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Supplementary figures and tables

Table 1 pK, values of mononucleotide analogues 2a-2d as determined by 3P NMR assay.

concentration

compound [MM] pKa* (gamma)*  pKa* (beta)** Mean pK.*
m’Gppp/NH," (2d) 15.0 6.55+0.02 6.62+0.04 6.56+0.03
m’GppCH,p/Na* (2a) 5.49 8.63+0.02 8.63+0.01 8.63+0.01
m’GppCCl,p/NH,4" (2b) 5.33 7.39+0.02 7.25£0.02 7.32+0.07
m’GppCF2p/NH,* (2¢) 7.50 6.21:+0.02 6.29+0.03 6.25:0.04

* pK,* as determined using change of chemical shift for gamma-phosphate.

** pK,* as determined using change of chemical shift for beta-phosphate.

pK.* using change of chemical shift for alpha-phosphates was not determined due to only small changes
in chemical shifts for alpha-phosphates upon pH change. The mean pK,* values were determined as
weighted mean of pK,* (gamma) and pK,* (beta) values.

The collected data were fitted to DoseResp function in OriginLab software using fallowing equation:

. e (A2-41)
chemical shift = Ay + —— orarmm (1a)
where the A; and A; are bottom and top asymptote respectively, p is the hill slope. The pKa values were
determined for both gamma and beta phosphate and the weighted average with uncertainties were
calculated using equations 2.

L
Xw = T (22)
z:i:1E
1
Uint = évzl_z (20)
U;
u? X{—%
Uext = NTi ?I=1 Luiw) (20)



Fig. S1 Titrations of cap analogues 2a-2d as monitored by 3P NMR.

titration curves for analogues 2d (A), 2a (B), 2b (C) and 2c (D).
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Table S2 Comparison for pK,* values of mononucleoside triphosphates.

compound pK,* value* compound pK,* value compound pK,* value

Appp 7.1 Gppp n.d. m’Gppp 6.56+0.03
AppCH:p 8.4 GppCH2p n.d. m’GppCHzp 8.63+0.01
AppCClop 7.0 GppCClyp 7.49+0.03 m’GppCClp  7.320.07
AppCF2p 7.1 GppCF2p 6.51+0.07 m’GppCF2p 6.25+0.04

*Data from Blackburn et al.*



Fig. S2 Titrations of GppCClp (4b) and GppCF2p (4c) as monitored by 3P NMR. The NMR

spectra and titration curves for analogues 4b (A) and 4c (B).
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Fig. S3 Fluorescence titration curves for binding of cap analogues 2b-c and 6b-c to elF4E.
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Fig. S4 DcpS and Dcp2 catalysed hydrolysis of various nucleotide substrates.
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Table S3 Hydrolysis of cap analogues by human DcpS as monitored by HPLC. Data are average from
duplicate experiments.

Cap analogue % hydrolysis in given time
15 min 30 min 60 min 120 min
m’GpppG 67.0x+7.0 95.1+3.0 98.2+1.38 100+ 0
m’Gppp (2d) 12.1+0.9 223+1.6 43.9+35 776+1.6
m’GppCH2p (2a) 0 0 0 0
m’GppCClzp (2b) 0.2+0.2 0.7+0.0 11+03 1.7+07
m’GppCFp (2¢) 29+0.2 40+0.8 6.9+0.0 14.4 0.6
m’GppppG (6d) 31.0+0.8 55.7+0.8 90.0+2.3 100+ 0
m’GppCH2ppG (6a) 0 0 0 0
m’GppCCl.ppG (6b) 0 0 0 0
m’GppCF2ppG (6¢) 13.7+0.2 26.2+0.4 50.1+ 1.8 87.5+0.4
my"2-°GppCCl.ppG (7b) 0 0 0 0
m."2-°GppCFppG (7¢) 23104 47+0.2 8.1+0.7 157+1.9

m,"?"°GppCH.ppG (7a) was found to be resistant towards enzymatic hydrolysis by hDcpS in a similar
assay conditions.? Error corresponds to standard deviation of two independent experimental points.
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Fig. S5 Time course of DcpS mediated hydrolysis of modified cap analogues. Data are average from
duplicate experiments.
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Fig. S6 Capping efficiencies (A) and susceptibilities (B) of 26-nt transcripts capped with various cap
analogs to the hDcp2. Reactions were terminated at the indicated time points followed by denaturing

PAGE, stained with SYBR Gold and visualized. Figure presents representative result of one biological
repetition.
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Fig. S7 Inhibition of translation of m,"*-°GpppG-capped luciferase encoding mRNA in rabbit

reticulocyte lysate (RRL) by dinucleotide cap analogues.
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experiment (A) the cap analogue and luciferase mMRNA were added to RRL at the same time point. In
experiment (B), to test stability of presented here cap analogues in reticulocyte lysate, the cap analogue
was preincubated for 1 hour in RRL prior to addition of mRNA and start of translation. As it is seen in
graph (B), the inhibitory properties of unmodified m’GpppG is significantly diminished upon
incubation in RRL (dotted line). In both experiments the luciferase activity was measured after 1 hour
after mRNA addition. In the figure are shown data of 3 independent inhibition experiments (+SE) and
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Fig. S8 Inhibition of translation of m,"*°GpppG-capped luciferase encoding mRNA in rabbit
reticulocyte lysate (RRL) by mononucleotide cap analogues.

