mRNA cap analogues substituted in the tetraphosphate chain with CX₂: identification of O-to-CCl₂ as the first bridging modification that confers resistance to decapping without impairing translation

Anna M. Rydzik^{a,b,†}, Marcin Warminski^a, Pawel J. Sikorski^c, Marek R. Baranowski^a, Sylwia Walczak^{c,d}, Joanna Kowalska^a, Joanna Zuberek^a, Maciej Lukaszewicz^a, Elzbieta Nowak^e, Timothy D. W. Claridge^b, Edward Darzynkiewicz^{a,c}, Marcin Nowotny^e and Jacek Jemielity^{c*}

^a Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland

^b Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, United Kingdom

^c Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland

^d College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland

^e Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Ksiecia Trojdena Street, 02-109 Warsaw, Poland.

[†]Present Address: Department of Chemistry, Ludwig-Maximilians University Munich, Butenandtstr. 5–13, 81377 Munich, Germany

* To whom correspondence should be addressed. Tel: +48 22 55 43774; Email: jacekj@biogeo.uw.edu.pl

Contents

Supplementary figures and tables	5
Table 1 pKa values of mononucleotide analogues 2a-2d as determined by ³¹ P NMR assay	5
Fig. S1 Titrations of cap analogues 2a-2d as monitored by ³¹ P NMR. The NMR spectra and titra curves for analogues 2d, 2a, 2b and 2c.	
Table S2 Comparison for pK _a ⁴ values of mononucleoside triphosphates.	8
Fig. S2 Titrations of GppCCl ₂ p (4b) and GppCF ₂ p (4c) as monitored by ³¹ P NMR. The NMR spectra and titration curves for analogues 4b and 4c.	9
Fig. S3 Fluorescence titration curves for binding of cap analogues 2b-c and 6b-c to eIF4E	10
Fig. S4 DcpS and Dcp2 catalysed hydrolysis of various nucleotide substrates	11
Table S3 Hydrolysis of cap analogues by human DcpS as monitored by HPLC	12
Fig. S5 Time course of DcpS mediated hydrolysis of modified cap analogues.	13
Fig. S6 Capping efficiencies and susceptibilities of 26-nt transcripts capped with various cap analogs to the hDcp2	14
Fig. S7 Inhibition of translation of m ₂ ^{7,3'-O} GpppG-capped luciferase encoding mRNA in rabbit reticulocyte lysate (RRL) by dinucleotide cap analogues	15
Fig. S8 Inhibition of translation of m ₂ ^{7,3'-O} GpppG-capped luciferase encoding mRNA in rabbit reticulocyte lysate (RRL) by mononucleotide cap analogues	16
Fig. S9 Translation efficiencies of mRNA encoding firefly luciferase capped with cap analogues 7a-7c	
Table S4. Data collection and refinement statistics	18
Fig. S10 Wall-eye stereo view of eIF4E/7d cap-binding pocket with 2Fo-Fc electron density ma contoured at 1.0 sigma.	•
Supplementary information – synthesis	21
General information	21
Synthesis of previously described compounds	22
Synthesis of m ⁷ GppCCl ₂ ppG	23
Synthesis of m ₂ ^{7,2'-O} GppCCl ₂ ppG	23
Synthesis of m ⁷ GppCF ₂ ppG	
Synthesis of m ₂ ^{7,2'-O} GppCF ₂ ppG	24
Synthesis of m ⁷ GppCCl ₂ p	25
Synthesis of m ⁷ GppCF ₂ p	25
Synthesis of m ⁷ GppCH ₂ p	26
Synthesis of GppCCl ₂ p	26
Synthesis of GppCCl ₂ p	27
Synthesis of GppCF ₂ p	27
Synthesis of methylenedifluorobisphosphonate	28

¹ H NMR spectrum of m ⁷ GppCCl ₂ ppG	29
³¹ P NMR spectrum of m ⁷ GppCCl ₂ ppG	29
HRMS spectrum of m ⁷ GppCCl ₂ ppG	30
HPLC profile of m ⁷ GppCCl ₂ ppG	30
¹ H NMR spectrum of m ₂ ^{7,2'-O} GppCCl ₂ ppG	31
³¹ P NMR spectrum of m ₂ ^{7,2'-O} GppCCl ₂ ppG	31
HRMS spectrum of m ₂ ^{7,2'-0} GppCCl ₂ ppG	32
HPLC profile of m ₂ ^{7,2'-O} GppCCl ₂ ppG	32
¹ H NMR spectrum of m ⁷ GppCF ₂ ppG	33
³¹ P NMR spectrum of m ⁷ GppCF ₂ ppG	33
HRMS spectrum of m ⁷ GppCF ₂ ppG	34
HPLC profile of m ⁷ GppCF ₂ ppG	34
¹ H NMR spectrum of m ₂ ^{7,2'-O} GppCF ₂ ppG	35
³¹ P NMR spectrum of m ₂ ^{7,2'-O} GppCF ₂ ppG	35
HRMS spectrum of m ₂ ^{7,2'-0} GppCF ₂ ppG	36
HPLC profile of m ₂ ^{7,2'-O} GppCF ₂ ppG	36
¹ H NMR spectrum of m ⁷ GppCCl ₂ p	37
³¹ P NMR spectrum of m ⁷ GppCCl ₂ p	37
HRMS spectrum of m ⁷ GppCCl ₂ p	38
HPLC profile of m ⁷ GppCCl ₂ p	38
¹ H NMR spectrum of m ⁷ GppCF ₂ p	39
³¹ P NMR spectrum of m ⁷ GppCF ₂ p	39
HRMS spectrum of m ⁷ GppCF ₂ p	40
HPLC profile of m ⁷ GppCF ₂ p	40
¹ H NMR spectrum of m ⁷ GppCH ₂ p	41
³¹ P NMR spectrum of m ⁷ GppCH ₂ p	41
HRMS spectrum of m ⁷ GppCH ₂ p	42
HPLC profile of m ⁷ GppCH ₂ p	42
¹ H NMR spectrum of GppCCl ₂ p	43
³¹ P NMR spectrum of GppCCl ₂ p	43
HRMS spectrum of GppCCl ₂ p	44
HPLC profile of GppCCl ₂ p	44
¹ H NMR spectrum of GppCF ₂ p	45
³¹ P NMR spectrum of GppCF ₂ p	45
HRMS spectrum of GppCF ₂ p	46
HPLC profile of GppCF ₂ p	46

³¹ P NMR spectrum of pCF ₂ p ²	+/
¹⁹ F NMR spectrum of pCF ₂ p ²	47
HRMS spectrum of pCF ₂ p	48
References	49

Supplementary figures and tables

compound	concentration [mM]	pK ⁴ (gamma)*	pK ⁴ _a (beta)**	Mean pK ⁴
m^7Gppp/NH_4^+ (2d)	15.0	6.55±0.02	6.62±0.04	6.56±0.03
m^7GppCH_2p/Na^+ (2a)	5.49	8.63±0.02	8.63±0.01	8.63±0.01
$m^{7}GppCCl_{2}p/NH_{4}^{+}(\mathbf{2b})$	5.33	7.39±0.02	7.25±0.02	7.32±0.07
$m^{7}GppCF_{2}p/NH_{4}^{+}(2c)$	7.50	6.21±0.02	6.29±0.03	6.25±0.04

Table 1 pK_a values of mononucleotide analogues 2a-2d as determined by ³¹P NMR assay.

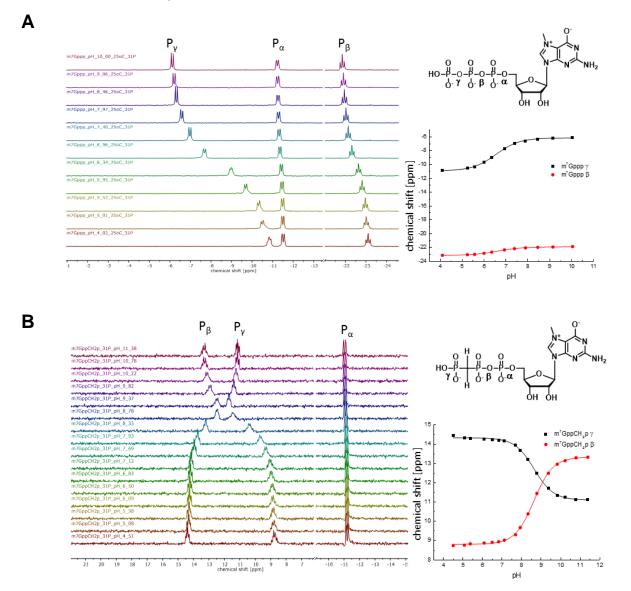
* pK_a^4 as determined using change of chemical shift for gamma-phosphate.

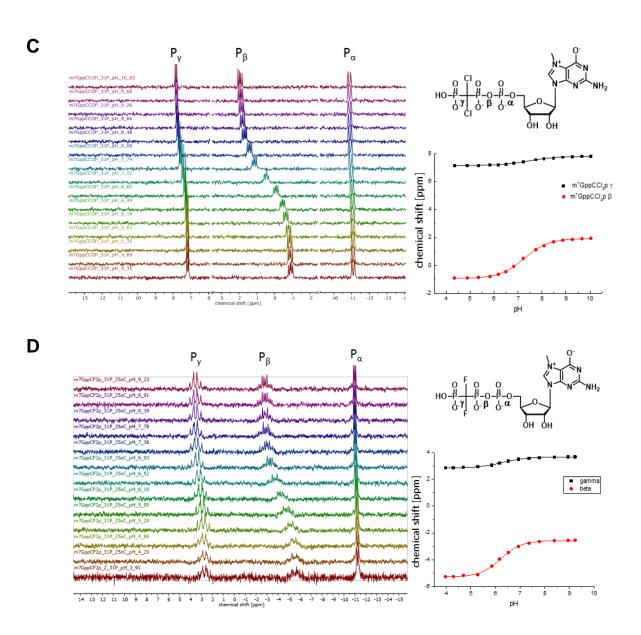
** pKa⁴ as determined using change of chemical shift for beta-phosphate.

 pK_a^4 using change of chemical shift for alpha-phosphates was not determined due to only small changes in chemical shifts for alpha-phosphates upon pH change. The mean pK_a^4 values were determined as weighted mean of pK_a^4 (gamma) and pK_a^4 (beta) values.

