SUPPLEMENTARY FILE

	Cq	Δ Cq (relative to let-7a)		
5' hemiprobe	let-7a	let-7e	let-7f	let-7g
10-mer	14.54	5.42	4.61	9.17
8-mer	14.09	5.24	5.30	9.78
7-mer	14.06	5.26	5.89	10.14
6-mer	14.11	5.36	6.06	10.44
5-mer	14.23	5.90	6.93	11.03
4-mer	14.79	5.92	6.48	10.58

Figure S1. Effect of the 5'-hemiprobe length on specificity. Two-tailed RT primers with 6 nt long 3'hemiprobe and 5'-hemiprobe with variable length designed to target let-7a were assayed with four members of the let-7 family. Same PCR primers were used.

Figure S2. Effect of complementary RNA background on sensitivity. Hsa-miR-155 + hsa-miR-21 and hsa-miR-34a + hsa-let-7i (10⁵ copies/rxn) were mixed with either water, 10 ng yeast RNA, and 10 ng yeast RNA containing two mRNA probes at various concentrations. Target miRNAs were partially complementary to the mRNA probes (suppl. file). Mixtures were subjected to one freeze-thaw cycle to simulate sample storage conditions. Single RT reaction per sample was performed, since we have observed that technical variation is negligible (table 1). Presence of partially complementary long RNA in the background had no significant effect on Cq values.

Primers and templates

Legend	
binding hemiprobes:	blue
primer arms:	orange
stem:	green
loop:	purple

Proof of concept experiment

miRNA	miRNA sequence (5' - 3')	RT primers		qPCR primers
		RT1: TACTACCTCACTATGCTCTCCAGGTACAGTTGGTACCTGTCTCCACTTAACTA		ATECTOCOCETACACTIC
let-7a	UGAGGUAGUAGGUUGUAUAGUU	ATGATGGAGT CTATGCTCTCCAGGTACAGTTGGTACCTGTCTCCACTTAACTA	TVV	AIGCICICCAGGIACAGIIG
lot 7f	LICACCUACUACALUCUAUACUU	CTATGCTCTCCAGGTACAGTTGGTACCTGTCTCCACTTAACTA		CCCCATCACCTACTACCTTCTATA
let-7f	UGAGGUAGUAGAUUGUAUAGUU	RT2: AACCTACTCTATGCTCTCCAGGTACAGTTGGTACCTGTCTCCACTTAACTA	īv	GCCCATGAGGTAGTAGTAGGTIGTATA

Cross-reactivity: mature isoforms

miRNA	miRNA sequence (5' - 3')	RT primer		qPCR primers
lot 7a	UGAGGUAGUAGGUUGUAUAGUU		fw	CGAACCTACTCTATGCTCTCCAG
let-7a	UGAGGUAGUAGGUUGUAUAGUU		rv	CGGGTGAGGTAGTAGGTTGTA
lot 7b	UGACCUACUACCUUCUCUCCUU		fw	GCACCTAACATGCTCTCCAG
let-70	UGAGGUAGUAGUUGUGUGUGUGU	ACCIAACATOCICICCAOOTACAOTIOOTACCIOICICCACITAACCA	rv	CGGTGAGGTAGTAGGTTGTG
lot 7c	UGACCUACUACCUUCUAUCCUU		fw	GCACCTAACATGCTCTCCAG
iet-rc	UGAGGUAGUAGGUUGUAUGGUU	ACCIAACATOCICICCAOOTACAOTIOOTACCIOICICCACITAACCA	rv	CGGGTGAGGTAGTAGGTTGTA
lot 7d	ACACCUACUACCUUCCAUACUU	CCTCTACATECTCCAEGTACAETTEETACCTCTCCACTTAACTAT	fw	CGCCTCTACATGCTCTCCAG
let-7u		rv	CGCAGAGGTAGTAGGTTGC	
lot 7o	UGACCUACGACCUUCUAUACUU	CCTCCACATECTCCACETACACTECTACCTCTCCACTTAACTAT	fw	TCCTCCACATGCTCTCCAG
let-7e	UGAGGUAGGAGGUUGUAUAGUU	CETCEACATOETETECAGOTACAGITOGIACETOTETECACITAACIAT	rv	AGGGTGAGGTAGGAGGTTG
lot 7f	UGACCUACUACAJUICUAUACIU	ATCIACACATECTCCAECTACAETTEETAECTECCACTTAACTAT	fw	CCATCTACACATGCTCTCCAG
let-71	UGAGGUAGAGAGUUGUAUAGUU		rv	GCCGTGAGGTAGTAGATTGTA
lot 7g	UGAGGUAGUAGUUUGUAGAGUU	AACTACCCATCCCACCTACACTTCCCACTTAACTCT	fw	AACTACGCATGCTCTCCAG
iet-7g	UGAGGUAGUAGUUUGUACAGUU		rv	GCGGTGAGGTAGTAGTTTGTA
lot 7i			fw	AACTACGCATGCTCTCCAG
iet-7i	UGAGGUAGUAGUUUGUGCUGUU	AACTACOCATOCTCTCCAOOTACAOTIGOTACCIGICICCACITAACAGC		GCGGTGAGGTAGTAGTTTGTG

