GmLUXc GmLUXb GmLUXa PsLUX MtLUXlike LjLUXlike AtLUX AtBOA	: MGEEVKTSEYDEE RVMEWEAGLPTANDLTPLSQPLIPPE : MGEEVKTSEYDEE RVMEWEMGLPTANDLTPLSQPLIPPE : MGEEIRTDEE RVTEWEKGLPNLHDLTPLSMTLIPPE : MGEEVRTDEE RVTEWEKGLPNLHDLTPLSMALIPPE : MGEEVRMMDEE RIMEWEKGLPSVHDLTPLSQPLIPPE : MGEEVQMSDYDVSGDGD RVSEWEMGLPSDEDLASLSYSLIPPN : MGKEVMVSDYGDDDGEDAGGGDEYRIPEWELGLPNGDDLTPLSQYLVPSI	: 39 : 39 : - : 36 : 36 : 36 : 37 : 43 : 50
GmLUXc GmLUXb GmLUXa PsLUX MtLUXlike LjLUXlike AtLUX AtBOA	: LASAFSILPEPHRTLLDVNRASRNTLSTLRGGGGSVHQAFSSSNNN-HNY LASAFSISPEPHRTLLEVNRASRNTLSTIRGGG-SVHQAFSSNNNNNHHY MSLEPHRIVLNVKRGSCNTLSTIRSDR-TMQHAFFSNNNNNQHY LASAFSISPEPHRTLIDVNRASRNTLSILRGG-TNHQTFSSNNEE-IIE LASAFSISPEPHRTLFDVNRASRNTLSILRSNSGTITNQINQTM-SCE LATAFSISPEPRRTLDVNRASRNTLSILRSG-APLQALSSSDEEGEGG LAMAFSITPERSRTIQDVNRASETTLSSLRGGSSGPNTSSSNNNVEEEDR LALAFSMIPERSRTIHDVNRASQITLSSLRSSTNASSVMEEVVDR	: 88 : 88 : 43 : 84 : 83 : 86 : 93 : 95
GmLUXc GmLUXb GmLUXa PsLUX MtLUXlike LjLUXlike AtLUX AtBOA	: DGDGDGGVEEEEDDDDDRDGSG-PDSRKQRKIDCGAAEEADSAVQTETSA : DGDGDGG-DEEEYDDADRDGSG-SDSRKQRKIDCGVAEEADSAVRTETSA : NGDGDVN-DKEDNDDTDCKDSR-SDSRTETSA : EEDEMEEETDRDGSG-SDSRKLRKIDSATEEADSAVRT- : IEDIEEDEEPDRDGSG-SDSRKHRKIDSVIEEVEAEADSAVRT- : GGGGEEDDTTDRDGSGGSGSRKQRKVDCAAEEADSAVRT : VGSSVPGSDSKKQKTSNGDGDDGGGVDPDSAMAAEEGDSGTEDL : VESTAEEGDSGPEAA	: 137 : 136 : 73 : 122 : 125 : 126 : 137 : 134
GmLUXc GmLUXb GmLUXa PsLUX MtLUXlike LjLUXlike AtLUX AtBOA	 ERTAVKRPRLVWTPQLHKRFVDVVAHLGIKNAVPKTIMQLMNVEGLTREN ERTAVKRPRLVWTPQLHKRFVDVVAHLGIKNAVPKTIMQLMNVEGLTREN KRTTVKRLQLVWTLQLHKRFVDVVAHLGIKNAVPKTIMQLMNVEGLTREN -ETTLKRPRLVWTPQLHKRFVDVVAHLGIKNAVPKTIMQLMNVEGLTREN DTATLKRPRLVWTPQLHKRFVDVVAHLGIKNAVPKTIMQLMNVEGLTREN SGKTLKRPRLVWTPQLHKRFVDVVAHLGIKNAVPKTIMQLMNVEGLTREN SGKTLKRPRLVWTPQLHKRFVDVVAHLGIKNAVPKTIMQLMNVEGLTREN 	: 187 : 186 : 121 : 171 : 174 : 176 : 187 : 184
GmLUXc GmLUXb GmLUXa PsLUX MtLUXlike LjLUXlike AtLUX AtBOA	<pre>WYB domain VASHLQKYRLYLKRMQGLSNEGPSASTQLFASTPVP-QSLHDSAPPSN VASHLQKYRLYLKRMQGLSNEGPSSSTQLFASTAVP-QSLHDSAPPSA VASHLQKYRLYLKRMQGLSNDAPSSSTHLFASTPVP-QSLHESASAVN VASHLQKYRLYLKRMQGLSNDAPSSSTHLFASTPVP-QSLHETASAN- VASHLQKYRLYLKRMQGLSNEGPSSSTHLFASTPVP-QSLHDSAAAAV VASHLQKYRLYLKRMQGLTNEGPSASTLFSSTPVP-QSFQDI VASHLQKYRLYLKRMQGLTNEGPSASTLFSSTPVPPQSFQDI VASHLQKYRLYLKRIQGTTEEDPYSSSTQLFSSTPVPPQSFQD</pre>	: 234 : 233 : - : 218 : 220 : 223 : 230 : 228
GmLUXc GmLUXb GmLUXa PsLUX MtLUXlike LjLUXlike AtLUX AtBOA	: HSNGHGHGHGHSNGRGHGHGHGHGHGHLSVPMMSMPYPPPLMSMPY : HSNGHGHLPVPMMSMPYPPPMMSMPY : SHSQSNGHGNSHSHHSVTISMPYPPPPPMMS :HSNSHSHSHSHSHSHSVTIPMPYPPPPSSMMS : AATAHSNSHSQTHSHSHGHGNFFHLPVPIPMPYPPPMS :GGGGSSGNVGVPIPGAYGTQQMMQ :VPSMVP	: 278 : 259 : - : 250 : 251 : 262 : 255 : 247
GmLUXc GmLUXb GmLUXa PsLUX MtLUXlike LjLUXlike AtLUX AtBOA	<pre>PPPMMSGMPHGHMGIPMPNSSATSAYHPYNMLHQRD PPPMMSGMPHAHGHMGIPMPNSSATSAYHPYNMLHQRD MP-LLGMPPHPHGHMGMALHPPSGSSSYRSHPFNMMHHRD MPPMIGMGHHPHGHMGMSLPPPSGGSSSYRSHPFNMMHHRD MP-FHGMPHLHHGHGHMGMQ</pre>	: 314 : 297 : - : 289 : 292 : 281 : 305 : 280
GmLUXc GmLUXb GmLUXa PsLUX MtLUXlike LjLUXlike AtLUX AtBOA	 MPHLAPNDK : 323 MPHLAPNDK : 306 : - MPPHPHSHSHPHMSPNDSNK : 309 MPPNPHSHSHPHMSSNDSNK : 312 	e 1 nt for LUX-Like protein