The collected data were fitted to DoseResp function in OriginLab software using fallowing equation:

chemical shift =
$$A_1 + \frac{(A_2 - A_1)}{1 + 10^{(pKa - pH)*p}}$$
 (1a)

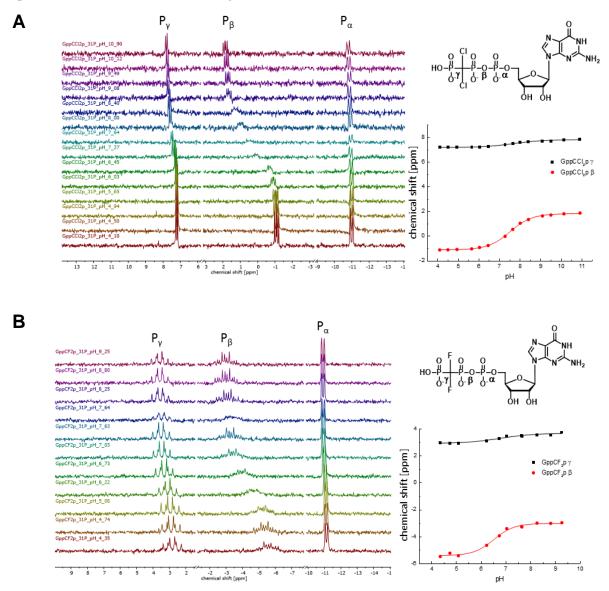

where the A_1 and A_2 are bottom and top asymptote respectively, **p** is the hill slope. The p K_a values were determined for both gamma and beta phosphate and the weighted average with uncertainties were calculated using equations 2_{a-c} .


$$\bar{x}_{w} = \frac{\sum_{i=1}^{N} \frac{x_{i}}{u_{i}^{2}}}{\sum_{i=1}^{N} \frac{1}{u_{i}^{2}}}$$
(2a)

$$u_{int} = \sqrt{\sum_{i=1}^{N} \frac{1}{u_i^2}} \tag{2b}$$

$$u_{ext} = \sqrt{\frac{u_{int}^2}{N-1} \sum_{i=1}^{N} (\frac{x_i - \bar{x}_w}{u_i})}$$
(2c)

Fig. S1 Titrations of cap analogues **2a-2d** as monitored by ³¹P NMR. The NMR spectra and titration curves for analogues **2d** (**A**), **2a** (**B**), **2b** (**C**) and **2c** (**D**).



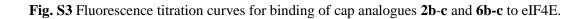
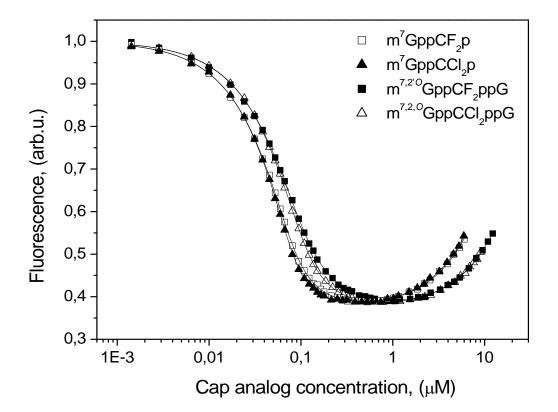
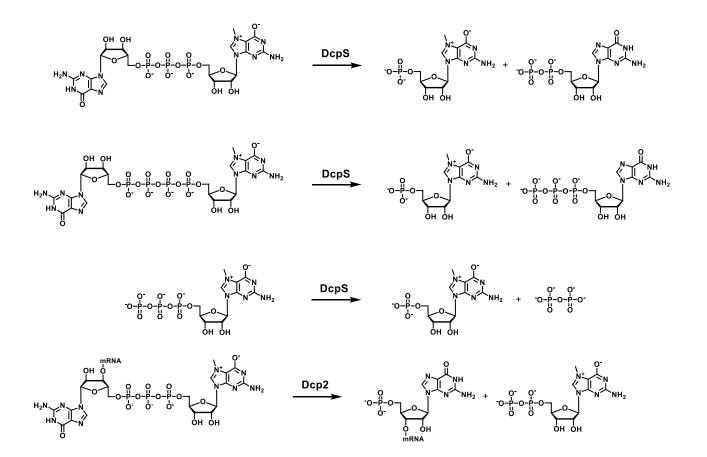
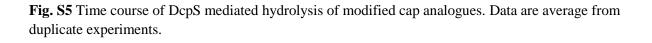

compound	pK ⁴ value*	compound	pK _a ⁴ value	compound	pK _a ⁴ value
Appp	7.1	Gppp	n.d.	m ⁷ Gppp	6.56±0.03
AppCH ₂ p	8.4	GppCH ₂ p	n.d.	m ⁷ GppCH ₂ p	8.63±0.01
AppCCl ₂ p	7.0	GppCCl ₂ p	7.49±0.03	m ⁷ GppCCl ₂ p	7.32±0.07
AppCF ₂ p	7.1	GppCF ₂ p	6.51±0.07	m ⁷ GppCF ₂ p	6.25±0.04

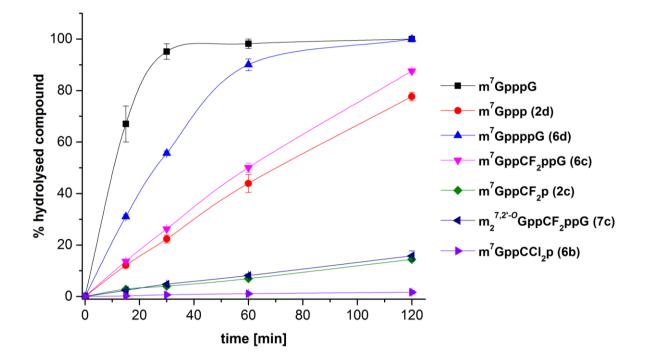
Table S2 Comparison for pK_a^4 values of mononucleoside triphosphates.

*Data from Blackburn et al.¹

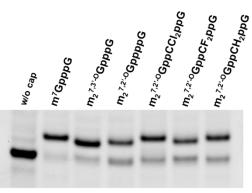
Fig. S2 Titrations of GppCCl₂p (**4b**) and GppCF₂p (**4c**) as monitored by ³¹P NMR. The NMR spectra and titration curves for analogues **4b** (**A**) and **4c** (**B**).

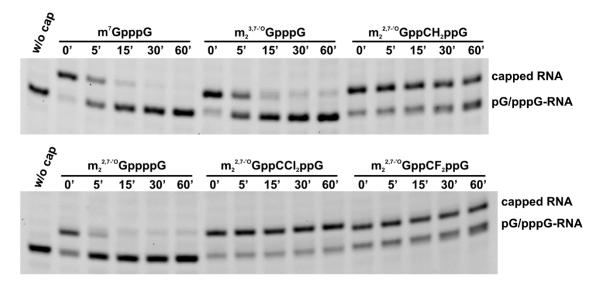

Fig. S4 DcpS and Dcp2 catalysed hydrolysis of various nucleotide substrates.

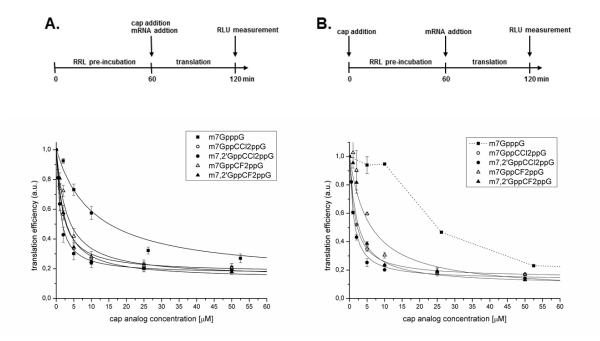


Cap analogue	% hydrolysis in given time				
-	15 min	30 min	60 min	120 min	
m ⁷ GpppG	67.0 ± 7.0	95.1 ± 3.0	98.2 ± 1.8	100 ± 0	
m ⁷ Gppp (2d)	12.1 ± 0.9	22.3 ± 1.6	43.9 ± 3.5	77.6 ± 1.6	
m ⁷ GppCH ₂ p (2a)	0	0	0	0	
m ⁷ GppCCl ₂ p (2b)	0.2 ± 0.2	0.7 ± 0.0	1.1 ± 0.3	1.7 ± 0.7	
m ⁷ GppCF ₂ p (2c)	2.9 ± 0.2	4.0 ± 0.8	6.9 ± 0.0	14.4 ± 0.6	
m ⁷ GppppG (6d)	31.0 ± 0.8	55.7 ± 0.8	90.0 ± 2.3	100 ± 0	
m ⁷ GppCH ₂ ppG (6a)	0	0	0	0	
m ⁷ GppCCl ₂ ppG (6b)	0	0	0	0	
m ⁷ GppCF ₂ ppG (6c)	13.7 ± 0.2	26.2 ± 0.4	50.1 ± 1.8	87.5 ± 0.4	
$m_2^{7,2^{L}-O}GppCCl_2ppG(\mathbf{7b})$	0	0	0	0	
m ₂ ^{7,2'-O} GppCF ₂ ppG (7c)	2.3 ± 0.4	4.7 ± 0.2	8.1 ± 0.7	15.7 ± 1.9	


Table S3 Hydrolysis of cap analogues by human DcpS as monitored by HPLC. Data are average from duplicate experiments.

 $m_2^{7,2-O}$ GppCH₂ppG (**7a**) was found to be resistant towards enzymatic hydrolysis by hDcpS in a similar assay conditions.² Error corresponds to standard deviation of two independent experimental points.


Fig. S6 Capping efficiencies (A) and susceptibilities (B) of 26-nt transcripts capped with various cap analogs to the hDcp2. Reactions were terminated at the indicated time points followed by denaturing PAGE, stained with SYBR Gold and visualized. Figure presents representative result of one biological repetition.


Α

86% 87% 61% 69% 67% 68%

В

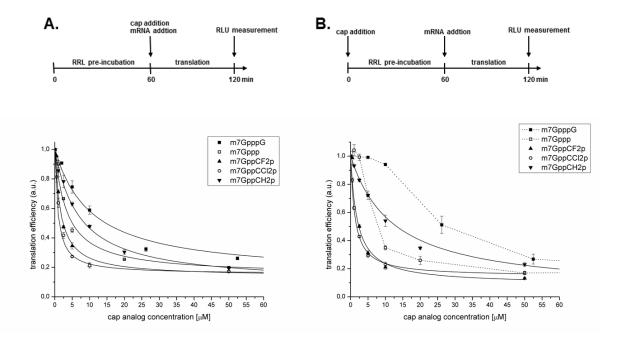


Fig. S7 Inhibition of translation of m₂^{7,3-0}GpppG-capped luciferase encoding mRNA in rabbit reticulocyte lysate (RRL) by dinucleotide cap analogues.