Cross-reactivity: precursors

miRNA	miRNA sequence (5' - 3')	RT primer		qPCR primers
lot 7a	UGAGGUAGUAGGUUGUAUAGUU		fw	CGAACCTACTCTATGCTCTCCAG
iet-7a		rv	ACCCTGAGGTAGTAGGTTGTA	
lot 7b	UGACCUACUACCUUCUCUCCUU	ACCTAACATGCTCTCCAGGTACAGTTGGTACCTGTCTCCACTTAACCA	fw	GCACCTAACATGCTCTCCAG
let-70	CONSCINCTING		rv	ACCCTGAGGTAGTAGGTTGTG
lot 7f	UGAGGUAGUAGAUUGUAUAGUU	ATCTACACATGCTCTCCAGGTACAGTTGGTACCTGTCTCCACTTAACTAT	fw	CCATCTACACATGCTCTCCAG
iet-71			rv	GCACCTGAGGTAGTAGATTGTA

MiRNA profiling in mouse tissues

miRNA	miRNA sequence (5' - 3')	RT primer		qPCR primers
mmu-mi8-122-5n		GTCACACTTCAAGCTCTCCAGGTACAGTTGGTACCTCACCCCACACCA		GTCACACTTCAAGCTCTCCAG
mmu-mm-122-5p			rv	GGTGGAGTGTGACAATGGTG
mmu-miR-30c-1-3n	CUGGGAGAGGGUUGUUUACUCC	CCCTGTCCCGATATGTGAGACGTACGTTGAGTACGTCAAGTGAAGTGAGTAA	fw	CCCTGTCCCGATATGTGAGAC
mmu-mm-50c-1-5p			rv	GCTGGGAGAGGGTTGTTT
mmu-miR-615-5p	eeeeeliccceeliecliceeviic	GACCCCCGCTAGCTATGCAGGTACAGTTGGTACCTGACTCTGATCCG	fw	GACCCCCGCTAGCTATGC
nina nint oro op		GACCECCGETAGETATGEAGGTACAGTTGGTACETGACTETTGTTGATEEG	rv	GGGGTCCCCGGTGCT
mmu-miR-193a-3n	AACUGGCCUACAAAGUCCCAGU TTGTAGGCGCTTGAGTCCTCGTAGAGTTGCTACGAGATATGATAAACTGGG	THETAGECCETTEACTCCTCCTACACACTACCACATATEATAAACTCCC	fw	TTGTAGGCGCTTGAGTCC
minu mire rood op		rv	GGAACTGGCCTACAAAGTCC	
mmu-miR-1a-3p		TTACATTAGGGCACTCGTCCTAGAGTTGCTAGGACTACGGACTTATACAT	fw	GGTTTACATTAGGGCACTCGTC
nina nint na op			rv	CGGGTGGAATGTAAAGAAGTATG
mmu-miR-21a-5n			fw	CGCATAAGCTACAACGACCAGAG
	DAGEODADCAGAEOGAOGODGA	ATAAGCTACAACGACCAGAGCTAGAGAACCTAGCTCACCACTACTACTAACA	rv	CGGGTAGCTTATCAGACTGATGT
mmu-miP-24-3p	UGGCUCAGUUCAGCAGGAACAG	G CTGAGCCACGACGAATACTGCTAGAGTTGCTAGCAGAGCCCTTAACTGTTC	fw	CCTGAGCCACGACGAATAC
mmu-min-24-5p			rv	GTGGCTCAGTTCAGCAGG

