental validation in H23, a lung 
cancer cell line used in Figure 4, where our algorithm predicted its dependence on RRM1 using 
gMCS6. Experimental results again confirmed our prediction (see Supplementary Figure 26 in 
the revised version of the manuscript). 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3: Gene silencing analysis of RRM1 in JJN-3, H929, KMS-28-BM and U266 MM cell lines. (a) mRNA 
expression of RRM1 gene 48h after nucleofection with the specific siRNAs. Data are referred to GUS gene and an 
experimental group nucleofected with negative control siRNA. (b) Proliferation of JJN-3, H929 and KMS-28-BM cell 
lines nucleofected with siRNAs targeted to RRM1 gene was studied by MTS. The proliferation percentage refers to 
cells nucleofected with a negative control siRNA. Data represent mean ± standard deviation of at least three 
experiments. 



 
On the other hand, as suggested by the reviewer, we analyze the performance of our algorithm 
in a broader context and its capacity to identify other targets. In particular, we used the genome 
scale loss-of-function screens provided by the Project Achilles v2.4.3 (ref. 1), focusing on the 
same set of cell lines as in the previous version of the manuscript, namely the 30 cell lines with 
the highest quality score calculated as done in Hart et al.2 and with expression data available in 
the Cancer Cell Line Encyclopedia3 (Supplementary Table 1). For each cell line, we derived the 
top-20 most and least essential metabolic genes, according to the essentiality score calculated 
in Hart et al.2, which is more appropriate than the ATARiS score to rank genes within a 
particular cell line4. Overall, based on Achilles data, we potentially have 600 essentiality cases 
and 600 non-essentiality cases. This information was used as gold-standard and, therefore, was 
compared with the results obtained with our algorithm. Note that we fixed a time limit of 5 
minutes for each of the 1200 cases considered (as in the previous version of the manuscript). 
 
Within the time limit, we achieved a solution in 308 out of 600 Achilles-based essentiality cases 
and in 451 out of 600 Achilles-based non-essentiality cases. Out of 308 solutions, 167 were 
correctly identified as essential, while 141 incorrectly identified as non-essential. On the other 
hand, out of 451 solutions, 340 were correctly identified as non-essential and 111 incorrectly 
identified as essential. The results are summarized in the contingency table below (see Figure 
1d now): 

 

 
 
Figure 1d: Contingency table with the essentiality predictions of the gMCS approach in the 
Project Achilles data. 

 
Supplementary Figure 26: Gene silencing analysis of RRM1 in H23 cell line. (a) mRNA expression of RRM1 
gene 48h after transfection with the specific siRNAs. Data are referred to GUS gene and an experimental group 
nucleofected with negative control siRNA. (b) Proliferation of H23 cell line transfected with siRNAs targeted to 
RRM1 gene was studied by MTS. The proliferation percentage refers to cells transfected with a negative control 
siRNA. Data represent mean ± standard deviation of at least three experiments. 



We conducted a logistic regression to investigate whether our gMCS approach (significantly) 
recovers as essential more Achilles-based essential genes than Achilles-based non-essential 
genes: 
 log ൬ p(essential	gene	in	Achilles)1 − p(essential	gene	in	Achilles) |x൰ = β଴ + βଵ ∙ x 

 
, where x={0,1}, being 1 when our gMCS approach returns an essential gene, 0 otherwise. We 
evaluated the statistical significance of βଵ, whose magnitude can be transformed to the Odds 
Ratio (OR) as follows: 
 

OR = exp(ߚଵ) = p(essential		in	Achilles	|	x = 1)1 − p(essential	in	Achilles	|	x = 1)p(essential		in	Achilles	|	x = 0)1 − p(essential		in	Achilles	|	x = 0)  

 
The difference is highly significant (p-value=3.78·10-16) with an odds ratio (OR) of 3.62 (see 
Methods section). These results prove that promising targets are indeed more often reflected in 
gMCSs containing many lowly-expressed genes (in fact, gMCSs where all genes are lowly 
expressed except one gene), as required by the reviewer. Note also that our analysis revealed 
a large list of potential essential genes beyond RRM1 (Supplementary Data 1). We are indeed 
in debt with the reviewer for this question, since these results substantially improve our work 
and the scope of our algorithm. 
 