Supplementary Figure 2. Phylogenetic analyses of ELF4-like and ELF3-like proteins.

В

Α

Supplementary Figure 3. Homologues of soybean *ELF4* and *ELF3* transcripts show diurnal and circadian rhythms.

(A) *GmELF4a* and *GmELF4b* expression level under long-day long-day (LD; 16h light, 8h dark) or short-day (SD; 10h light, 14h dark), or constant light (LL; 12h light:12h dark then continuous light). (B) *GmELF3a* and *GmELF3b* expression level under LD (16L: 8D), SD (10L:14D), or LL (12L: 12D then continuous light). All plants were three weeks old at the time of sampling. Data are mean ± SE for n = three biological replicates, each consisting of pooled material from two plants. Day and night periods are indicated by open and closed bars, respectively, above the graph.

Supplementary Figure 4. Ectopic expression of *GmLUXb* and *GmLUXc* in *Arabidopsis Columbia* (*Col*) show similar phenotype as in *lux-4* mutant.

(A) Representative plants are grown in LD (16L: 8D). (B) Representative plants are grown in SD (10L:14D). (C) Flowering time of plants grown in LD and SD, data are mean \pm SE for n = 15-20.

Supplementary Figure 5. Expression of *MYB57*, *GTR1*, *PDF1*, *DAD1*, *OPR3*, *RGA*, *GAI* genes in *35S::GmLUXc* transgenic plants.

Supplementary Table 1. *Cis*-element analysis of 5' regions of *GmLUXb* and *GmLUXc* in comparison to *AtLUX*.

Response	Site Name	Sequence	AtLUX	GmLUXb	GmLUXc
Circadian	Clock	CAANNNNATC	3	2	4
	CCA1	AAMAATCT	0	0	1
	Evening element	ΑΑΑΑΤΑΤΟΤ	1	1	1
	LBS (LUX binding sites)	GATWCG	2	0	1
Gibberellin	TAACA(A/G)A element	TAACA(A/G)A	1	1	1
	TATCCA(C/T) element	TATCCA(C/T)	1	1	0
	pyrimidine box	(C/T)CTTTT(C/T)	7	4	10
Ethylene	GCC element	GCCGCC	1	0	0
	A(A/T)TTCAAA element	A(A/T)TTCAAA	1	0	1
Cytokinin	cytokinin response motif (CRM)	(A/G)GAT(T/C)	30	16	17
Auxin	ABRE	(C/T)ACGTG	3	3	1
	TGTCTC element	TGTCTC	1	1	1
Light	I-box	GATAAGR	1	0	1
	G-box	CACGTG	2	2	0
	H-box	ACCTA(A/C)C(A/C)	1	0	0
	Sp1	CC(G/A)CCC	0	1	1
Sugars	TATCCA element	TATCCA	1	2	0
	SURE	(AA)TACTA(A/T)T	1	0	2
	W-box	(T)TGAC(C/T)	0	1	1
Cold	C-repeat	CCGAC	3	1	0
	LTR	CCGAAA	0	2	1

Supplementary Table 2. Primers sequences used in gene isolation, Real-Time PCR, and construct cloning.