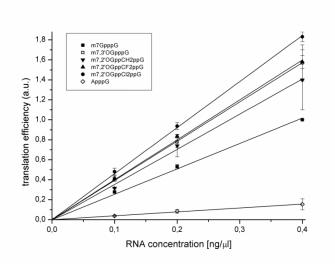

Inhibition of translation of $m_2^{7,3-O}$ GpppG-capped luciferase encoding mRNA in rabbit reticulocyte lysate (RRL) by m⁷GpppG, m⁷GppCF₂pG, m₂^{7,2-O}GppCF₂pG, m⁷GppCl₂pG and m₂^{7,2-O}GppCl₂pG. In experiment (A) the cap analogue and luciferase mRNA were added to RRL at the same time point. In experiment (B), to test stability of presented here cap analogues in reticulocyte lysate, the cap analogue was preincubated for 1 hour in RRL prior to addition of mRNA and start of translation. As it is seen in graph (B), the inhibitory properties of unmodified m⁷GpppG is significantly diminished upon incubation in RRL (dotted line). In both experiments the luciferase activity was measured after 1 hour after mRNA addition. In the figure are shown data of 3 independent inhibition experiments (±SE) and 2 stability experiments (±SE), normalized to the translation efficiency without cap analog.

Fig. S8 Inhibition of translation of $m_2^{7,3}$ -OGpppG-capped luciferase encoding mRNA in rabbit reticulocyte lysate (RRL) by mononucleotide cap analogues.

Inhibition of translation of $m_2^{7,3-O}$ GpppG-capped luciferase encoding mRNA in rabbit reticulocyte lysate (RRL) by m⁷GpppG, m⁷GTP, m⁷GppCF₂p, m⁷GppCl₂p and m⁷GppCH₂p. In experiment (A) the cap analogue and luciferase mRNA were added to RRL at the same time point. In experiment (B), to test stability of presented here cap analogues in reticulocyte lysate, the cap analogue was preincubated for 1 hour in RRL prior to addition of mRNA and start of translation. As it is seen in graph (B), the inhibitory properties of unmodified m⁷GpppG and m⁷GTP are significantly diminished upon incubation in RRL (dotted line). In both experiments the luciferase activity was measured after 1 hour after mRNA addition. In the figure are shown data of 3 independent inhibition experiments (±SE) and 2 stability experiments (±SE), normalized to the translation efficiency without cap analog.

Fig. S9 Translation efficiencies of mRNA encoding firefly luciferase capped with cap analogues 7a-7c.

Translation of mRNAs encoding firefly luciferase capped with $m_2^{7,2\cdot O}$ GppCF₂pG, $m_2^{7,2\cdot O}$ GppCl₂pG and $m_2^{7,2\cdot O}$ GppCH₂pG, and with standard caps: m⁷GpppG and $m_2^{7,3\cdot O}$ GpppG (Anti Reverse Cap Analog). Activity of luciferase (in RLU) synthesized in rabbit reticulocyte lysate were normalized to the activity obtained with m⁷GpppG-capped RNA at the highest concentration used. The mean of 3 independent translation experiments (± SE) and showed in the graph as a function of capped luciferase mRNA concentration (except $m_2^{7,2\cdot O}$ GppCF₂pG with 2 experiments). A transcript capped with non-functional ApppG dinucleotide was added as a control of cap-dependent translation in RRL. After linear fitting to the experimental data points the slope values (of the linear regression equation) calculated for the differentially capped luciferase RNAs were compared to the slope value obtained for m⁷GpppG-capped luciferase RNA that was set as = 1.

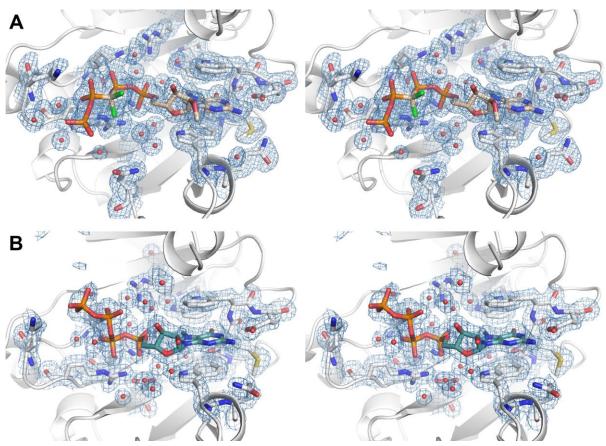

	eIF4E / 6d	eIF4E / 7b
PDB ID	5J50	5J5Y
Wavelength	0.9184	0.9184
Resolution range	36.82–1.867 (1.934–1.867)	37–1.748 (1.81–1.748)
Space group	P 1	P 1
Unit cell	37.99 38.03 146.64 88.553 84.704 76.667	38.04 38.06 146.74 88.356 95.626 103.544
Total reflections	156370 (10888)	194484 (14491)
Unique reflections	60259 (5024)	72988 (6391)
Multiplicity	2.6 (2.2)	2.7 (2.3)
Completeness (%)	0.91 (0.76)	0.91 (0.78)
Mean I/sigma(I)	10.46 (2.04)	12.26 (2.46)
Wilson B-factor	19.87	20.00
R-merge	0.07081 (0.5346)	0.05243 (0.3991)
R-meas	0.08663 (0.6678)	0.06398 (0.499)
CC1/2	0.995 (0.677)	0.997 (0.825)
CC*	0.999 (0.898)	0.999 (0.951)
Reflections used in refinement	60257 (5024)	72986 (6391)
Reflections used for R-free	2234 (187)	3650 (320)
R-work	0.2209 (0.2829)	0.2364 (0.2772)
R-free	0.2637 (0.3532)	0.2860 (0.3429)
CC(work)	0.915 (0.832)	0.904 (0.824)
CC(free)	0.894 (0.733)	0.856 (0.700)
Number of non-hydrogen atoms	6401	5784
macromolecules	5880	5431
ligands	160	82

 Table S4.
 Data collection and refinement statistics.

720	680	
0.008	0.007	
1.03	0.95	
96	95	
3.7	5.4	
0	0	
1.9	1.6	
6.70	5.77	
35.25	38.41	
35.35	38.69	
44.87	35.93	
29.32	33.48	
33	33	
	0.008 1.03 96 3.7 0 1.9 6.70 35.25 35.35 44.87 29.32	0.008 0.007 1.03 0.95 96 95 3.7 5.4 0 0 1.9 1.6 6.70 5.77 35.25 38.41 35.35 38.69 44.87 35.93 29.32 33.48

Statistics for the highest-resolution shell are shown in parentheses.

Fig. S10 Wall-eye stereo view of eIF4E/7d cap-binding pocket with 2Fo-Fc electron density map contoured at 1.0 sigma.

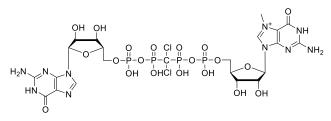
A - Wall-eye stereo view of eIF4E/7b (PDB id: 5J5Y) cap-binding pocket with 2Fo-Fc electron density map contoured at 1.0 sigma; B - Wall-eye stereo view of eIF4E/6d (PDB id: 5J5O) cap-binding pocket with 2Fo-Fc electron density map contoured at 1.0 sigma.

Supplementary information – synthesis

General information

Reagents were purchased from Sigma-Aldrich and used without further purification, unless otherwise stated. Water used in the experiments was double distilled using MiliQ Milipore apparatus. Acetone was distilled over phosphorous pentoxide, triethylamine was distilled over potassium hydroxide and tetrahydrofurane was distilled over sodium. Dimethylformamide, dimethylsulfoxide and trimethylphosphate were kept over 4Å molecular sieves.

The nucleotides were purified by ion-exchange chromatography on a DEAE-Sephadex A-25 (HCO₃⁻ form) column. A column was loaded with the reaction mixture and washed thoroughly with water (until the eluate did not precipitate with AgNO₃ solution) to elute all material that does not bind to the resin. Then, the nucleotides were eluted using a linear gradient of triethylammonium hydrogen carbonate (TEAB) in deionized water. Fractions were analyzed spectrophotometrically at 260 nm and those containing the desired product were analyzed by reverse-phase HPLC and combined. After evaporation under reduced pressure with the repeated addition of ethanol to decompose TEAB, compounds were isolated as triethylammonium (TEA) salt. Yields were calculated on the basis of either sample weight or, preferably, optical density milliunits (mOD) of the product. Optical measurements for m7G mononucleotides were performed in 0.1 M phosphate buffer pH = 6 at 260 nm assuming $\varepsilon_{260} = 11400$ cm⁻¹ M⁻¹ for calculations. For guanine nucleotides and dinucleotide cap analogs measurements were conducted in 0.1 M phosphate buffer pH = 7 at 260 nm, assuming $\varepsilon_{260} = 12080$ cm⁻¹ M⁻¹ and $\varepsilon_{260} = 22600$ cm⁻¹ M⁻¹, respectively.

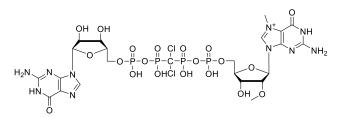

Analytical RP HPLC was performed with a Series 1200 instrument from Agilent Technologies on a Supelcosil LC-18-T HPLC column (4.6 x 250 mm, flow rate 1.3 mL min⁻¹) with a 0-25% linear gradient of methanol in 0.05 M ammonium acetate buffer (pH 5.9) for 15 min. Absorbance was monitored at 260 nm, while fluorescence was recorded at an excitation wavelength of 260 nm and an emission wavelength of 370 nm. Semi-preparative HPLC was performed on the same apparatus equipped with a Discovery Reverse-Phase Amide C-16 HPLC column (25 cm x 21.2 mm, 5 μ m, flow rate 5.0 mL min⁻¹) and UV detection at 254 nm. The purity and homogeneity of each final product were confirmed by RP HPLC, high resolution mass spectrometry HRMS (ES⁻) and ¹H NMR and ³¹P NMR spectroscopy. Mass spectra were recorded with a high resolution LTQ Orbitrap Velos (Thermo Scientific). NMR spectra were recorded at 25 °C with a Varian UNITY-plus spectrometer at 399.94 MHz (¹H NMR) and 161.90 MHz (³¹P NMR). All chemical shifts (δ) are given in ppm and coupling constants (*J*) are given in Hz. ¹H NMR chemical shifts were calibrated to sodium 3-trimethylsilyl-[2,2,3,3-D4]-propionate (TSP) in D2O as an internal standard. ³¹P NMR files were processed using ACD/Labs 12.0 Software.

Synthesis of previously described compounds

Methylenebisphosphonate containing analogues: $m^{7}GppCH_{2}ppG$ (**6a**)^{*I*} and $m_{2}^{7,2'-O}GppCH_{2}ppG$ (**7a**)^{*I*}, imidazolide derivatives: $m^{7}Gmp-Im$ (**1**)^{*3*}, Gmp-Im (**3**)^{*4*} and $m_{2}^{7,2'-O}Gmp-Im$ (**5**)^{*4*} and analogues unmodified in the polyphosphate bridge: $m^{7}GpppG$ (**6d**)^{*5*}, $m_{2}^{7,2'-O}GppppG$ (**7d**)^{*4*}, $m_{2}^{7,3'-O}GppppG^{4}$, $m^{7}GpppG^{5}$ and $m^{7}Gppp$ (**2d**) were obtained as previously described.