A.

4 o o
IS o ™
L L L

translation efficiency (a.u.)

I
)
1

0,0

cap addition
mRNA addtion RLU measurement
RRL pre-incubation | translation |
] 1
60 120 min
. m7GpppG
o miGppp

4 m7GppCF2p
o m7GppCCl2p
v m7GppCH2p

0

T
5

T T T T T T T T T T 1
10 15 20 25 30 35 40 45 50 55 60
cap analog concentration [uM)]

translation efficiency (a.u.)

cap addition

mRHA addtion RLU measurement

RRL pre-incubation translati |

4

08

086

o
>

L4
~

T T T T T T T T T 1
10 16 20 25 30 35 40 45 50 55 60
cap analog concentration [uM]

Inhibition of translation of m,"**°GpppG-capped luciferase encoding mRNA in rabbit reticulocyte
lysate (RRL) by m’GpppG, m’GTP, m’GppCF2zp, m’GppClzp and m’GppCHzp. In experiment (A) the
cap analogue and luciferase mMRNA were added to RRL at the same time point. In experiment (B), to
test stability of presented here cap analogues in reticulocyte lysate, the cap analogue was preincubated
for 1 hour in RRL prior to addition of mMRNA and start of translation. As it is seen in graph (B), the
inhibitory properties of unmodified m’GpppG and m’GTP are significantly diminished upon incubation
in RRL (dotted line). In both experiments the luciferase activity was measured after 1 hour after mMRNA
addition. In the figure are shown data of 3 independent inhibition experiments (xSE) and 2 stability
experiments (£SE), normalized to the translation efficiency without cap analog.
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Fig. S9 Translation efficiencies of mMRNA encoding firefly luciferase capped with cap analogues 7a-
7c.
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Activity of luciferase (in RLU) synthesized in rabbit reticulocyte lysate were normalized to the activity
obtained with m’GpppG-capped RNA at the highest concentration used. The mean of 3 independent
translation experiments (x SE) and showed in the graph as a function of capped luciferase mRNA
concentration (except m,"?°GppCF.pG with 2 experiments). A transcript capped with non-functional
ApppG dinucleotide was added as a control of cap-dependent translation in RRL. After linear fitting to
the experimental data points the slope values (of the linear regression equation) calculated for the

differentially capped luciferase RNAs were compared to the slope value obtained for m’GpppG-capped
luciferase RNA that was setas = 1.
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Table S4. Data collection and refinement statistics.

elFAE / 6d elF4E/ 7b
PDB ID 5J50 5J5Y
Wavelength 0.9184 0.9184
Resolution range 36.82-1.867 37-1.748

(1.934-1.867) (1.81-1.748)
Space group P1 P1
Uniit cell 37.99 38.03 146.64 38.04 38.06 146.74

88.553 84.704 76.667 88.356 95.626 103.544
Total reflections 156370 (10888) 194484 (14491)
Unique reflections 60259 (5024) 72988 (6391)
Multiplicity 2.6 (2.2) 2.7 (2.3)
Completeness (%) 0.91 (0.76) 0.91 (0.78)
Mean I/sigma(l) 10.46 (2.04) 12.26 (2.46)
Wilson B-factor 19.87 20.00
R-merge 0.07081 (0.5346) 0.05243 (0.3991)
R-meas 0.08663 (0.6678) 0.06398 (0.499)
CC1/2 0.995 (0.677) 0.997 (0.825)
CC* 0.999 (0.898) 0.999 (0.951)
Reflections used in refinement 60257 (5024) 72986 (6391)
Reflections used for R-free 2234 (187) 3650 (320)
R-work 0.2209 (0.2829) 0.2364 (0.2772)
R-free 0.2637 (0.3532) 0.2860 (0.3429)
CC(work) 0.915 (0.832) 0.904 (0.824)
CC(free) 0.894 (0.733) 0.856 (0.700)
Number of non-hydrogen atoms 6401 5784

macromolecules 5880 5431
ligands 160 82
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Protein residues 720 680
RMS(bonds) 0.008 0.007
RMS(angles) 1.03 0.95
Ramachandran favored (%) 96 95
Ramachandran allowed (%) 3.7 5.4
Ramachandran outliers (%) 0 0
Rotamer outliers (%) 1.9 1.6
Clashscore 6.70 5.77
Average B-factor 35.25 38.41
macromolecules 35.35 38.69
ligands 44.87 35.93
solvent 29.32 33.48
Number of TLS groups 33 33

Statistics for the highest-resolution shell are shown in parentheses.
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Fig. S10 Wall-eye stereo view of elF4E/7d cap-binding pocket with 2Fo-Fc electron density map
contoured at 1.0 sigma.