Note also that the same analysis was conducted for GiMME5 and iMAT6 (Supplementary Table 
2-3). GiMME obtained a significant result (p-value=0.003, OR= 2.13) but not iMAT (p-value= 
0.44, OR= 1.22). Our approach substantially improved GiMME and iMAT, being particularly 
relevant our gain in sensitivity: we recovered 167 Achilles-based essential metabolic genes out 
of 308 solutions (in a 5 minutes time limit), while GiMME and iMAT, out of 600 cases, only 49 
and 35 successes, respectively. This result is certainly significant, as we partially overcome the 
issue of lack of sensitivity observed in previous approaches7. In addition, we keep a similar 
precision value than GIMME and iMAT (0.6-0.7).  
 

 
These results have been summarized and included in the main text, Results subsection 
“Minimal Cut Sets at the gene level (gMCSs) and cancer-specific essential genes”. 
 
 

Supplementary Table 2. Contingency table with the essentiality predictions 
of GIMME in the Project Achilles data. 

GIMME 

Essential Non-Essential 

Achilles 
Essential 49 551 

Non-Essential 24 576 

 
 
 
Supplementary Table 3: Contingency table with the essentiality predictions 
of iMAT in the Project Achilles data. 

iMAT 

Essential Non-Essential 

Achilles 
Essential 35 565 

Non-Essential 29 571 



While the analysis of the RRM1 over a large number of cancer cell lines (Achilles data) is a 
more robust way of validation there are some uncertainties regarding the statistics reported. 
The author mostly discuss a single gCMS and provide some p-values. However, the authors 
have a total of 18 gCMSs and it is not mentioned in the manuscript whether they have actually 
corrected the corresponding p-values for multiple testing (there was no mention of multiple test 
correction in the manuscript) and hence it is unclear whether any of these p-values is indeed 
significant after test correction. Again, it would be more sensitive to provide information across 
all gCMSs and not just a selected one and subsequently move to that gCMSs to probably 
discuss some details. 

Response: As suggested by the reviewer, we have included these statistics in a new version of 
the manuscript (Supplementary Table 5). This question has also been directly addressed in 
the answer to the first question of the reviewer. 
 
It is not clear whether the comparison to other approaches is really fair (see also my comment 
on the exclusion of iMAT in the list of minor points). The authors call GIMME less accurate since 
it predicts essentiality of RRM1 only in ten out of 18 of the considered data sets. First, this 
comparison is considerably inflated since basically only three cell lines are considered (some 
with several instances of expression data, some of them replicates from the same experiment). 
Thus, the test should rather be performed on the level of cell lines or at least expression data 
should be grouped according to experiment. Second, results from the gMCS approach are not 
really comparable to results returned from GIMME since they basically return different things – 
networks returned from GIMME allow to directly determine essentiality of RRM1 while based on 
the gMCS approach the authors check whether for each data set there exists at least one 
gMCSs that only contains lowly expressed genes besides RRM1. Thus, one would already by 
chance expect that gMCSs more likely reports lethality (since for each data set there are 18 
gMCSs that are tested). 

Response: As required by both reviewers, we conducted the comparison of our approach with 
GiMME and iMAT grouping samples by cell lines. We should note here that, while we were 
grouping different samples into different cell lines, we realized that one sample was incorrectly 
assigned to JJN3, particularly JJN3-7 (GSM1374574) (see Supplementary Table 1 in the 
previous version of the manuscript). This sample was removed from our analysis. This 
incorrectly labeled sample (coming from gastric cancer) was the only one where our gMCS 
approach did not predict RRM1 as essential in the analysis presented in the previous version of 
the manuscript. In addition, as noted above, we included 4 samples of U266 cell line in our 
study. Overall, we considered in our study 21 samples: 7 samples of JJN3, 9 samples of H929, 
1 sample of KMS-28-BM and 4 samples of U266. A summary of the results obtained at the 
sample and cell line level can be found in Supplementary Table 6. In the main manuscript we 
presented the results obtained at the level of each cell, in accordance with experimental 
validation, as suggested by both reviewers. 