Synthesis of m⁷GppCCl₂ppG

P1-(7-methylguanosin-5´-yl) P4-guanosin-5´-yl 2,3-dichloromethylenetetraphosphate

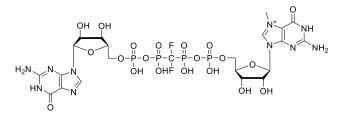


m⁷Gmp-Im (108 mg, 0.24 mmol) and GppCCl₂p (TEA salt, 85 mg, 0.095 mmol) were mixed in anhydrous DMF (4 ml) followed by addition of anhydrous ZnCl₂ (103 mg, 0.76 mmol). After 4 h reaction was

completed and quenched by addition of solution of EDTA (283 mg, 0.76 mmol) and NaHCO₃ (142 mg, 1.69 mmol) in water. Product was purified employing ion-exchange chromatography (Sephadex resin) and obtained as glassy solid (TEA salt, 1188 opt. u., 0.057 mmol, 60%). Further purification was performed using preparative HPLC yielding in 35.5 mg of final compound (NH₄⁺ salt, 0.035 mmol, 37%). ¹**H NMR** (400 MHz, D₂O): δ 9.20 (1 H, s, H8_{m7G}), 8.05 (1 H, s, H8_G), 5.98 (1H, d, *J*_{1'-2'} = 3.3 Hz, H1'_{m7G}), 5.84 (1H, d, *J*_{1'-2'} = 6.2 Hz, H1'_G), 4.73 (1H, dd, *J*_{1'-2'} = 6.2 Hz, *J*_{2'-3'} = 5.4 Hz, H2'_G), 4.64 (1H, dd, *J*_{1'-2'} = 3.3 Hz, *J*_{2'-3'} = 5.1 Hz, H2'_{m7G}), 4.54 (1H, m, H3'_{m7G}), 4.50 (1H, dd, *J*_{2'-3'} = 5.4 Hz, *J*_{3'-4'} = 4.4 Hz, H3'_G), 4.41-4.25 (6H, m; H4'_{m7G}, H4'_G, H5'_{m7G}, H5'_G, H5''_{m7G}, H5''_G), 4.08 (3H, s, CH₃); ³¹**P NMR** (162 MHz, D₂O) δ -10.81 (2P; Pα,δ), -1.41 (2P; Pβ,γ). **HRMS** (ESI⁻) calc. for C₂₂H₂₉Cl₂N₁₀O₂₀P4⁻ requires 946.9893, found 946.9901.

Synthesis of m27,2'-OGppCCl2ppG

P1-(7, 2'-O-dimethylguanosin-5'-yl) P4-guanosin-5'-yl 2,3-dichloromethylenetetraphosphate

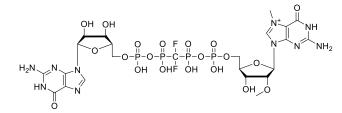


 $m_2^{7,2^{\circ}-O}$ Gmp-Im (90 mg, 0.19 mmol) and GppCCl₂p (TEA salt, 57 mg, 0.064 mmol) were mixed in anhydrous DMF (3 ml) followed by addition of anhydrous ZnCl₂ (70 mg, 0.51 mmol). After 4 h reaction was completed and

quenched by addition of solution of EDTA (190 mg, 0.51 mmol) and NaHCO₃ (95 mg, 1.13 mmol) in water. Product was purified employing ion-exchange chromatography (Sephadex resin) and obtained as glassy solid (TEA salt, 900 opt. u., 0.043 mmol, 67%). Final compound was changed into sodium salt on Dowex (Na⁺ form) yielding 36.7 mg of final compound (0.035 mmol, 55%). ¹H NMR (400 MHz, D₂O): δ 9.20 (1 H, s, H8_{m7G}), 8.76 (1 H, s, H8_G), 6.07 (1H, d, $J_{1'-2'} = 3.1$ Hz, H1'_{m7G}), 5.96 (1H, d, $J_{1'-2'} = 4.6$ Hz, H1'_G), 4.68 (1H, t, $J_{1'-2'/2'-3'} = 4.8$ Hz, H2'_G), 4.60 (1H, t, $J_{2'-3'/3'-4'} = 5.3$ Hz, H3'_{m7G}), 4.54 (1H, t, $J_{2'-3'/3'-4'} = 4.4$ Hz, H3'_G), 4.40-4.24 (6H, m; H4'_{m7G}, H4'_G, H5'_{m7G}, H5'_G, H5''_{m7G}, H5''_G), 4.10 (3H, s, CH₃), 3.58 (3H, s OCH₃); ³¹P NMR (162 MHz, D₂O) δ -10.78 (2P; Pα,δ), -1.35 (2P; Pβ,γ). HRMS (ESF) calc. for C₂₃H₃₁Cl₂N₁₀O₂₀P₄⁻ requires 961.0049, found 961.0056.

Synthesis of m⁷GppCF₂ppG

P1-(7-methylguanosin-5´-yl) P4-guanosin-5´-yl 2,3-difluoromethylenetetraphosphate



 m^{7} Gmp-Im (50 mg, 0.132 mmol) and GppCF₂p (ammonium salt, 55 mg, 0.088 mmol) were mixed in anhydrous DMF (2 ml) followed by addition of anhydrous ZnCl₂ (96 mg, 0.70 mmol). After 4 h reaction was

completed and quenched by addition of solution of EDTA (260 mg, 0.70 mmol) and NaHCO₃ (130 mg, 1.56 mmol) in water. Product was purified employing ion-exchange chromatography (Sephadex resin) and obtained as glassy solid (TEA salt, 920 opt. u., 0.044 mmol, 50%). Further purification was performed using preparative HPLC yielding in 17.7 mg of final compound (NH₄⁺ salt, 0.018 mmol, 20%). Final compound was changed into sodium salt on Dowex (Na⁺ form) yielding 17.9 mg of final compound (0.018 mmol, 20%). ¹**H NMR** (400 MHz, D₂O): δ 9.12 (1 H, s, H8_{m7G}), 8.04 (1 H, s, H8_G), 5.98 (1H, d, $J_{1'-2'} = 3.7$ Hz, H1'_{m7G}), 5.85 (1H, d, $J_{1'-2'} = 6.5$ Hz, H1'_G), 4.74 (1H, t, $J_{1'-2'/2'-3'} = 5.7$ Hz, H2'_G), 4.65 (1H, t, $J_{1'-2'/2'-3'} = 4.4$ Hz, H2' m_{7G}), 4.52 (1H, dd, $J_{2'-3'} = 5.0$ Hz, $J_{4'-3'} = 3.0$ Hz, H3'_{m7G}), 4.49 (1H, t, $J_{2'-3'/4'-3'} = 4.9$ Hz, H3'_G), 4.19-4.43 (6H, m; H4'_{m7G}, H4'_G, H5'_{m7G}, H5'_G, H5''_{m7G}, H5''_G), 4.08 (3H, s, CH₃); ³¹**P NMR** (162 MHz, D₂O) δ -11.08 (2P; Pα,δ), -6.37 (2P; Pβ,γ). **HRMS** (ESI⁻) calc. for C₂₂H₂₉F₂N₁₀O₂₀P₄⁻ requires 915.0484, found 915.0501.

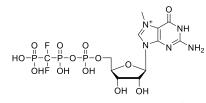
Synthesis of m27,2'-OGppCF2ppG

P1-(7,2'-O-dimethylguanosin-5'-yl) P4-guanosin-5'-yl 2,3-difluoromethylenetetraphosphate

 $m^{7,2^{1}-O}$ Gmp-Im (45 mg, 0.096 mmol) and GppCF₂p (ammonium salt, 40 mg, 0.064 mmol) were mixed in anhydrous DMF (1 ml) followed by addition of anhydrous ZnCl₂ (32 mg, 0.24 mmol). After 4 h reaction was

completed and quenched by addition of solution of EDTA (90 mg, 0.24 mmol) and NaHCO₃ (42 mg, 0.50 mmol) in water. Product was purified employing ion-exchange chromatography (Sephadex resin) and obtained as glassy solid (TEA salt, 1010 opt. u., 0.048 mmol, 55%). Further purification was performed using preparative HPLC yielding in 20.0 mg of final compound (NH₄⁺ salt, 0.020 mmol, 37%). Final compound was changed into sodium salt on Dowex (Na⁺ form) yielding 20.5 mg of final compound (0.021 mmol, 33%). ¹**H NMR** (400 MHz, D₂O): δ 8.02 (1 H, s, H8_G), 6.01 (1H, br.s., H1'm₇G), 5.82 (1H, d, $J_{1'-2'} = 6.7$ Hz, H1'G), 4.73 (1H, t, $J_{1'-2'/2'-3'} = 5.6$ Hz, H2'G), 4.56 (1H, t, $J_{2'-3'/3'-4'} = 5.4$ Hz, H3'm₇G), 4.49-4.53 (1H, m, H3'G), 4.20-4.43 (6H, m; H4'm₇G, H4'G, H5'm₇G, H5'G, H5''m₇G, H5''G), 4.09 (3H, s, CH₃), 3.59 (3H, s OCH₃); ³¹**P NMR** (162 MHz, D₂O) δ -11.11 (2P; Pα,δ), -6.35 (2P; Pβ,γ). **HRMS** (ESI⁻) calc. for C₂₃H₃₁F₂N₁₀O₂₀P₄⁻ requires 929.0640, found 929.0656.

Synthesis of m⁷GppCCl₂p


P1-(7-methylguanosin-5'-yl) 2,3-(dichloromethylene)triphosphate

To a suspension of dichlorobisphosphonate triethylammonium salt (400 mg, 1.20 mmol) in DMF (4 ml) anhydrous zinc chloride (164 mg, 1.21 mmol) was added, and the mixture was shaken until reagents dissolved. Then 7-methylguanosine imidazolide (1700 opt. u., 0.15 mmol) was added, followed by addition of another portion

of zinc chloride (164 mg, 1.21 mmol). The reaction was quenched after 4 hours by addition of water solution of EDTA (897 mg, 2.41 mmol) and NaHCO₃ (449 mg, 5.34 mmol). Product was purified employing ion-exchange chromatography on Sephadex resin in linear gradient from 0 to 1.1 M TEAB. Collected fractions were evaporated with several additions of ethanol yielding m⁷GppCCl₂p as treithylammonium salt (1020 opt.u., 0.089 mmol, 60%). Further purification was done by preparative HPLC. Collected fractions were freeze-dried severeal times until mass of the sample remained constant. Product was obtained as ammonium salt (26.6 mg, 0.041 mmol, 27%). ¹**H NMR** (400 MHz, D_2O): δ 6.07 (1H, d, $J_{1'-2'} = 3.4$ Hz, H1'), 4.70 (1H, dd, $J_{1'-2'} = 3.4$ Hz, $J_{2'-3'} = 4.6$ Hz, H2'), 4.58 (1H, dd, $J_{2'-3'} = 3.4$ Hz, $J_{2'-3'} = 4.6$ Hz, H2'), 4.58 (1H, dd, $J_{2'-3'} = 3.4$ Hz, $J_{2'-3'} = 3$ 4.6 Hz, *J*_{3'.4'} = 5.7 Hz, H3'), 4.43-4.30 (3H, m, H4', H5', H5''), 4.14 (3H, s, CH₃); ³¹P NMR (162 MHz, D₂O) δ 7.90 (1P, d, J = 17.8Hz, P γ), 0.88 (1P, dd, J = 17.5Hz, J = 29.9 Hz, P β), -10.58 (1P, d, J = 30.3Hz, Pα). **HRMS** (ESI⁻) calc. for C₁₂H₁₇Cl₂N₅O₁₃P₃⁻ requires 601.9418, found 601.9425.