Sensitivity to isomiRs

miRNA	miRNA sequence (5' - 3')	RT primer		qPCR primers
miR-21_minus 2	UAGCUUAUCAGACUGAUGUU	ATAAGCTACAACGACCAGAGCTAGAGAACCTAGCTCACCCACTATAACATC		CECATAAECTACAACEACCAEAE
miR-21_minus 1	UAGCUUAUCAGACUGAUGUUG			COCATAAGCTACAACGACCAGAG
miR-21	UAGCUUAUCAGACUGAUGUUGA			
miR-21_plus 1	UAGCUUAUCAGACUGAUGUUGAC			CGGGTAGCTTATCAGACTGATGT
miR-21_plus 2	UAGCUUAUCAGACUGAUGUUGACA			

Crossreactivity optimization (primers used in figure S1)

miRNA	miRNA sequence (5' - 3')	RT primer		qPCR primers
let-7a UGAGGUAGUAGGUUGUAUAGUU	AACCTACTACTAATGCTCTCCAGGTACAGTTGGTACCTGTCTCCACTTAACTAT			
	AACCTACTCTATGCTCTCCAGGTACAGTTGGTACCTGTCTCCACTTAACTAT	fw	ATGCTCTCCAGGTACAGTTG	
	UGACGUAGUACGUUGUAUACUU	AACCTACACATGCTCTCCAGGTACAGTTGGTACCTGTCTCCACTTAACTAT		
	COACCOACCACCOCCOACACCO	ACCTACACATGCTCTCCAGGTACAGTTGGTACCTGTCTCCACTTAACTAT		
	ACCTAACATGC CCTAACATGCT	ACCTAACATGCTCTCCAGGTACAGTTGGTACCTGTCTCCACTTAACTAT	rv	CGGGTGAGGTAGTAGGTTGTA
		CCTAACATGCTCTCCAGGTACAGTTGGTACCTGTCTCCACTTAACTAT		

Pre-miRNAs synthesis

pre-miRNA name	Sequence (5' - 3')	Oligos used to create template for in vitro transcription		
hsa-let-7a-1	UGGGAUGAGGUAGUAGGUUGUAUAGUUUUAGGGUCACACCCACC	template	GACAGTAGATTGTATAGTTATCTCCCAGTGGTGGGTGGGT	
		fw	TAATACGACTCACTATAGGGATGAGGTAGGTAGGT	
		rv	TAGGAAAGACAGTAGATTGTATAGTTATCTC	
hsa-let-7b	CGGGGUGAGGUAGUAGGUUGUGUGUGUGUGCGGGAGUGAUGUUGCCCCUCGGAAGAUAACUAUAC	template	CAGTAGGTTGTATAGTTATCTTCCGAGGGGCAACATCACTGCCCTGAAACCACAACCACCACTACTACCTCCCCC	
		fw	TAATACGACTCACTATAGGGGTGAGGTAGTAGG	
		rv	CAGGGAAGGCAGTAGGTTGTATAGTTATCTTC	
	UCAGAGUGAGGUAGUAGAUUGUAUAGUUGUGGGGUAGUGAUUUUACCCUGUUCAGGAGAUAACUA UACAAUCUAUUGCCUUCCCUGA	template	AGGCAATAGATTGTATAGTTATCTCCTGAACAGGGTAAAATCACTACCCCCACAACTATACAATCTACCTAC	
hsa-let-7f-1		fw	TAATACGACTCACTATAGGGTCAGAGTGAGGTAGTAG	
		rv	GTCAGGGAAGGCAATAGATTGTATAGTTATC	