 
Our approach correctly predicted the essentiality of RRM1 in JJN3, H929 and KMS-28-BM, as 
well as the non-essentiality of RRM1 in U266.  GIMME failed in H929 and U266, while iMAT in 
KMS-28-BM. Overall, these results show a superior performance of our approach than GIMME 
and iMAT. Again, given the results found, we would like to thank the comments made by both 
reviewers. 



On the other hand, we agree with the reviewer that iMAT and GiMME return different things. 
Certainly, for other purposes where metabolic reconstruction is necessary, GIMME and iMAT 
could be more informative. However, our analysis in this manuscript is focused on gene 
essentiality analysis and we can find a number of works in the literature where GiMME and 
iMAT are used for this purpose8. In fact, our algorithm, GiMME and iMAT use the same input 
data (human metabolic network and gene expression data) and, therefore, they can be 
unbiasedly compared to predict gene essentiality. With the results presented above, we think 
our approach is more accurate than GiMME and iMAT for predicting gene essentiality. 
 
The reviewer should note that the number of gMCSs is actually not related with the chance of 
predicting lethality. Consider the example in the figure below. We have 3 gMCSs which explain 

the essentiality of g4 for activating r6: {g1, g4}; {g2, g4}; 
{g3, g4} (assuming one-to-one gene-reaction 
association). In this case, GIMME/iMAT would also 
obtain r4 as essential, since the reconstruction in both 
cases leads to the removal of the pathway through r1, 
r2 and r3.  

 
The differences obtained between our approach and 
GIMME/iMAT comes from the bias introduced in the 
reconstruction process. This bias is different 

depending on the algorithm used, as observed in the side-by-comparison discussed above 
(GiMME and iMAT obtains different outcomes). By avoiding the reconstruction step, where 
some lowly-expressed genes become active, we remove a source of bias and make our 
approach more accurate and sensitive to predict gene essentiality.  
 

Supplementary Table 6: Prediction of the essentiality of RRM1 at the sample and cell line level in the MM 
study. Green coloring implies essentiality of RRM1, while red coloring non-essentiality. 

 
GSM gMCS GIMME iMAT Cell Line gMCS GIMME iMAT 

GSM229051       

JJN3     

  

GSM915718     

GSM915719     

GSM915720       

GSM1094684     

GSM1094685     

GSM1374579       

GSM351746     

H929     

  

GSM451261     

GSM451264       

GSM451267     

GSM511161     

GSM511162       

GSM511163     

GSM562817     

GSM662887       

GSM887227     KMS-28BM     

GSM363377     

U266   

  

GSM363399       

GSM562821     

GSM887721     

 



Minor points: 
 
The coloring scheme in Figure 2A is misleading. If 5 is the cut-off for an enzyme to be 
expressed, this should be white. Otherwise it is quite difficult to grasp what particular shade of 
red actually indicates the cut-off for considering an enzyme as expressed. 

 
Response: We thank the reviewer for his/her comments. We changed the coloring scheme of 
Figure 2A as suggested by the reviewer.  
 
In l. 241 the authors state that they did not consider iMAT due to its high computational demand 
and GIMME providing better results in a previous test of several methods for building context-
specific metabolic networks. There is some criticism concerning the fairness of these previous 
tests (Machado & Herrgard, 2014) including that they have been performed on prokaryotic 
metabolic networks (which are focused on growth and the validation data considering fluxes in 
growing bacteria) while methods for reconstructing context-specific metabolic networks have 
typically been developed for eukaryotic networks (where rapid growth typically is not an ultimate 
imperative). Moreover, from personal experience I know that depending on the choice of cut-
offs applying iMAT typically requires only seconds and rarely in some severe cases (depending 
on the choice of parameters) probably a couple of hours for determining context-specific 
networks in Recon v2.04. Thus, it should be possible to build these networks for the just 18 
samples the authors are considering and include iMAT in the comparison. 