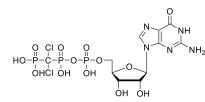
Synthesis of m⁷GppCF₂p

P1-(7-methylguanosin-5'-yl) 2,3-(difluoromethylene)triphosphate

To a suspension of difluorobisphosphonate triethylammonium salt $HO_{-P-C}^{O} \xrightarrow{F} O_{-P-O}^{O} \xrightarrow{O} \xrightarrow{V} \xrightarrow{N+} \xrightarrow{N+$ reagents dissolved. Then 7-methylguanosine imidazolide (1230 opt.

u., 0.11 mmol) was added, followed by addition of another portion of zinc chloride (150 mg, 1.10 mmol). The reaction was quenched after 4 hours by addition of water solution of EDTA (821 mg, 2.21 mmol) and NaHCO₃ (410 mg, 5.34 mmol). Product was purified employing ion-exchange chromatography on Sephadex resin in linear gradient from 0 to 1.1 M TEAB. Collected fractions were evaporated with several additions of ethanol yielding m^7GppCF_2p as treithylammonium salt (1032) opt.u., 0.091 mmol, 82%). Further purification was done by preparative HPLC. Collected fractions were freeze-dried severeal times until mass of the sample remained constant. Product was obtained as ammonium salt (31 mg, 0.049 mmol, 44%). ¹H NMR (400 MHz, D₂O) δ ppm 9.22 (1H, s, H8), 6.08 $(1H, d, J_{1'-2'} = 3.7 \text{ Hz}, H1'), 4.71 (1H, dd, J_{1'-2'} = 3.7 \text{ Hz}, J_{2'-3'} = 4.7 \text{ Hz}, H2'), 4.58 (1H, dd, J_{2'-3'} = 4.7 \text{ Hz})$ Hz, *J*_{3'.4'} = 5.5 Hz, H3'), 4.39 - 4.43 (1H, m, H4'), 4.35 (1H, m, H5'), 4.31 (1H, m, H5''), 4.14 (3H, s, CH₃). ³¹**P** NMR (162 MHz, D₂O) δ 3.49 (1P, td, J = 75 Hz, J = 57 Hz, P γ), -3.51 (1P, m, P β), -10.90 $(1P, d, J = 31.0 \text{ Hz}, P\alpha)$. **HRMS** (ESI⁻) calc. for C₁₂H₁₇F₂N₅O₁₃P₃⁻ requires 570.0009, found 570.0014.

Synthesis of m⁷GppCH₂p


P1-(7-methylguanosin-5'-yl) 2,3-methylenetriphosphate

To a suspension of bisphosphonate triethylammonium salt (359 mg, 0.95 mmol) in DMF (4 ml) anhydrous zinc chloride (240 mg, 1.76 mmol) was added, and the mixture was shaken until reagents dissolved. Then 7-methylguanosine imidazolide (1248 opt. u., 0.11

mmol) was added, followed by addition of another portion of zinc chloride (240 mg, 1.76 mmol). The reaction was quenched after 4 hours by addition of water solution of EDTA (1.313 g, 3.53 mmol) and NaHCO₃ (657 mg, 7.82 mmol). Product was purified employing ion-exchange chromatography on Sephadex resin in linear gradient from 0 to 1.1 M TEAB. Collected fractions were evaporated with several additions of ethanol yielding m⁷GppCH₂p as treithylammonium salt (673 opt.u., 0.059 mmol, 54%). Product was changed into sodium salt on Dowex resin (Na⁺ form). ¹H NMR (400 MHz, D₂O) δ ppm 5.96 (1H, d, $J_{1'\cdot2'}$ = 3.6 Hz, H1'), 4.56 (1H, dd, $J_{1'\cdot2'}$ = 3.7 Hz, $J_{2'\cdot3'}$ = 4.9 Hz, H2'), 4.42 (1H, t, J = 5.2 Hz, H3'), 4.29 (1H, dq, $J_{3'\cdot4'}$ = 5.1 Hz, $J_{4'\cdot5}$ = 2.6 Hz, H4'), 4.23 (1H, m, H5'), 4.15 (1H, m, H5''), 4.01 (s, 3H), 2.21 (dd, J = 20.8, J = 19.9 Hz, 2H). ³¹P NMR (162 MHz, D₂O) δ 15.03 (1P, d, J = 8.8 Hz, Pγ), 10.21 (1P, dd, J = 26.5, J = 8.9, Pβ), -10.16 (1P, d, J = 26.4 Hz, Pα). HRMS (ESΓ) calc. for C₁₂H₁₉N₅O₁₃P₃⁻ requires 534.0192, found 534.0195.

Synthesis of GppCCl₂p

P1-guanosin-5'-yl-2,3-(dichloromethylene)triphosphate

To a suspension of dichlorobisphosphonate triethylammonium salt (720 mg, 1.61 mmol) in DMF (5 ml) anhydrous zinc chloride (218 mg, 1.61 mmol) was added, and the mixture was shaken until reagents dissolved. Then guanosine monophosphate imidazolide

(200mg, 0.46 mmol) was added followed by addition of another portion of zinc chloride (218 mg, 1.61 mmol). The reaction was quenched after 4 hours by addition of water solution of EDTA (1120 mg, 3.2 mmol) and NaHCO₃ (590 mg, 7.04 mmol). Product was purified employing ion-exchange chromatography on Sephadex resin in linear gradient from 0 to 1.2 M TEAB. Collected fractions were evaporated with several additions of ethanol yielding GppCCl₂p as treithylammonium salt (370 mg, 0.41 mmol, 89%). ¹H NMR (400 MHz, D₂O): δ 8.12 (1H, s, H8_G), 5.93 (1H, d, $J_{1'-2'} = 6.5$ Hz, H1'), 4.85 (1H, t, $J_{1'-2'/2'-3'} = 5.7$ Hz, H2'), 4.60 (1H, dd, $J_{2'-3'} = 5.2$ Hz, $J_{3'-4'} = 3.2$ Hz, H3'), 4.36 (1H, m, H4') 4.33-4.21 (2H, m, H5', H5''), 3.21 (q, J = 7.5 Hz, CH_2CH_3), 1.29 (t, J = 7.3 Hz, CH_2CH_3); ³¹P NMR (162 MHz, D₂O) δ 7.71 (1P, d, J = 17.8 Hz, P γ), -0.65 (1P, dd, J = 19.4 Hz, J = 30.1 Hz, P β), -10.61 (1P, d, J = 29.8 Hz, P α). HRMS (ESF) calc. for C₁₁H₁₅Cl₂N₅O₁₃P₃⁻ requires 587.9262, found 587.9267.

Synthesis of GppCCl₂p

P1-guanosin-5'-yl-2,3-(dichloromethylene)triphosphate

0

To a suspension of dichlorobisphosphonate triethylammonium salt (720 mg, 1.61 mmol) in DMF (5 ml) anhydrous zinc chloride (218 mg, 1.61 mmol) was added, and the mixture was shaken until reagents dissolved. Then guanosine monophosphate imidazolide

(200mg, 0.46 mmol) was added followed by addition of another portion of zinc chloride (218 mg, 1.61 mmol). The reaction was quenched after 4 hours by addition of water solution of EDTA (1120 mg, 3.2 mmol) and NaHCO₃ (590 mg, 7.04 mmol). Product was purified employing ion-exchange chromatography on Sephadex resin in linear gradient from 0 to 1.2 M TEAB. Collected fractions were evaporated with several additions of ethanol yielding GppCCl₂p as treithylammonium salt (370 mg, 0.41 mmol, 89%). ¹**H NMR** (400 MHz, D₂O): δ 8.12 (1H, s, H8_G), 5.93 (1H, d, $J_{1'\cdot2'} = 6.5$ Hz, H1'), 4.85 (1H, t, $J_{1'\cdot2'/2'\cdot3'} = 5.7$ Hz, H2'), 4.60 (1H, dd, $J_{2'\cdot3'} = 5.2$ Hz, $J_{3'\cdot4'} = 3.2$ Hz, H3'), 4.36 (1H, m, H4') 4.33-4.21 (2H, m, H5', H5''), 3.21 (q, J = 7.5 Hz, CH_2CH_3), 1.29 (t, J = 7.3 Hz, CH_2CH_3); ³¹**P NMR** (162 MHz, D₂O) δ 7.71 (1P, d, J = 17.8 Hz, P γ), -0.65 (1P, dd, J = 19.4 Hz, J = 30.1 Hz, P β), -10.61 (1P, d, J = 29.8 Hz, P α). **HRMS** (ESI') calc. for C₁₁H₁₅Cl₂N₅O₁₃P₃⁻ requires 587.9262, found 587.9267. Synthesis of GppCF₂p

P1-guanosin-5'-yl-2,3-(difluoromethylene)triphosphate

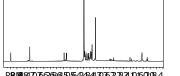
To a suspension of dichlorobisphosphonate triethylammonium salt (700 mg, 1.70 mmol) in DMF (5 ml) anhydrous zinc chloride (218 mg, 1.61 mmol) was added, and the mixture was shaken until reagents dissolved. Then guanosine monophosphate imidazolide

(200mg, 0.46 mmol) was added followed by addition of another portion of zinc chloride (218 mg, 1.61 mmol). The reaction was quenched after 4 hours by addition of water solution of EDTA (1120 mg, 3.2 mmol) and NaHCO₃ (590 mg, 7.04 mmol). Product was purified employing ion-exchange chromatography on Sephadex resin in linear gradient from 0 to 1.2 M TEAB. Collected fractions were evaporated with several additions of ethanol yielding GppCF₂p as treithylammonium salt (224mg, 0.26 mmol, 57%). ¹H NMR (400 MHz, D₂O): δ 8.30 (1H, s, H8_G), 5.86 (1H, d, $J_{1'-2'} = 5.5$ Hz, H1'), 4.62 (1H, t, $J_{1'-2'/2'-3'} = 5.2$ Hz, H2'), 4.45 (1H, dd, $J_{2'-3'/3'-4'} = 4.2$ Hz, H3'), 4.28 (1H, m, H4') 4.16 (2H, m, H5', H5''), 3.10 (q, J = 7.3 Hz, CH_2CH_3), 1.18 (t, J = 7.3 Hz, CH_2CH_3); ³¹P NMR (162 MHz, D₂O) δ 7.71 (1P, td, $J = 77.9 \times 2$, J = 58.8 Hz, P γ), -4.08 (1P, m, P β), -10.63 (1P, d, J = 31.3 Hz, P α). HRMS (ESI') calc. for C₁₁H₁₅F₂N₅O₁₃P₃⁻ requires 555.9853, found 555.98538.