Quanta qScript microRNA system

miRNA	miRNA-specific primer:
let-7a	CCGAGCTGAGGTAGTAGGTTGTATA
let-7b	CGTTCTGAGGTAGTAGGTTGTGTG
let-7c	CCGAGCTGAGGTAGTAGGTTGTATG
let-7d	GGGACGAGAGGTAGTAGGTTGC
let-7e	CGGTGGTGGTGAGGTAGGAG
let-7f	CGGTGGTGGTGAGGTAGTAGA
let-7g	CCGAGCTGAGGTAGTAGTTTGTAC
let-7i	CGTTCTGAGGTAGTAGTTTGTGCT
miR-21	GCTAGCTTATCAGACTGATGTTGAAA

Note: Primer sequences were obtained from the manufacturer's website (<u>http://www.quantabio.com/products/microrna-profiling</u>)

miQPCR

	miRNA	miRNA-specific primer:
miLINKER		pp(r)A.GGCCGAACTACGACCTGCATAAACGG.ddC
	mQ-RT	CCCAGTTATGGCCGTTTATGCAGGT
	Upm2A	CCCAGTTATGGCCGTTTA
	let-7a	AGTAAGGTTGTATAGTTG
		TAGTAGGTTGTATAGTTG
		TGAGGTAGTAGGTTGTATAGTTGGC
	let-7b	TAGTAGGTTGTGTGGTTG

	TGAGGTAGTAGGTTGTGTGGTTG
let-7c	TAGTAGGTTGTATGGTTG
	TGAGGTAGTAGGTTGTATGGTTGG
let-7d	AGAGGTAGTAGGTTGCATAGTTG
let-7e	TAGGAGGTTGTATAGTTG
	TGAGGTAGGAGGTTGTATAGTTGG
let-7f	AGTAGATTGTATAGTTGG
	TGAGGTAGTAGATTGTATAGTTGGC
let-7g	TGAGGTAGTAGTTTGTACAGTTG
let-7i	TGAGGTAGTAGTTTGTGCTGTTG
miR-21	TAGCTTATCAGACTGATGTTGAGG

Note: Primers striken-through were taken from supplementary file 1 from Benes et al., 2015, *Scientific reports*, 5, 11590, but failed to amplify. They were then replaced with primers from supplemenary file 2 from the same publication, which contained primers with optimized melting temperature.

Limit of Detection: Cq values

miRNA target input in RT reaction	1000	500	250	125	62.5	31.25	15.63	7.81	3.91	no target control
	31.53	32.92	33.61	34.73	35.11	35.81	n.d.	35.99	n.d.	n.d.
	31.17	32.72	33.45	34.52	34.90	n.d.	n.d.	n.d.	n.d.	n.d.
6	31.11	32.34	33.82	34.06	33.62	35.04	n.d.	36.53	n.d.	n.d.
сч	31.29	32.13	33.29	33.60	34.17	36.58	36.66	n.d.	36.58	n.d.
	31.42	32.56	32.87	34.19	35.43	34.37	n.d.	n.d.	n.d.	n.d.
	31.11	32.50	32.72	35.62	35.39	35.44	36.41	35.59	n.d.	n.d.

Cq values of a two-fold dilution series of a let-7d synthetic miRNA. cDNA was diluted 10 x in qPCR reactions.