Response: As mentioned above, we included iMAT in our analysis. See Supplementary Note 2 
for details of the computational implementation of iMAT. We thank the reviewer for this 
comment since the inclusion of iMAT certainly enriched the side-by-side comparison of our 
approach with existing methods in the literature.  
 
In l. 265-270 the authors state that they used the gene with highest expression as the one most 
important for each gMCS. As there is no one-to-one relationship between abundance and 
importance of a gene, the authors should check whether they probably haven’t always used the 
expression of the same gene as proxy for the expression strength of partner genes of RRM1. 
Beyond that it would also be more sensible to probably consider an aggregate of expression of 
partner genes of RRM1 and not just a single one. 

A     B 

 
Figure 2: Gene expression levels of the genes included in a relevant gMCS involving RRM1 in MM. (a) 
Heatmap of Barcode z-scores1 of RRM1 and its partner genes (involved in a relevant gMCS identified) in different 
MM samples analyzed; (b) Number of MM samples where RRM1 and its partner genes (involved in a relevant 
gMCS identified) are expressed/unexpressed, according to Barcode threshold of expression (z≥5).  



Response: This comment is very interesting. We first checked whether we always used the 
expression of the same gene as proxy for the expression strength of partner genes of RRM1. 
This was not the case, as shown below for gMCS6. Certainly, the gene with highest expression 
differs across different cell lines (see Supplementary Data 1).  

 
 
On the other hand, we repeated the same analysis using the average and sum of the 
expression of partner genes and the results are quite similar (Supplementary Table 7). In fact, 
we obtained even better p-values than using the gene with the maximum expression level, as 
shown below. As the most relevant results are kept, we maintain the results as were presented 
in the previous version of the manuscript 

Samples gMCS6 

NCIH23-LUNG SLC25A15 

HCC70-BREAST SDHB 

EFO21-OVARY SLC25A15 

COV362-OVARY SDHB 

LAMA84-HAEMATOPOIETIC-AND-LYMPHOID-TISSUE SLC25A15 

TE10-OESOPHAGUS ABAT 

EFE184-ENDOMETRIUM COASY 

HCC2218-BREAST SLC25A19 

NCIH1299-LUNG SLC25A15 

JHOC5-OVARY SLC25A15 

EFM19-BREAST ABAT 

MONOMAC6-HAEMATOPOIETIC-AND-LYMPHOID-TISSUE SLC25A19 

AGS-STOMACH ABAT 

PANC0813-PANCREAS SLC25A15 

NCIH661-LUNG SLC25A15 

HT29-LARGE-INTESTINE SLC25A15 

NCIH1437-LUNG COASY 

GP2D-LARGE-INTESTINE SLC25A15 

PANC0327-PANCREAS SLC25A15 

BT474-BREAST ABAT 

SKCO1-LARGE-INTESTINE SLC25A15 

MIAPACA2-PANCREAS SLC25A15 

HCC1954-BREAST SLC25A15 

MDAMB453-BREAST ALDH4A1 

BT20-BREAST ABAT 

RKO-LARGE-INTESTINE SLC25A15 

MCF7-BREAST ABAT 

SNU840-OVARY ABAT 

HT55-LARGE-INTESTINE ABAT 

ZR7530-BREAST ABAT 



 
 
 
 
 

The authors state that they used all gene expression data originating from a specific chip for 
determining lowly expressed genes. Since gene expression in cancer cell lines is probably 
strongly different from gene expression in normal human tissue or cell lines, they should check 
how robust their results are if considering, for instance, just gene expression from cancer cell 
lines (e.g. NCI-60). 