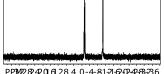
Synthesis of methylenedifluorobisphosphonate

O F O || - | - || HO-P-C-P-OH OHF OH

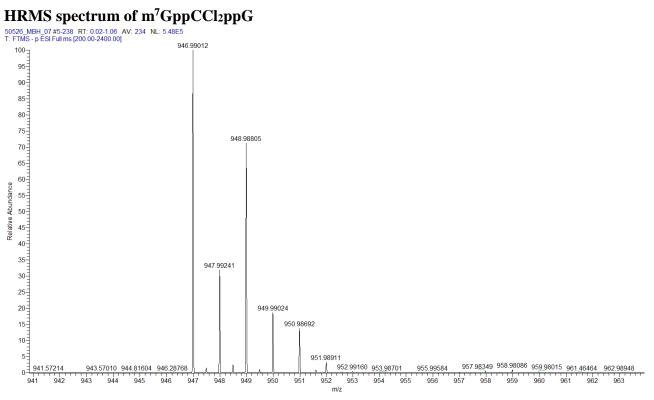
2 TFA

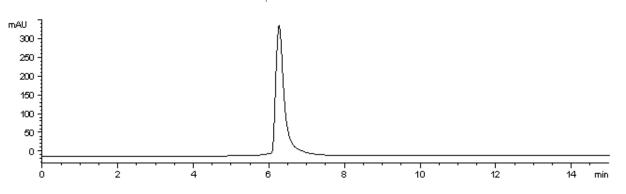

Tetraisopropyl methylenebisphosphonate (2.6 mL, 8.1 mmol) was placed in the oven dried two-neck roundbottom flask fitted with reflux condenser and flushed with argon. To the flask 20 mL of NaHMDS (1 M solution in THF, 20 mmol) was added and

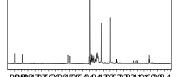
mixture was stirred for 5 min. To the resultant mixture solution of N-Fluorobenzenesulfonimide (NFSi) in dry THF (9.58 g of NFSi reagent dissolved in 30 mL of dry THF, 30.4 mmol) was added in the increments of 6 mL. Addition of each increment of NFSi solution was followed by addition of 6 mL of 1M THF solution of NaHMDS (to the total volume of 24 mL of NaHMDS solution). During additions the formation of creamy brown precipitate was observed. Reaction was stirred for additional hour and the precipitate was filtered off and washed with hexane. The filtrate was concentrated *in vacuo* to yield brown oil which dissolved in dichloromethylene enad washed with 1M aqueous solution of sodium bicarbonate. Organic layer was dried over magnesium sulphate, filtered, concentrated *in vacuo* and subjected to column chromatography on silica (chloroform/ ethyl acetate, 0-50%). Product was eluted with 15% ethyl acetate, followed by monofluorination product and unreacted substrate. The tetraisopropyl difluorobisphosphonate was obtained as a pale yellow oil (1.32 g, 3.5 mmol, 43%).

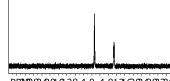

The obtained tetraisopropyl difluorobisphosphonate (1.32 g, 3.5 mmol) was dissolved in dichloromethylene (5 mL) and then transferred to the flask fitted with reflux condenser with tube filled with calcium chloride. To resulting solution TMSBr was added (2.3 mL, 17.4 mmol) and mixture was refluxed for 16 h. Afterwards flask was cooled down to the room temperature and 2.5 mL of methanol was added dropwise. Resultant brown solution was evaporated with two portions (10 mL) of methanol and then treated with 25 mL of water. Mixture was extracted with ethyl acetate until aqueous solution become colourless. The trimethylamine was added (0.98 mL, 7 mmol) to the aqueous phase and resulting mixture was evaporated *in vacuo* to yield pale brown glassy solid.

¹⁹**F NMR** (376 MHz, D₂O): δ -121.42 (2F, t, J = 83.7 Hz); ³¹**P NMR** (162 MHz, D₂O) δ 3.44 (2P, t, J = 83.8 Hz). **HRMS** (ESI⁻) calc. for CH₃F₂O₆P₂⁻ requires 210.9378, found 210.9371.

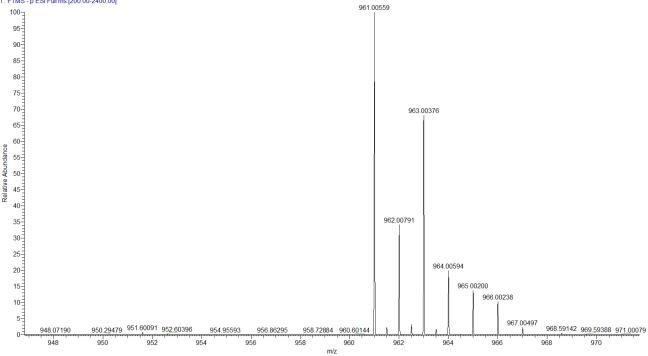

¹H NMR spectrum of m⁷GppCCl₂ppG


³¹P NMR spectrum of m⁷GppCCl₂ppG

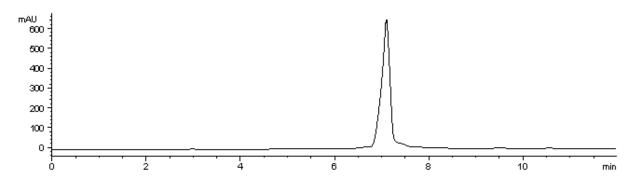

PP 22 22 1 6 28 4 0 - 4 81 2 20 28 28 6 1 5 8 9 1 7 9 1 2 9

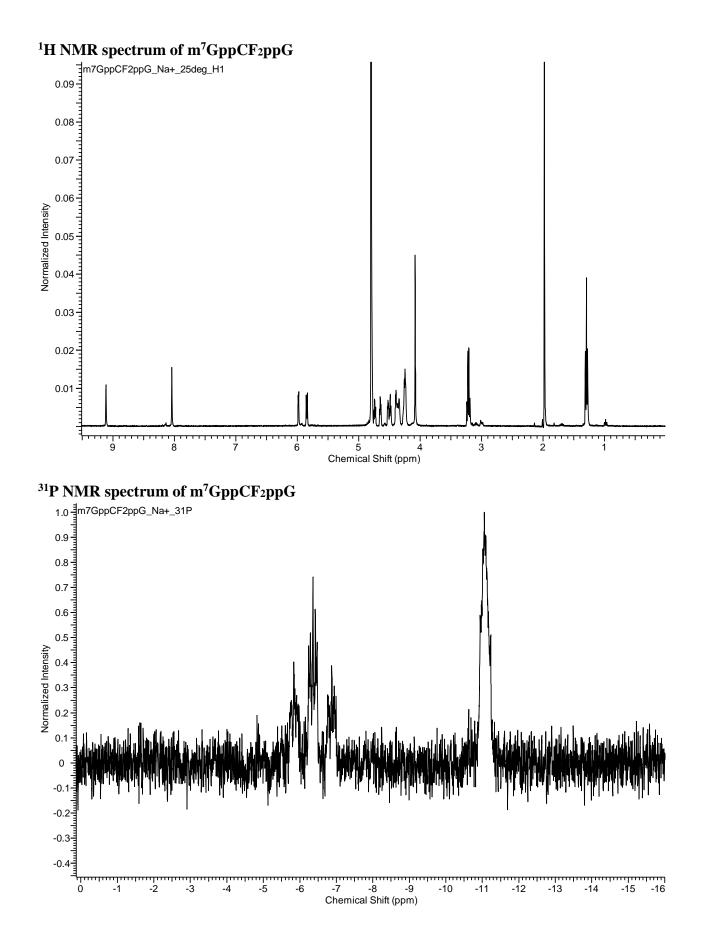

HPLC profile of m⁷GppCCl₂ppG

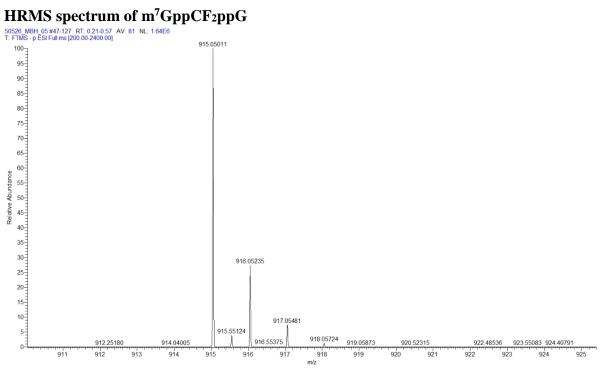
¹H NMR spectrum of m2^{7,2'-O}GppCCl2ppG

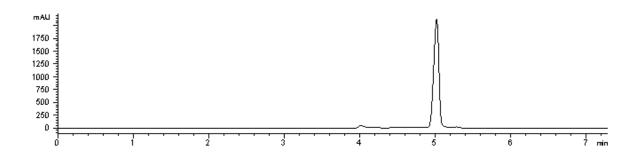


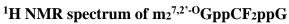
³¹P NMR spectrum of m₂^{7,2'-O}GppCCl₂ppG

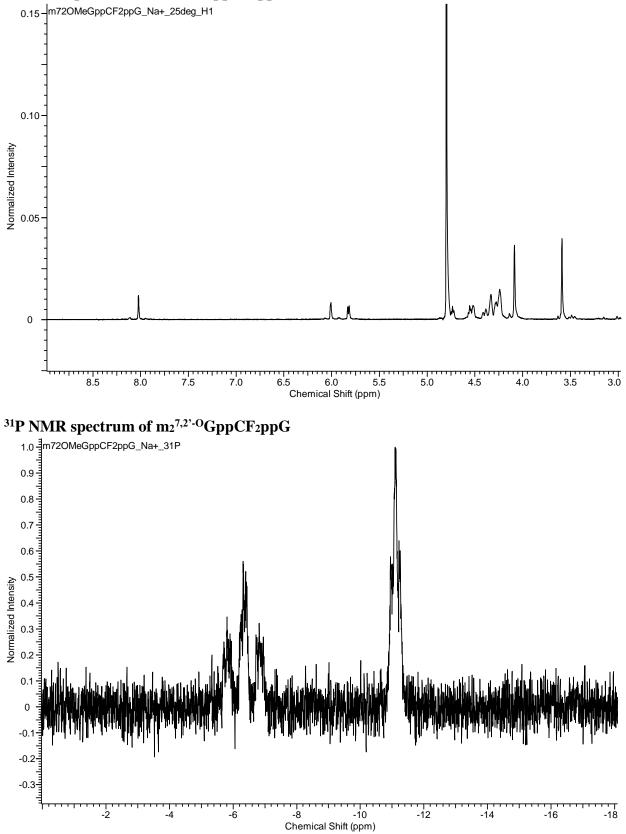



HRMS spectrum of m2^{7,2'-O}GppCCl2ppG 50526_MBH_03 #6-193_RT: 0.03-0.86_AV: 188_NL: 1.38E6 T: FTMS - p ESI Full ms [200.00-2400.00]