MiRNA profiling in mouse tissues: Cq values and relative quantities

Two-tailed RT-qPCR: singleplex

Cq values

Sample	122-5p	193a-3p	1a-3p	21a-5p	24-3p	30c-1-3p	let-7a
brain	26.52	30.83	30.66	26.66	21.13	30.54	22.08
cereb.	28.02	30.57	29.67	25.85	20.81	29.00	20.33
heart	28.79	30.67	21.23	25.01	20.18	29.22	21.97
kidney	32.15	27.26	32.86	24.38	21.49	29.76	22.76
liver	18.23	27.89	35.81	23.41	23.46	32.91	23.67
lung	28.36	28.24	28.21	23.60	19.79	30.26	21.36
muscle	23.33	27.47	20.19	25.95	21.75	31.62	23.27
negative	nd	nd	nd	nd	36.91	nd	n d
control	n.u.	n.u.	n.u.	n.u.	50.51	n.u.	n.u.

Relative expression

Sample	122-5p	193a-3p	1a-3p	21a-5p	24-3p	30c-1-3p	let-7a
brain	5.63	0	5.15	0	2.33	2.37	1.59
cereb.	4.13	0.26	6.14	0.81	2.65	3.91	3.34
heart	3.36	0.16	14.58	1.65	3.28	3.69	1.7
kidney	0	3.57	2.95	2.28	1.97	3.15	0.91
liver	13.92	2.94	0	3.25	0	0	0
lung	3.79	2.59	7.6	3.06	3.67	2.65	2.31
muscle	8.82	3.36	15.62	0.71	1.71	1.29	0.4

Two-tailed RT-qPCR: multiplex

Cq values

Sample	122-5p	193a-3p	1a-3p	21a-5p	24-3p	30c-1-3p	let-7a
brain	26.40	31.77	31.92	29.07	21.24	30.46	22.81
cereb.	28.11	31.55	31.33	28.02	21.01	29.28	21.18
heart	28.58	31.34	22.60	27.06	19.84	29.09	22.47
kidney	32.48	28.21	34.76	26.63	21.35	29.83	23.02
liver	18.03	28.74	37.54	25.91	23.18	32.72	24.11
lung	28.38	29.20	29.68	25.95	19.83	30.70	22.12
muscle	23.21	28.34	21.89	28.28	21.57	31.39	24.51
negative control	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.

Relative expression

Sample	122-5p	193a-3p	1a-3p	21a-5p	24-3p	30c-1-3p	let-7a
brain	6.08	0.00	5.62	0.00	1.94	2.26	1.70
cereb.	4.37	0.22	6.21	1.05	2.17	3.44	3.33
heart	3.90	0.43	14.94	2.01	3.34	3.63	2.04
kidney	0.00	3.56	2.78	2.44	1.83	2.89	1.49
liver	14.45	3.03	0.00	3.16	0.00	0.00	0.40
lung	4.10	2.57	7.86	3.12	3.35	2.02	2.39
muscle	9.27	3.43	15.65	0.79	1.61	1.33	0.00

TaqMan miRNA assays

Cq values

Sample	122-5p	193a-3p	1a-3p	21a-5p	24-3p	30c-1-3p	let-7a
brain	27.25	31.29	30.56	25.07	22.51	34.60	22.46
cereb.	28.97	30.77	30.12	24.29	22.24	33.85	21.16
heart	29.86	30.82	21.30	23.51	21.55	34.71	22.87
kidney	34.07	27.52	32.89	22.90	22.98	34.61	23.58
liver	19.14	28.08	35.75	21.82	24.87	n.d.	24.58
lung	29.27	28.31	28.20	21.91	21.22	33.34	22.48
muscle	24.28	27.91	20.07	24.47	23.09	36.33	24.05
negative control	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.