Response: The Gene Expression Barcode algorithm 3.0 (ref. 9) use thousands of samples of 
different tissues and conditions to build an expression call for each probe set in Affymetrix 
microarrays. Based on this expression call, lowly expressed genes are determined for each 
analyzed sample (see Methods section) and adapting Barcode to take into account only cancer 
samples is not possible in the available R package. While implementing an in-house system for 
such analysis is indeed interesting, it represents an effort that falls beyond the purpose on the 
current study. In any case, Barcode is sufficiently robust to capture cancer-specific expression 
patterns even with the inclusion of samples from normal tissues.  

Supplementary Table 7. Summary of adjusted Spearman’s correlation p-values in Achilles Scatter plots of 
different gMCSs using max, mean and sum of the expression of the partner genes of RRM1 
 

Achilles Scatter Plot –
MAX 

Achilles Scatter Plot -
MEAN 

Achilles Scatter Plot - 
SUM 

p-value adj. p-value p-value adj. p-value p-value adj. p-value 

gMCS1 0.7422 0.7624 0.7422 0.87315 0.7422 0.87315 

gMCS2 0.7624 0.7624 0.8914 0.89136 0.8914 0.89136 

gMCS3 0.7009 0.7624 0.8414 0.88566 0.8414 0.88566 

gMCS4 0.7009 0.7624 0.7894 0.8771 0.7894 0.8771 

gMCS5 0.0012 0.006 0.0012 0.00496 0.0012 0.00496 

gMCS6 0.0018 0.0071 0.004 0.01128 0.004 0.01128 

gMCS7 0.0953 0.1466 0.0151 0.03357 0.0151 0.03357 

gMCS8 0.0037 0.0122 0.0069 0.01727 0.0069 0.01727 

gMCS9 0.064 0.1067 0.1218 0.16238 0.1218 0.16238 

gMCS10 0.0004 0.0047 0.0006 0.004 0.0006 0.004 

gMCS11 0.1501 0.2001 0.1146 0.16238 0.1146 0.16238 

gMCS12 0.0318 0.0794 0.0039 0.01128 0.0039 0.01128 

gMCS13 0.0318 0.0794 0.1627 0.20338 0.1627 0.20338 

gMCS14 0.1919 0.2398 0.0361 0.0602 0.0361 0.0602 

gMCS15 0.0534 0.097 0.0210 0.0382 0.0210 0.0382 

gMCS16 0.117 0.1671 0.0205 0.0382 0.0205 0.0382 

gMCS17 0.0534 0.097 0.046 0.0707 0.046 0.0707 

gMCS18 0.0006 0.0047 0.0008  0.004 0.0008  0.004 

gMCS19 0.0472 0.097 0.0008 0.004 0.0008 0.004 

gMCS20 0.0007 0.0047 0.0004 0.004 0.0004 0.004 

 



      
Reviewer #2 (Remarks to the Author): 
 
Summary  
In the manuscript by Apaolaza et al., the authors present a method that uses the concept of 
gene minimum cut sets (gMCSs) to predict and exploit synthetic lethality in cancer metabolism. 
They first introduce a novel method to expand the concept of minimum cut sets from the 
reaction level to the gene level. Then, they apply this method to explore the effect of knock 
down of the RRM1 gene in 18 different gene expression contexts/instances involving three cell 
lines of multiple myeloma. Their method predicts RRM1 to be essential in 17 of these 18 
samples. Next, they validate experimentally the essentiality of RRM1 using shRNA in the three 
cell lines experiments. Finally, they report a correlation between the expression of the gMCSs 
group in 30 different cell lines and the ATARiS essentiality score of RRM1 measured in shRNA 
screens. 
 
We believe that this is innovative work with a potentially promising route to personalized 
medicine and, especially, for the much needed patient stratification application. Nevertheless, 
we feel that the method presented here requires considerable additional experimental validation 
to establish its predictive power before we can support its publication in Nature 
Communications.  

Response: We are sincerely grateful for the constructive comment of the reviewer. 
Undoubtedly, the comments of both reviewers helped us to show and establish the predictive 
power of our gMCS approach.  
 