A - Wall-eye stereo view of elF4E/7b (PDB id: 5J5Y) cap-binding pocket with 2Fo-Fc electron density
map contoured at 1.0 sigma; B - Wall-eye stereo view of elF4E/6d (PDB id: 5J50) cap-binding pocket
with 2Fo-Fc electron density map contoured at 1.0 sigma.
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Supplementary information — synthesis

General information

Reagents were purchased from Sigma-Aldrich and used without further purification, unless otherwise
stated. Water used in the experiments was double distilled using MiliQ Milipore apparatus. Acetone
was distilled over phosphorous pentoxide, triethylamine was distilled over potassium hydroxide and
tetrahydrofurane was distilled over sodium. Dimethylformamide, dimethylsulfoxide and
trimethylphosphate were kept over 4A molecular sieves.

The nucleotides were purified by ion-exchange chromatography on a DEAE-Sephadex A-25 (HCOs
form) column. A column was loaded with the reaction mixture and washed thoroughly with water (until
the eluate did not precipitate with AgNOs solution) to elute all material that does not bind to the resin.
Then, the nucleotides were eluted using a linear gradient of triethylammonium hydrogen carbonate
(TEAB) in deionized water. Fractions were analyzed spectrophotometrically at 260 nm and those
containing the desired product were analyzed by reverse-phase HPLC and combined. After evaporation
under reduced pressure with the repeated addition of ethanol to decompose TEAB, compounds were
isolated as triethylammonium (TEA) salt. Yields were calculated on the basis of either sample weight
or, preferably, optical density milliunits (mOD) of the product. Optical measurements for m7G
mononucleotides were performed in 0.1 M phosphate buffer pH = 6 at 260 nm assuming €260 = 11400
cm® M1 for calculations. For guanine nucleotides and dinucleotide cap analogs measurements were
conducted in 0.1 M phosphate buffer pH = 7 at 260 nm, assuming €260 = 12080 cm™ M and x50 =
22600 cm™ M, respectively.

Analytical RP HPLC was performed with a Series 1200 instrument from Agilent Technologies on a
Supelcosil LC-18-T HPLC column (4.6 x 250 mm, flow rate 1.3 mL min) with a 0-25% linear gradient
of methanol in 0.05 M ammonium acetate buffer (pH 5.9) for 15 min. Absorbance was monitored at
260 nm, while fluorescence was recorded at an excitation wavelength of 260 nm and an emission
wavelength of 370 nm. Semi-preparative HPLC was performed on the same apparatus equipped with a
Discovery Reverse-Phase Amide C-16 HPLC column (25 cm x 21.2 mm, 5 um, flow rate 5.0 mL min
1y and UV detection at 254 nm. The purity and homogeneity of each final product were confirmed by
RP HPLC, high resolution mass spectrometry HRMS (ES-) and *H NMR and *!P NMR spectroscopy.
Mass spectra were recorded with a high resolution LTQ Orbitrap Velos (Thermo Scientific). NMR
spectra were recorded at 25 °C with a Varian UNITY -plus spectrometer at 399.94 MHz (*H NMR) and
161.90 MHz (®'P NMR). All chemical shifts (5) are given in ppm and coupling constants (J) are given
in Hz. *H NMR chemical shifts were calibrated to sodium 3-trimethylsilyl-[2,2,3,3-D,]-propionate
(TSP) in D20 as an internal standard. 3P NMR chemical shifts were reported to 20% phosphorus acid

in D20 as an external standard. The raw NMR files were processed using ACD/Labs 12.0 Software.
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Synthesis of previously described compounds

Methylenebisphosphonate containing analogues: m’GppCH.ppG (6a)! and m,”*-°GppCH.ppG (7a)*,
imidazolide derivatives: m’Gmp-Im (1)%, Gmp-Im (3)* and m.”*°Gmp-Im (5)* and analogues
unmodified in the polyphosphate bridge: m’GppppG (6d)°, m,”?"°GppppG (7d)*, m,"*°GppppG*,
m’GpppG® and m’Gppp (2d) were obtained as previously described.
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Synthesis of m’GppCCl.ppG
P1-(7-methylguanosin-5"-yl) P4-guanosin-5"-yl 2,3-dichloromethylenetetraphosphate

, m’Gmp-Im (108 mg, 0.24 mmol) and
OH OH /N%NH
- o oo o <N \N/)\NHZ GppCClp (TEA salt, 85 mg, 0.095 mmol)
LN N 0-R-0-R-C¢-P-0-H-0—7 were mixed in anhydrous DMF (4 ml)
2 \r/ N OH OHCIOH OH
a2 o oH followed by addition of anhydrous ZnCl, (103
° mg, 0.76 mmol). After 4 h reaction was