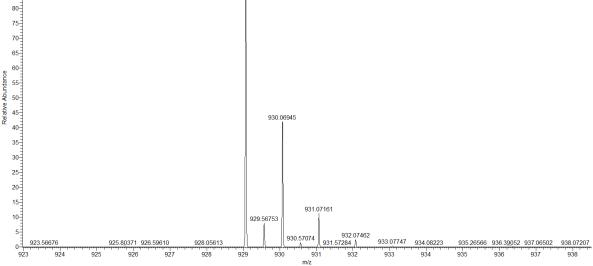


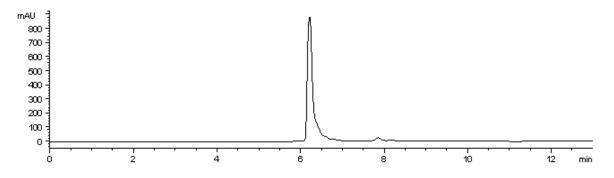

HPLC profile of m2^{7,2'-O}GppCCl2ppG

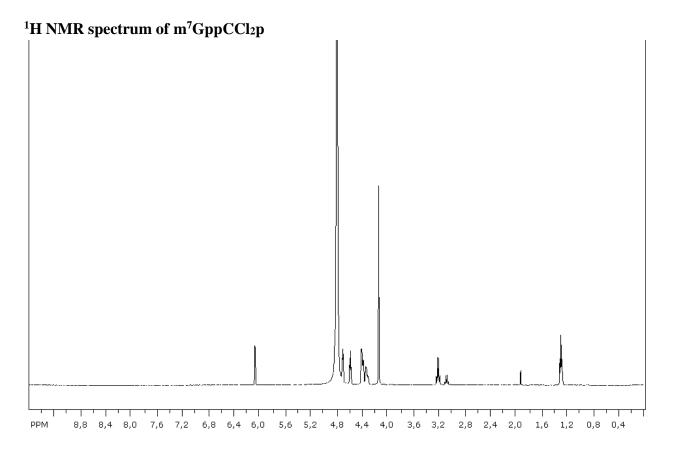


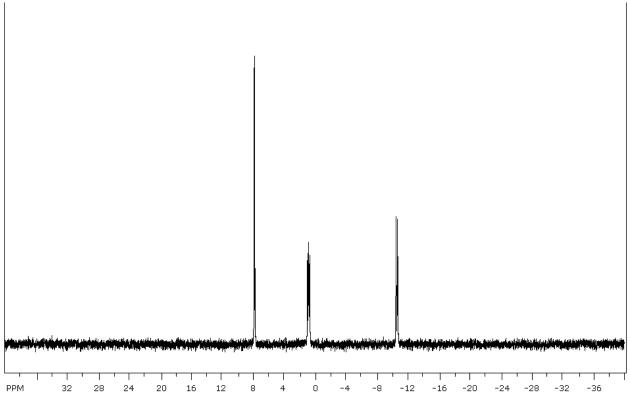


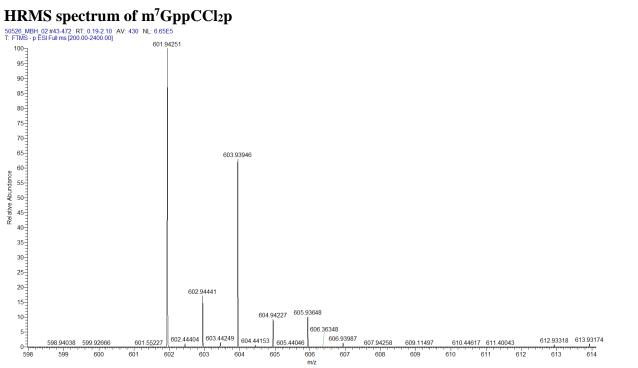
HPLC profile of m⁷GppCF₂ppG

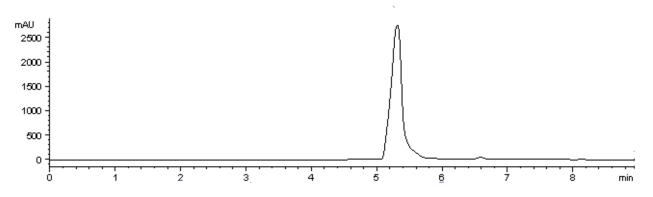


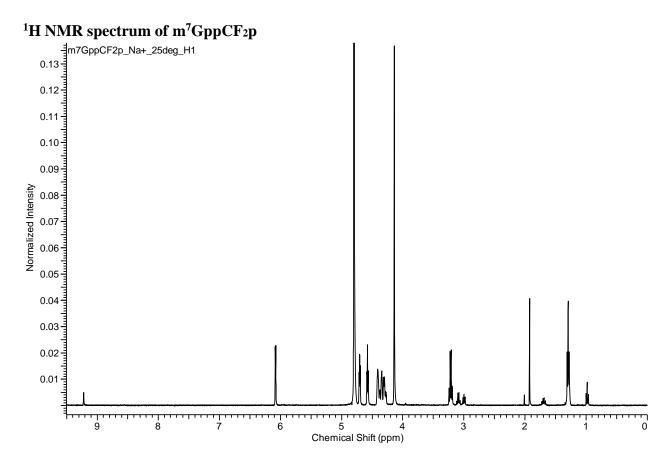


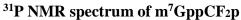

HRMS spectrum of m2^{7,2'-0}GppCF2ppG

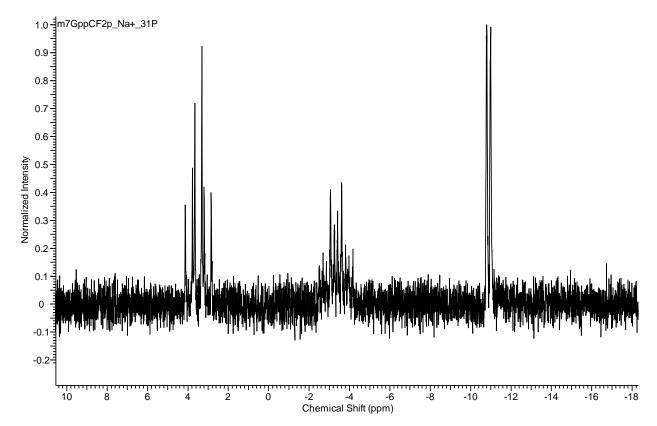


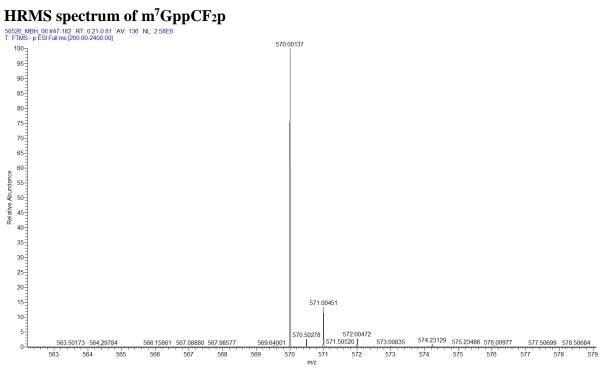

HPLC profile of m27,2'-OGppCF2ppG

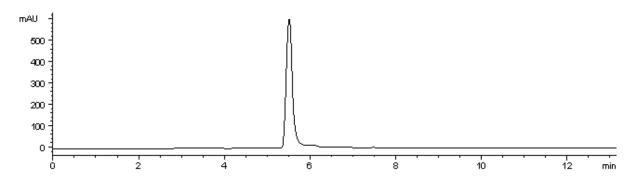


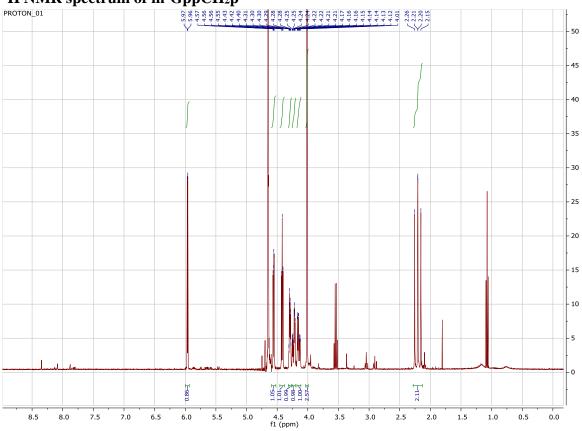

³¹P NMR spectrum of m⁷GppCCl₂p

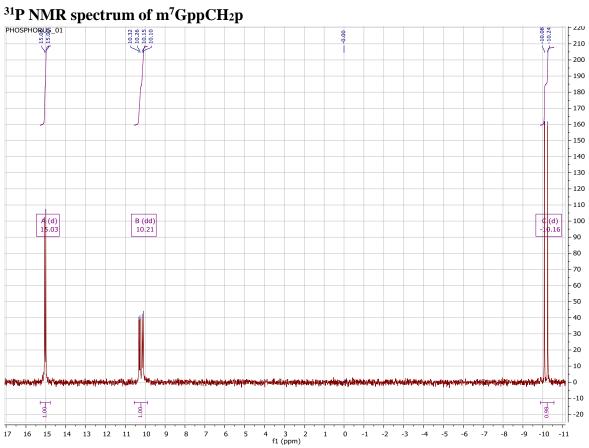


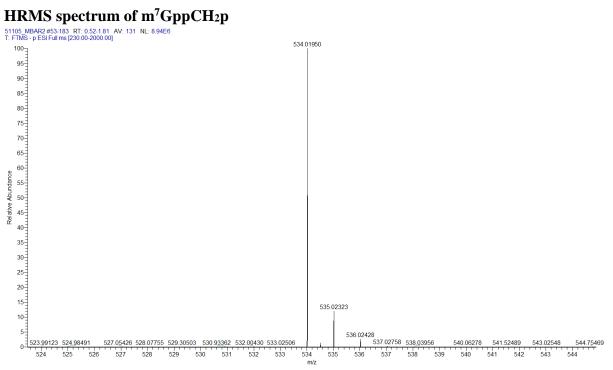


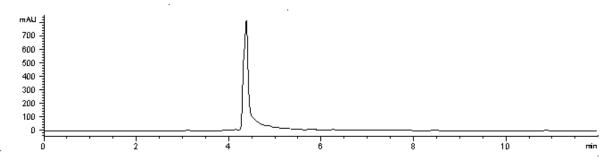

HPLC profile of m7GppCCl2p

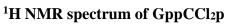


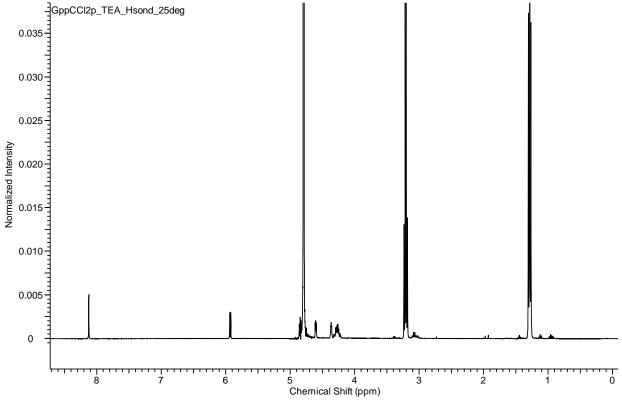


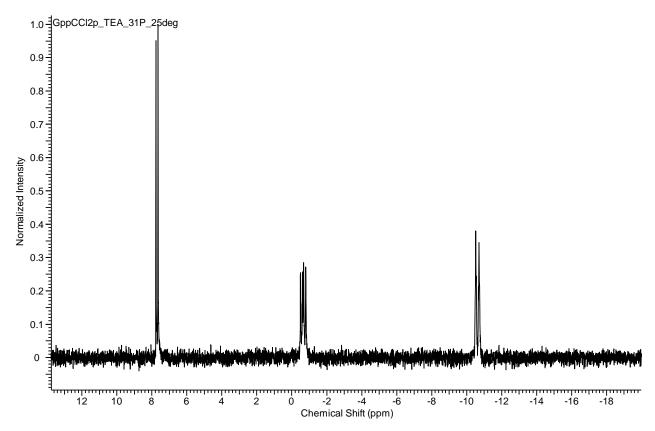


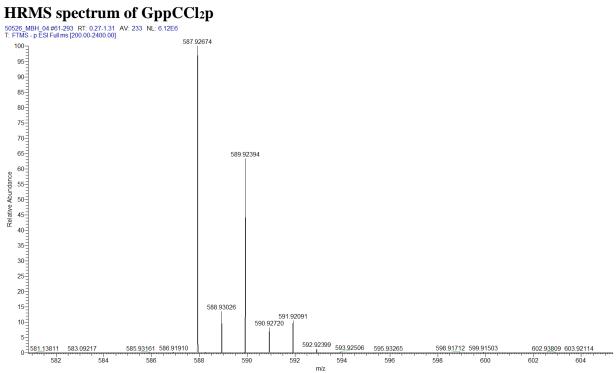

HPLC profile of m⁷GppCF₂p

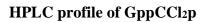


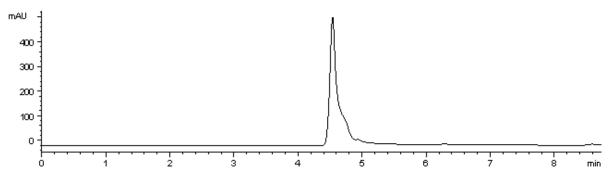

¹H NMR spectrum of m⁷GppCH₂p

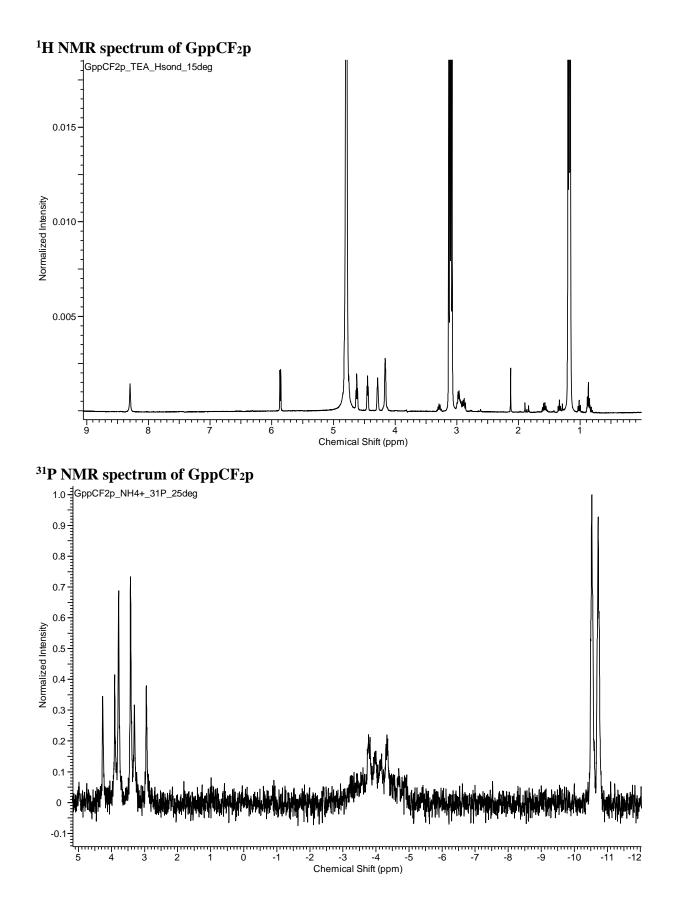


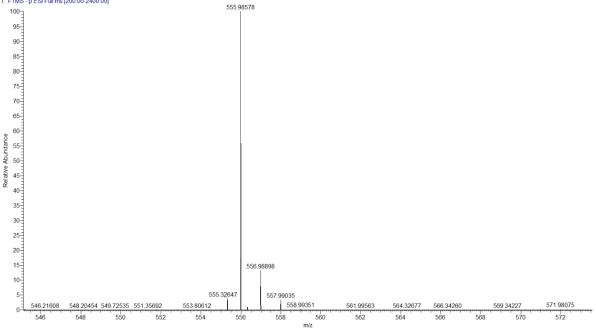

HPLC profile of m7GppCH2p

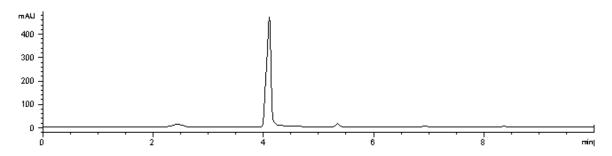


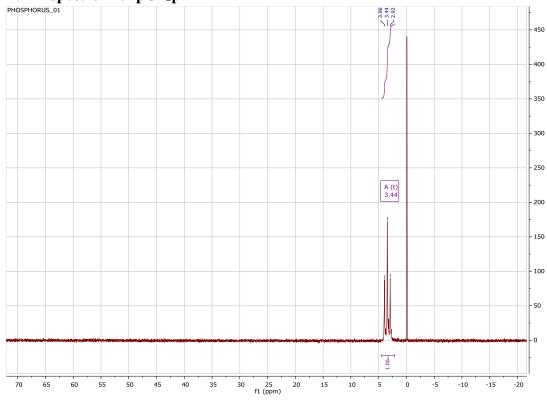


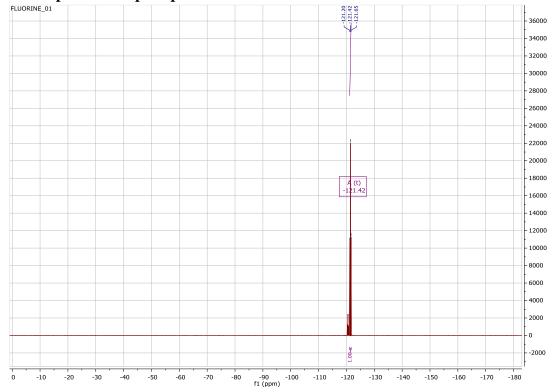


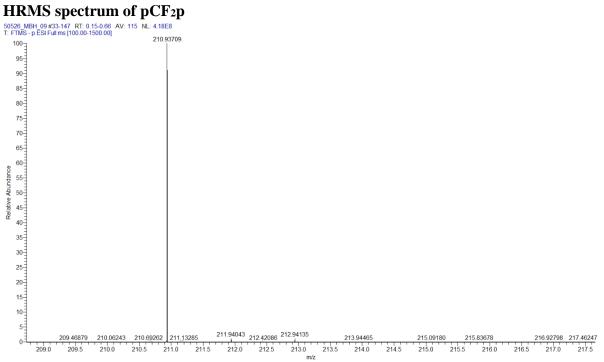