Major Comments 
 
1. Further experimental validation of the method. In this work, the authors present a method that 
can be used to predict the essentiality of a gene in a certain context. This can be easily tested 
using publically available shRNA screens for multiple gene knockdowns. To establish the 
general predictive power of their method, the authors should prove the ability of this method to 
predict the essentiality of genes other than RRM1 in multiple cell lines using shRNA screens 
and the gene expression of these cell-lines. Only then, and if and only if, this approach may be 
of interest to the wide readershop of Nature Communication. Note that this does not require 
new experiments! Just take a published collection of genome wide knockdowns of genes across 
many different cell-lines (e.g., like Achilles) and the associated cell-line transcriptomics, and 
overlay that expression data on the predicted gMCs of the different genes, and show that you 
can predict their essentiality!... 

Response: We would like to thank the reviewer for this important suggestion. In fact, a similar 
question was made by Reviewer 1, which was addressed in detail in the answer to her/his 
second comment. We summarize below the major changes introduced in the revised version of 
the manuscript. 
  
First, we analyze the performance of our algorithm in a broader context and its capacity to 
identify other targets based on the Project Achilles data (Figure 1d). In addition, we provided 
further insights about RRM1 in MM. In particular, we identified a cell line in MM where our 
algorithm does not return RRM1 as essential: U266. We provided experimental validation of the 
non-essentiality of RRM1 in U266 (see new Figure 3). This shows that our algorithm is able to 
capture in which cases the inhibition of RRM1 is (or not) lethal in MM. Finally, in order to extend 
the conclusions attained for RRM1 in MM to other cancer types, we carried out additional 
experimental validation in H23, a lung cancer cell line used in Figure 4, where our algorithm 
predicted its dependence on RRM1 using gMCS6. Experimental results again confirmed our 
prediction (see Supplementary Figure 26). We think these results helped us to further show the 
predictive power of our gMCS approach, as required by the reviewer.  
 
2. As the shRNA validation of the RRM1 gene essentiality is performed in cell lines and not 
samples, it would be preferred if the authors would predict essentiality in a cell line specific 
manner. 

Response: As suggested by the reviewer, we presented in the main text the results obtained 
when the essentiality of RRM1 is predicted at the cell line level.  
 



To establish the clinical relevance of this method, the authors could show that the expression 
level of the gMCS groups that they find is also relevant in in clinical data, e.g. in predicting 
patient survival in the TCGA cohort (its quite stragithforward to test).  

Response: This is indeed an interesting suggestion as the analysis of clinical relevance of the 
results presented is the next logical step in our study. In order to perform a survival analysis, we 
used a public microarray datasets of MM patients, which involves 328 samples10, including 
survival data for 279 patients11. Expression levels were normalized using the Gene Expression 
Barcode algorithm 3.0 (ref. 1). The survival analysis of MM patients according to RRM1 
expression indicated that those patients with higher RRM1 expression have a worse overall 
survival. This result is consistent with recent studies12. 

 

Next, we focused on gMCS6, since it was the only gMCS being significant in the two different 
statistical analyses accomplished at the cell line level (see the first comment of Reviewer 1). We 
conducted a survival analysis according to the expression of the genes involved in gMCS6 
(using its maximum and average expression) but we did not find any significant result. This was 
partially expected since identified gMCSs can be used as molecular markers of the response to 
RRM1 inhibition, but not as a surrogate for prognosis, unless specific inhibitors of RRM1 were 
to be used, which is not the case. In other words, the prognostic value from the gMCS would 
only be such, if we could inhibit RRM1.  

 
Minor Comments 
 
1. Please check the writing style so that methods are all described in the methods section and 
the results are listed subsequent order in the results section.  

Response: As suggested by the reviewer, we moved all technical information describing the 
advance brought by our approach to the Supplementary Material (see page X). In our opinion, 
the Results and Methods sections are now better organized. 
 
2. Please provide statistical estimates for the reported finding. E.g in line 201 to line 203, there 
should be a p-value representing he significance of these results. 