completed and quenched by addition of solution of EDTA (283 mg, 0.76 mmol) and NaHCO3 (142 mg,
1.69 mmol) in water. Product was purified employing ion-exchange chromatography (Sephadex resin)
and obtained as glassy solid (TEA salt, 1188 opt. u., 0.057 mmol, 60%). Further purification was
performed using preparative HPLC yielding in 35.5 mg of final compound (NH4* salt, 0.035 mmol,
37%). 'H NMR (400 MHz, D,0): § 9.20 (1 H, s, H87c), 8.05 (1 H, s, H8), 5.98 (1H, d, J;-» = 3.3 Hz,
H1’me), 5.84 (1H, d, 1> = 6.2 Hz, H1°6), 4.73 (1H, dd, J;-»» = 6.2 Hz, J3 = 5.4 Hz, H2’s), 4.64 (1H,
dd, J;-» = 3.3 Hz, J»3= 5.1 Hz, H2 mre), 4.54 (1H, m, H3’e), 4.50 (1H, dd, J»3 = 5.4 Hz, J34- = 4.4
Hz, H3’c), 4.41-4.25 (6H, m; H4’w7e, H4’6, H5 mze, H5"6, H5 " m7e, H57°6), 4.08 (3H, s, CHy); P NMR
(162 MHz, D;0) 5 -10.81 (2P; Pa.§), -1.41 (2P; PP,y). HRMS (ESI") calc. for CzHagClaN10O20Ps
requires 946.9893, found 946.9901.

Synthesis of m,”?“°GppCCl.ppG

P1-(7, 2’-O-dimethylguanosin-5"-yl) P4-guanosin-5"-yl 2,3-dichloromethylenetetraphosphate

Lo m,"?-°Gmp-Im (90 mg, 0.19 mmol) and
i g”ff GppCClyp (TEA salt, 57 mg, 0.064 mmol)
g 2¢9 9 NTONT N, .
© 0-P-0-P-C-P-0-P-0 o were mixed in anhydrous DMF (3 ml) followed
HaNC NN OH OHCI OH OH
,]N/ \ N/> o o by addition of anhydrous ZnCl, (70 mg, 0.51

o mmol). After 4 h reaction was completed and
quenched by addition of solution of EDTA (190 mg, 0.51 mmol) and NaHCO3 (95 mg, 1.13 mmol) in
water. Product was purified employing ion-exchange chromatography (Sephadex resin) and obtained
as glassy solid (TEA salt, 900 opt. u., 0.043 mmol, 67%). Final compound was changed into sodium
salt on Dowex (Na* form) yielding 36.7 mg of final compound (0.035 mmol, 55%). 'H NMR (400
MHz, D20): 5 9.20 (1 H, s, H8m7c), 8.76 (1 H, s, H8g), 6.07 (1H, d, J;-»» = 3.1 Hz, H1 ), 5.96 (1H,
d, Ji» = 4.6 Hz, H1’g), 4.68 (1H, t, J;223 = 4.8 Hz, H2’s), 4.60 (1H, t, J»3/34 = 5.3 Hz, H3 ),
454 (1H, t, Jy3/34 = 4.4 Hz, H3’G), 4.40-4.24 (6H, m; H4’ e, H4’ 6, H5 mre, H5’c, H5” m7e, H5”’6),
4.10 (3H, s, CH3), 3.58 (3H, s OCHj3); 3P NMR (162 MHz, D,0) 6 -10.78 (2P; Pa,d), -1.35 (2P; PB.y).
HRMS (ESI") calc. for CasH31Cl2N19020P4 requires 961.0049, found 961.0056.
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Synthesis of m’GppCF.ppG
P1-(7-methylguanosin-5"-yl) P4-guanosin-5"-yl 2,3-difluoromethylenetetraphosphate

v 9 m’Gmp-Im (50 mg, 0.132 mmol) and
OH OH (N%NH .
. o oFo o y N/)\NHQ GppCFzp (ammonium salt, 55 mg, 0.088
NN RV O A mmol) were mixed in anhydrous DMF (2 ml)
L OH OH followed by addition of anhydrous ZnCl, (96

° mg, 0.70 mmol). After 4 h reaction was

completed and quenched by addition of solution of EDTA (260 mg, 0.70 mmol) and NaHCOs3 (130 mg,
1.56 mmol) in water. Product was purified employing ion-exchange chromatography (Sephadex resin)
and obtained as glassy solid (TEA salt, 920 opt. u., 0.044 mmol, 50%). Further purification was
performed using preparative HPLC yielding in 17.7 mg of final compound (NH4* salt, 0.018 mmol,
20%). Final compound was changed into sodium salt on Dowex (Na* form) yielding 17.9 mg of final
compound (0.018 mmol, 20%). *H NMR (400 MHz, D-0):  9.12 (1 H, s, H8m7c), 8.04 (1 H, s, H8g),
5.98 (1H, d, J;-» = 3.7 Hz, H1’m7e), 5.85 (1H, d, J;-»» = 6.5 Hz, H1’g), 4.74 (1H, t, J;-223 = 5.7 Hz,
H2’g), 4.65 (1H, t, J;2p3 = 4.4 Hz, H2’ 1izg), 4.52 (1H, dd, J»--3-= 5.0 Hz, J4-3-= 3.0 Hz, H3’w76), 4.49
(AH, t, I35 = 4.9 Hz, H3’6), 4.19-4.43 (6H, m; H4’ 76, H4 6, H5 m7e, H5 6, H5 mre, H57’6), 4.08
(3H, s, CHs); 3P NMR (162 MHz, D;0) & -11.08 (2P; Pa,3), -6.37 (2P; PB,y). HRMS (ESI") calc. for
C22H29F2N10020P4 requires 915.0484, found 915.0501.
Synthesis of m,"2°GppCF.ppG
P1-(7,2’-O-dimethylguanosin-5"-yl) P4-guanosin-5"-yl 2,3-difluoromethylenetetraphosphate
m”?-°Gmp-Im (45 mg, 0.096 mmol) and