Primer name	Sequence (5'-3')	Uses	
ACT-F	ATCATGTTTGAGACCTTCAATGTG		
ACT-R	CTCGAGTTCTTGCTCATAATCTAGG	RT-PCR	
LUXb-3F	AATGGCCATGGTCATCTCCC		
LUXb-3R	GCACCTTCTATAACATTGTA	RI-PCR	
LUXc-4F	AATGGTCATGGTCATGGGCA	57 505	
LUXc-1R	ATGATGGTGATGGCTGACCT	RI-PCR	
BamHI-GFP-F	GGATCCATGGTGAGCAAGGGCGAGGAG	pUC18/2x35S::GFP::GmLUXb,	
GFP-NS-Xbal-R	GCTCTAGACTTGTACAGCTCGTCCATG	2x35S::GFP::GmLUXc	
LUX-Xbal-F	GCTCTAGAATGGGGGAAGAGC	pUC18/2x35S::GFP::GmLUXb,	
LUX-KpnI-R	CCGGGTACCTCATTTATCATTAG	2x35S::GFP::GmLUXc	
LUX-EcoRI-F	CCGGGAATTCATGGGGGAAG	vector pMLBART/35S::GmLUXb or	
LUX-BamHI-R	CGCGGGATCCTCATTTATCA	35S::GmLUXc	
CaMV35S-NotI-F	ATTTGCGGCCGCATGGTGGAGCACGAC	pMLBART/35S::GmLUXb or	
polvA-NotI-R	AGGAGCGGCCGCACTGGATTTTGGTTT	35S::GmLUXc	
T7 promoter 2	TAATACGACTCACTATAGGGCGA		
3' BD sequencing 2	AGCAACCTGACCTACAGGAA	Yeast-two hybrid cloning	
3' AD sequencing	AGATGGTGCACGATGCACAG		
o / 12 coquionining			
Gal4_N_term_primer	GAGTAGTAACAAAGGTCAA		
pHybLex_rev_primer	GAGTCACTTTAAAATTTGTATACAC	Yeast-three hybrid cloning	
AtUBQ10-F	GGCCTTGTATAATCCCTGATGAATAAG		
AtUBQ10-R	AAAGAGATAACAGGAACGGAAACATAGT	RI-FCR	
AtGTR1-F	GTCCATTGGCTGGTATTGCT		
AtGTR1-R	ACTTGCTGCAACGTGCATAG	RI-FCR	
AtPDF1.2-F	TTTGCTGCTTTCGACGCAC		
AtPDF1.2-R	CGCAAACCCCTGACCATG	RT-PCR	
AtDAD1-F	GTGAAGACGAAGAAGAAGAGCAATC		
AtDAD1-R	GTGAAGACAGCGAAAACGACATAC	KI-PCK	
AtOPR3-F	TTGGACGCAACTGATTCTGAC		
AtOPR3-R	GTAGGCGTGGTAGCGAGGTT	KI-PCK	
AtMYB21-F	AAAATCGCCAAACATCTTCC		
AtMYB21-R	ΑΑΤΤΑΤΑΑCCCCAAACCTCTACAA	RI-PCR	
AtMYB24-F	ATGCAAAATGGGGAAATAGGTG	57 505	
AtMYB24-R	AAGATCATCGACGCTCCAATAGTT	RI-PCR	
AtMYB57-F	GTGCGGCGAGGGAACATAA		
AtMYB57-R	TCAGCAATAGAAAAACCAAATAAC	RI-PCR	
AtGA2ox1-F	CGGTTCGGGTCCACTATTTC		
AtGA2ox1-R	ACCTCCCATTTGTCATCACCTG	RT-PCR	
AtGA20ox2-F	CCGGCAGAGAAAGAACACGAA		
AtGA20ox2-R	TACGCCTAAACTTAAGCCCAGAA	RT-PCR	
AtRGA-F	AGAAGCAATCCAGCAGA		
AtRGA-R	GTGTACTCTCTTCTTACCTTC	RT-PCR	
Atgal-F	CACACGACCGCTCATAG		
Atgal-R	TGCCTATCCAATTTACCCTC	RT-PCR	