Response: The comment raised by the reviewer is pertinent. We have provided additional 
statistical evidence of many of the results observed. See “Statistical Analyses” in Methods 
section. 

 
In particular, for the reported finding in lines 201-203, we calculated an adjusted p-value using a 
one-sided Binomial test namely to evaluate whether its frequency in the MM samples 
considered is statistically significant. See “Statistical Analyses” in Methods section. 
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REVIEWERS' COMMENTS:  

 

Reviewer #1 (Remarks to the Author):  

 

The authors addressed all of my concerns convincingly.  

 

 

Reviewer #2 (Remarks to the Author):  

 

We enjoyed reading the authors responses to our questions and feel this revision is considerably 

stronger and that our concerns were adequately addressed.  

 

To clarify our second comment from the original review (about survival analysis), we would expect 

to see the level of expression of the SL partners matter only when RRM1 is lowly expressed. Low 

expression of RRM1 can be thought of as a proxy of RRM1 inhibition, which is likely why the 

expression level of RRM1 is significant for the survival analysis. However, low expression (or 

inhibition) of RRM1 alone is not sufficient on its own (or the SL partners wouldn't matter). 

Therefore, incorporating the predicted SL partners should strengthen the survival predictions (for 

the patients who lowly express RRM1).  



Response to the Reviewer’s comments 
(manuscript NCOMMS-16-29429A) 

 
We thank the positive comments of both reviewers. Again, we would like to express our 
gratitude to the reviewers for their excellent suggestions on the previous version of the 
manuscript.  
 
Below you can find the detailed answer to the issue raised by Reviewer 2. 
 
Reviewer #1 
 
The authors addressed all of my concerns convincingly. 

Response: We are very grateful since the quality of the manuscript substantially improved 
following the reviewer’s advice. 

 
Reviewer #2 (Remarks to the Author): 
 
We enjoyed reading the authors responses to our questions and feel this revision is 
considerably stronger and that our concerns were adequately addressed.  

Response: As with Reviewer 1, we are very grateful because, thanks to the reviewer’s advice, 
a stronger version of the manuscript was submitted. 

 
To clarify our second comment from the original review (about survival analysis), we would 
expect to see the level of expression of the SL partners matter only when RRM1 is lowly 
expressed. Low expression of RRM1 can be thought of as a proxy of RRM1 inhibition, which is 
likely why the expression level of RRM1 is significant for the survival analysis. However, low 
expression (or inhibition) of RRM1 alone is not sufficient on its own (or the SL partners wouldn't 
matter). Therefore, incorporating the predicted SL partners should strengthen the survival 
predictions (for the patients who lowly express RRM1). 

Response: As suggested by the reviewer, we conducted the survival analysis for MM patients 
with low RRM1 expression (i.e. we filtered MM patients with high RRM1 expression) based on 
the expression of SL partners in gMCS6. As in the previous response letter, we used a public 
microarray dataset of MM patients, which involves 328 samples1, including survival data for 279 
patients2. Expression levels were normalized using the Gene Expression Barcode algorithm 3.0 
(ref. 3).  

The Kaplan-Meier Overall Survival (OS) curve can be observed in the figure below. In line with 
the suggestion of the reviewer, patients with a higher expression of SL partners show a worse 
OS (p-value= 0.014, Cox proportional hazard model), which strengthens the survival 
predictions. 

 



Even with this positive result, in this article we show that the expression of SL partners in 
gMCS6 can be used as a molecular marker of the response to RRM1 inhibition, but not as a 
surrogate for prognosis, unless specific inhibitors of RRM1 were to be used, which is not the 
case. In other words, the prognostic value from the gMCS would only be such, if we could inhibit 
RRM1.  

We understand the assumption made by the reviewer (certainly interesting): patients with low 
RRM1 expression can be used as a proxy for RRM1 inhibition. However, as MM treatments 
regulate different molecular targets, we prefer to be cautious and leave a more detailed clinical 
study as a future work. 
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