OH OH ngLNH ;
- o oFo o g N/)\NHZ GppCFzp (ammonium salt, 40 mg, 0.064
I N O-R-O0=R=G=P-0-P-07 4, mmol) were mixed in anhydrous DMF (1 ml)
2 \r/ N OH OHF OH OH o
a2 OH O followed by addition of anhydrous ZnCl, (32

© mg, 0.24 mmol). After 4 h reaction was

completed and quenched by addition of solution of EDTA (90 mg, 0.24 mmol) and NaHCO3 (42 mg,
0.50 mmol) in water. Product was purified employing ion-exchange chromatography (Sephadex resin)
and obtained as glassy solid (TEA salt, 1010 opt. u., 0.048 mmol, 55%). Further purification was
performed using preparative HPLC yielding in 20.0 mg of final compound (NH4* salt, 0.020 mmol,
37%). Final compound was changed into sodium salt on Dowex (Na* form) yielding 20.5 mg of final
compound (0.021 mmol, 33%). *H NMR (400 MHz, D,0): & 8.02 (1 H, s, H8g), 6.01 (1H, br.s.,
H1’wc), 5.82 (1H, d, Jr» = 6.7 Hz, H1’g), 4.73 (1H, t, Jy223 = 5.6 Hz, H27G), 4.56 (1H, t, Jy» 334 =
5.4 Hz, H3’wre), 4.49-4.53 (1H, m, H3’g), 4.20-4.43 (6H, m; H4’n7e, H4’c, H5 76, H56, H5” mre,
H5’g), 4.09 (3H, s, CHs), 3.59 (3H, s OCHg); 3P NMR (162 MHz, D;0) 6 -11.11 (2P; Pa.,3), -6.35
(2P; PB,y). HRMS (ESI") calc. for C23Hz1F2N10O20P4 requires 929.0640, found 929.0656.
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Synthesis of m’GppCCl.p
P1-(7-methylguanosin-5’-yl) 2,3-(dichloromethylene)triphosphate

.o To a suspension of dichlorobisphosphonate triethylammonium salt
{NfNH (400 mg, 1.20 mmol) in DMF (4 ml) anhydrous zinc chloride (164

O Clo (0] N N NH,

1] | 1] 1
HO-P-C—p-0-P-0—

mg, 1.21 mmol) was added, and the mixture was shaken until
OHCI OH  OH

. reagents dissolved. Then 7-methylguanosine imidazolide (1700 opt.
u., 0.15 mmol) was added, followed by addition of another portion
of zinc chloride (164 mg, 1.21 mmol). The reaction was quenched after 4 hours by addition of water
solution of EDTA (897 mg, 2.41 mmol) and NaHCO; (449 mg, 5.34 mmol). Product was purified
employing ion-exchange chromatography on Sephadex resin in linear gradient from 0 to 1.1 M TEAB.
Collected fractions were evaporated with several additions of ethanol yielding m’GppCClp as
treithylammonium salt (1020 opt.u., 0.089 mmol, 60%). Further purification was done by preparative
HPLC. Collected fractions were freeze-dried severeal times until mass of the sample remained constant.
Product was obtained as ammonium salt (26.6 mg, 0.041 mmol, 27%). *H NMR (400 MHz, D;0): §
6.07 (1H, d, Ji-»»=3.4 Hz, H1"), 4.70 (1H, dd, J1» = 3.4 Hz, J» 3= 4.6 Hz, H2’), 4.58 (1H, dd, J» 3 =
4.6 Hz, J3.»=5.7 Hz, H3"), 4.43-4.30 (3H, m, H4’, H5’, H5"), 4.14 (3H, s, CH3); 3P NMR (162 MHz,
D;0) 4 7.90 (1P, d, J=17.8Hz, Py), 0.88 (1P, dd, J = 17.5Hz, J=29.9 Hz, Pp), -10.58 (1P, d, J = 30.3
Hz, Pa). HRMS (ESI) calc. for C12H17Cl2NsO13P3 requires 601.9418, found 601.9425.
Synthesis of m’GppCFzp

P1-(7-methylguanosin-5’-yl) 2,3-(difluoromethylene)triphosphate

.o To a suspension of difluorobisphosphonate triethylammonium salt

(Nfi'“\“ (327 mg, 0.79 mmol) in DMF (4 ml) anhydrous zinc chloride (150

ere 9 NTONTONH, . .