HRMS spectrum of GppCF2p 50526_MBH_01#710-1133_RT: 3.16.5.05_AV: 424_NL: 8.93E5 T: FTMS - p ESI Full ms [200.00-2400.00]


HPLC profile of GppCF₂p



³¹P NMR spectrum of pCF₂p

¹⁹F NMR spectrum of pCF₂p

References

[1] Blackburn, G. M., Kent, D. E., and Kolkmann, F. (1981) Three new β , γ -methylene analogues of adenosine triphosphate, *J. Chem. Soc. Chem. Comm.*, 1188-1190.

[2] Rydzik, A. M., Lukaszewicz, M., Zuberek, J., Kowalska, J., Darzynkiewicz, Z. M., Darzynkiewicz, E., and Jemielity, J. (2009) Synthetic dinucleotide mRNA cap analogs with tetraphosphate 5',5' bridge containing methylenebis(phosphonate) modification, *Org. Biomol. Chem.* 7, 4763-4776.

[3] Rydzik, A. M., Lukaszewicz, M., Zuberek, J., Kowalska, J., Darzynkiewicz, Z. M., Darzynkiewicz, E., and Jemielity, J. (2009) Synthetic dinucleotide mRNA cap analogs with tetraphosphate 5',5' bridge containing methylenebis(phosphonate) modification, *Org. Biomol. Chem.* 7, 4763-4776.

[4] Jemielity, J., Fowler, T., Zuberek, J., Stepinski, J., Lewdorowicz, M., Niedzwiecka, A., Stolarski, R., Darzynkiewicz, E., and Rhoads, R. E. (2003) Novel "anti-reverse" cap analogs with superior translational properties, *RNA 9*, 1108-1122.

[5] Jemielity, J., Stepinski, J., Jaremko, M., Haber, D., Stolarski, R., Rhoads, R. E., and Darzynkiewicz, E. (2003) Synthesis of Novel mRNA 5' Cap-Analogues: Dinucleoside P1, P3-Tri-, P1, P4-Tetra-, and P1, P5-Pentaphosphates, *Nucleosides, Nucleotides and Nucleic Acids* 22, 691-694.