HO-P-C-P-0-P-0— mg, 1.10 mmol) was added, and the mixture was shaken until
OHF OH OH

on O reagents dissolved. Then 7-methylguanosine imidazolide (1230 opt.

u., 0.11 mmol) was added, followed by addition of another portion of zinc chloride (150 mg, 1.10
mmol). The reaction was quenched after 4 hours by addition of water solution of EDTA (821 mg, 2.21
mmol) and NaHCOs; (410 mg, 5.34 mmol). Product was purified employing ion-exchange
chromatography on Sephadex resin in linear gradient from 0 to 1.1 M TEAB. Collected fractions were
evaporated with several additions of ethanol yielding m’GppCFzp as treithylammonium salt (1032
opt.u., 0.091 mmol, 82%). Further purification was done by preparative HPLC. Collected fractions were
freeze-dried severeal times until mass of the sample remained constant. Product was obtained as
ammonium salt (31 mg, 0.049 mmol, 44%). 'H NMR (400 MHz, D,0) & ppm 9.22 (1H, s, H8), 6.08
(1H, d, Jy.»=3.7 Hz, H1"), 4.71 (1H, dd, Ji» = 3.7 Hz, J».3-= 4.7 Hz, H2), 4.58 (1H, dd, J,.»» = 4.7
Hz, J;.+= 5.5 Hz, H3"), 4.39 - 4.43 (1H, m, H4’), 4.35 (1H, m, H5”), 4.31 (1H, m, H5"’), 4.14 (3H, s,
CHs). 3P NMR (162 MHz, D;0) & 3.49 (1P, td, J = 75 Hz, J = 57 Hz, Py), -3.51 (1P, m, PpB), -10.90
(1P, d, J=31.0 Hz, Pa). HRMS (ESI) calc. for C12H17F2NsO13P3" requires 570.0009, found 570.0014.
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Synthesis of m’GppCHzp
P1-(7-methylguanosin-5’-yl) 2,3-methylenetriphosphate

\ To a suspension of bisphosphonate triethylammonium salt (359
(Nf:”f mg, 0.95 mmol) in DMF (4 ml) anhydrous zinc chloride (240 mg,
HO-P—C—h-0-P-0 o 1.76 mmol) was added, and the mixture was shaken until reagents

OHH OH OH

OH oH dissolved. Then 7-methylguanosine imidazolide (1248 opt. u., 0.11
mmol) was added, followed by addition of another portion of zinc chloride (240 mg, 1.76 mmol). The
reaction was quenched after 4 hours by addition of water solution of EDTA (1.313 g, 3.53 mmol) and
NaHCO; (657 mg, 7.82 mmol). Product was purified employing ion-exchange chromatography on
Sephadex resin in linear gradient from 0 to 1.1 M TEAB. Collected fractions were evaporated with
several additions of ethanol yielding m’GppCH_p as treithylammonium salt (673 opt.u., 0.059 mmol,
54%). Product was changed into sodium salt on Dowex resin (Na* form). *H NMR (400 MHz, D,0) &
ppm 5.96 (1H, d, Ji-»= 3.6 Hz, H1"), 4.56 (1H, dd, J1-» = 3.7 Hz, J».3 = 4.9 Hz, H2"), 442 (1H, t,J =
5.2 Hz, H3"), 4.29 (1H, dq, J»+ = 5.1 Hz, J45= 2.6 Hz, H4’), 4.23 (1H, m, H5"), 4.15 (1H, m, H5™"),
4.01 (s, 3H), 2.21 (dd, J = 20.8, J = 19.9 Hz, 2H). 3P NMR (162 MHz, D-0O) § 15.03 (1P, d, J = 8.8
Hz, Py), 10.21 (1P, dd, J = 26.5, J = 8.9, PB), -10.16 (1P, d, J = 26.4 Hz, Pa). HRMS (ESI") calc. for
C12H19N5013P3 requires 534.0192, found 534.0195.

Synthesis of GppCClzp
P1-guanosin-5’-yl-2,3-(dichloromethylene)triphosphate

0 To a suspension of dichlorobisphosphonate triethylammonium salt
</N | /)N\H (720 mg, 1.61 mmol) in DMF (5 ml) anhydrous zinc chloride (218
N™ >N NH,

QCIO (0]

HO-P-C-P-0-P-0— mg, 1.61 mmol) was added, and the mixture was shaken until

oreven o oM OH reagents dissolved. Then guanosine monophosphate imidazolide
(200mg, 0.46 mmol) was added followed by addition of another portion of zinc chloride (218 mg, 1.61
mmol). The reaction was quenched after 4 hours by addition of water solution of EDTA (1120 mg, 3.2
mmol) and NaHCOs; (590 mg, 7.04 mmol). Product was purified employing ion-exchange
chromatography on Sephadex resin in linear gradient from 0 to 1.2 M TEAB. Collected fractions were
evaporated with several additions of ethanol yielding GppCCl.p as treithylammonium salt (370 mg,
0.41 mmol, 89%). *H NMR (400 MHz, D,0): & 8.12 (1H, s, H8g), 5.93 (1H, d, Ji-»- = 6.5 Hz, H1"),
4.85 (1H,t, Jy223= 5.7 Hz, H2"), 4.60 (1H, dd, J»3= 5.2 Hz, J3».»= 3.2 Hz, H3’), 4.36 (1H, m, H4’)
4.33-4.21 (2H, m, H5’, H5”"), 3.21 (q, J = 7.5 Hz, CH2CH3), 1.29 (t, J = 7.3 Hz, CH.CHj3); 3'P NMR
(162 MHz, D;0) & 7.71 (1P, d, J = 17.8 Hz, Py), -0.65 (1P, dd, J = 19.4 Hz, J = 30.1 Hz, Pp), -10.61

(1P, d, J=29.8 Hz, Pa). HRMS (ESI") calc. for C11H15Cl2NsO13Ps  requires 587.9262, found 587.9267.
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Synthesis of GppCCl.p
P1-guanosin-5’-yl-2,3-(dichloromethylene)triphosphate

o To a suspension of dichlorobisphosphonate triethylammonium salt

(Nf:“\'* (720 mg, 1.61 mmol) in DMF (5 ml) anhydrous zinc chloride (218

Qe 9 NTONTONH, . .

HO-P-C-P-0-P-0— mg, 1.61 mmol) was added, and the mixture was shaken until
OHCI OH OH A R .. .

OH OH reagents dissolved. Then guanosine monophosphate imidazolide

(200mg, 0.46 mmol) was added followed by addition of another portion of zinc chloride (218 mg, 1.61
mmol). The reaction was quenched after 4 hours by addition of water solution of EDTA (1120 mg, 3.2
mmol) and NaHCO; (590 mg, 7.04 mmol). Product was purified employing ion-exchange
chromatography on Sephadex resin in linear gradient from 0 to 1.2 M TEAB. Collected fractions were
evaporated with several additions of ethanol yielding GppCCl.p as treithylammonium salt (370 mg,
0.41 mmol, 89%). 'H NMR (400 MHz, D;0): § 8.12 (1H, s, H8g), 5.93 (1H, d, J;-»» = 6.5 Hz, H1"),
4.85 (1H,t, Ji223 = 5.7 Hz, H2), 4.60 (1H, dd, J»3=5.2 Hz, J3.4- = 3.2 Hz, H3"), 4.36 (1H, m, H4")
4.33-4.21 (2H, m, H5’, H5”"), 3.21 (q, J = 7.5 Hz, CH,CH3), 1.29 (t, J = 7.3 Hz, CH.CHj3); 3P NMR
(162 MHz, D;0) 6 7.71 (1P, d, J = 17.8 Hz, Py), -0.65 (1P, dd, J = 19.4 Hz, J = 30.1 Hz, Pp), -10.61
(1P, d, J=29.8 Hz, Pa)). HRMS (ESI") calc. for C11H15CI.NsO13P3 requires 587.9262, found 587.9267.
Synthesis of GppCF2p

P1-guanosin-5’-yl-2,3-(difluoromethylene)triphosphate

a To a suspension of dichlorobisphosphonate triethylammonium salt
N
¢ ] /)N\H (700 mg, 1.70 mmol) in DMF (5 ml) anhydrous zinc chloride (218
are 9 N7 N ONH,
HO=P=C-P-0—R~07 , mg, 1.61 mmol) was added, and the mixture was shaken until
OHF OH OH
OH OH reagents dissolved. Then guanosine monophosphate imidazolide

(200mg, 0.46 mmol) was added followed by addition of another portion of zinc chloride (218 mg, 1.61
mmol). The reaction was quenched after 4 hours by addition of water solution of EDTA (1120 mg, 3.2
mmol) and NaHCOs; (590 mg, 7.04 mmol). Product was purified employing ion-exchange
chromatography on Sephadex resin in linear gradient from 0 to 1.2 M TEAB. Collected fractions were
evaporated with several additions of ethanol yielding GppCF2p as treithylammonium salt (224mg, 0.26
mmol, 57%). *H NMR (400 MHz, D;0): § 8.30 (1H, s, H8g), 5.86 (1H, d, Ji-»>-= 5.5 Hz, H1’), 4.62
(1H, t, i3 = 5.2 Hz, H2), 4.45 (1H, dd, Jo3/34 = 4.2 Hz, H3"), 4.28 (1H, m, H4) 4.16 (2H, m,
H5’, H5”), 3.10 (q, J = 7.3 Hz, CH,CH3), 1.18 (t, J = 7.3 Hz, CH.CHj); 3P NMR (162 MHz, D;0) &
7.71 (1P, td, J = 77.9%x2, J = 58.8 Hz, Py), -4.08 (1P, m, PB), -10.63 (1P, d, J = 31.3 Hz, Pa). HRMS
(ESI') calc. for C11H15F2N5sO13P3 requires 555.9853, found 555.98538.
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Synthesis of methylenedifluorobisphosphonate

Tetraisopropyl methylenebisphosphonate (2.6 mL, 8.1 mmol) was placed in the oven

HO*E*EZ*E*OH dried two-neck roundbottom flask fitted with reflux condenser and flushed with argon.
OZFT;\H To the flask 20 mL of NaHMDS (1 M solution in THF, 20 mmol) was added and
mixture was stirred for 5 min. To the resultant mixture solution of N-Fluorobenzenesulfonimide (NFSi)
in dry THF (9.58 g of NFSi reagent dissolved in 30 mL of dry THF, 30.4 mmol) was added in the
increments of 6 mL. Addition of each increment of NFSi solution was followed by addition of 6 mL of
1M THF solution of NaHMDS (to the total volume of 24 mL of NaHMDS solution). During additions
the formation of creamy brown precipitate was observed. Reaction was stirred for additional hour and
the precipitate was filtered off and washed with hexane. The filtrate was concentrated in vacuo to yield
brown oil which dissolved in dichloromethylene enad washed with 1M aqueous solution of sodium
bicarbonate. Organic layer was dried over magnesium sulphate, filtered, concentrated in vacuo and
subjected to column chromatography on silica (chloroform/ ethyl acetate, 0-50%). Product was eluted
with 15% ethyl acetate, followed by monofluorination product and unreacted substrate. The

tetraisopropyl difluorobisphosphonate was obtained as a pale yellow oil (1.32 g, 3.5 mmol, 43%).

The obtained tetraisopropyl difluorobisphosphonate (1.32 g, 3.5 mmol) was dissolved in
dichloromethylene (5 mL) and then transferred to the flask fitted with reflux condenser with tube filled
with calcium chloride. To resulting solution TMSBr was added (2.3 mL, 17.4 mmol) and mixture was
refluxed for 16 h. Afterwards flask was cooled down to the room temperature and 2.5 mL of methanol
was added dropwise. Resultant brown solution was evaporated with two portions (10 mL) of methanol
and then treated with 25 mL of water. Mixture was extracted with ethyl acetate until aqueous solution
become colourless. The trimethylamine was added (0.98 mL, 7 mmol) to the aqueous phase and

resulting mixture was evaporated in vacuo to yield pale brown glassy solid.

¥F NMR (376 MHz, D;0): § -121.42 (2F, t, J = 83.7 Hz); 3P NMR (162 MHz, D;0) § 3.44 (2P, t, J
= 83.8 Hz). HRMS (ESI") calc. for CH3F,06P, requires 210.9378, found 210.9371.
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'H NMR spectrum of m’GppCClzppG
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HRMS spectrum of m’GppCCl2ppG
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'H NMR spectrum of m27?-°GppCCl2ppG
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HRMS spectrum of m27?-°GppCCl2ppG
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100 961.00559

70 963.00376

Relative Abundance
o
=]

25 96200791

964.00594

15 965 00200
96600238

96700497

948.07190 05020479 95160091 952 60396 05405503 05686205 95872884 96060144 || | | 1 ] 968.59142 069 59388 971.00079
T T T T e T T e T e e e e e T e e L b s b L LB B s s e i M Riannaaad saas:

T
948 950 952 954 956 958 960 962 964 966 968 970
miz

HPLC profile of m272-°GppCCl2ppG

32



'H NMR spectrum of m’GppCF2ppG
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HRMS spectrum of m’GppCF2ppG
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'H NMR spectrum of m27?-°GppCF2ppG
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HRMS spectrum of m27?-°GppCF2ppG

50526_MBH_08 #47-179 RT: 0.21-0.80 AV: 133 NL: 3.83E6
T: FTMS - p ESI Full ms [200.00-2400.00]
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'H NMR spectrum of m’GppCClzp
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HRMS spectrum of m’GppCClzp

50526_MBH_02 #43-472 RT: 0.19-2.10 AV: 430 NL: 6.65E5
T: FTMS - p ESI Full ms [200.00-2400.00]

100 601.94251

603.93946

Relative Abundance

602.94441

604 94207 60593648

606.36348
02.44404 | 60!

403 61

293318 61393174
. A

5080 ] 606 9‘3987
T T T
599

8 599.92666
T T T T
600

601.55227 || ©
prrry
601 602

3.44249
604.44153
IR camiatadat LS L

605

607.94258 609
T T T T T
608

11497
T
609

610.44617 1.40043
T T T LA Matiade i at T
610

603

T T T
606 607 611
miz

HPLC profile of m’GppCClzp

Al

61
™

T ™T
612 613 614

38

min



'H NMR spectrum of m’GppCFzp
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HRMS spectrum of m’GppCFzp
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HRMS spectrum of m’GppCHzp
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'H NMR spectrum of GppCClzp
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HRMS spectrum of GppCClzp
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'H NMR spectrum of GppCF2p
GppCF2p_TEA_Hsond_15deg

Normalized Intensity
o o
o o
= =
o (6]
[ B |

©

o

S

a
|

x | W

9 8 7 6 5 4 3 2 1
Chemical Shift (ppm)

1P NMR spectrum of GppCF2p

1.03GppCF2p_NH4+_31P_25deg
0.9
0.8
0.7

0.6

o
3

N
IS

Normalized Intensity

o
w

.O
N

0.1

5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12
Chemical Shift (ppm)

45



HRMS spectrum of GppCFzp
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3P NMR spectrum of pCF2p
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HRMS spectrum of pCF2p
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