Sample	122-5p	193a-3p	1a-3p	21a-5p	24-3p	30c-1-3p	let-7a
brain	6.82	0	5.19	0	2.36	5.4	2.12
cereb.	5.1	0.52	5.63	0.78	2.63	6.15	3.42
heart	4.21	0.47	14.45	1.56	3.32	5.29	1.71
kidney	0	3.77	2.86	2.17	1.89	5.39	1
liver	14.93	3.21	0	3.25	0	0	0
lung	4.8	2.98	7.55	3.16	3.65	6.66	2.1
muscle	9.79	3.38	15.68	0.6	1.78	3.67	0.53

Relative expression

Cq Values are presented as average of 2 qPCR replicates. Fold-changes were calculated relative to the sample with the lowest expression for a given miRNA. For the calculation, missing data were replaced with the max. Cq + 4, or with Cq 40 if a result was over 40.

Hybridization experiment:

Sequences of mRNA probes with highlighted complementary regions to spiked miRNAs are shown. Nucleotides in red are perfectly complementary between mRNA probe and miRNA target. Only sites with at least seven consecutive complementary nucleotides are shown.

>nNOS cds + miR-34a, <mark>let-7i</mark>

ATGGAAGAATATGAGTTCAGCGTTAAACAACTGCAGCCGAATGTTATATCTGTGCGCCTCTTTAAGCGCA AAGTAGGAGGGCTGGGATTCCTGGCTAAGCAAAGGAGGAACAAACCACCTGTAATTATTTCTGATTTAAT TCGGGGAGGAGCAGCAGAACAGAGTGGGTTGGTGCAAGTAGGGGATATTATCTTAGCTGTGAATGATAGG CCCCTTGTAGATGCCAGCTATGAAAGTGCCCTGGAGATACTGCGTAGCATTTCTTCAGAGACTTTTGTTG TACTGATCCTTAGAGGTCCAGAAGGATTCACAACCCACTTGGAGACCACCTTTTCTGGAGATGGAACACC CAAGACCATTCGAGTCACCAGACCTCTTTGTTCTAAGTCCAAGTCAGCTGAATTGACAAGTCAGAGCCTT TATAGCAAAGATCACATGGTGGACAGTGCCACAAGTTCAGCTGGCTCTTCTTGGCAGGAGGTTCATCAGC TTCTTAACTTGAATGGACTTGATGGTGGTAAAGGTGATGACATCAGCATCAGCCCTAGCCTTAACAGAGG AGAAAAGGCTAATGACATATTGAAAGAAATCGAGCCfoxaAATCGTTAGCCTTCTACAGAATGCAGGAAA CTAAATGGGGATGAACATCGAAATGTGGAGCAAAAGGATGCGGAAGTTCAGGTTGAAAGCAACTCGCAGA CACAGCCGAGTATGCAGAAGGACCAAGTCAATGGTATCTGGAAAAACAACAACAAGATGCCCGTGGTTTT AAACAATCCATATCTGGAGTGTGAGCAGGTCACATTAACTGGTAGACATTCCCCTGCAAAGAGCCAAGTG AATGGAAGTCCATCCAAATGTCCTCGTTATTTGAAAAATTCGTAATTGGGATTCAAACACTACACTTAATG ACACCCTGCACAGCAAGGCTTCCATGCCAACACCCTGCACGCAACAGATATGCATGGGAGCCGTAATGAC ACCCCCACATTATGTTCGCAAACCAGAGGACATTCGGACCAAAGAAGAGCTTCTTCCCCTTGCTAAGGAA TTTATTGACCAATATTTCTCATCAATTAAAAGGTTTGGCTCTAAGGCACACATGGACAGACTACAAGAAG TGACAAAGGAGATTGAAGCCACAGATACCTATCAGCTACGGGATACAGAGCTTATTTACGGAGCCAAGCA TGCCTGGAGGAATGCATCCAGATGTGTGGGGGGGGAGAATCCAGTGGTCAAAATTGCAGTTATTTGATGCTCGA GACTGCACCACTGCTCATGGGATGTTCAATTACATTTGCAACCACATTAAATATGCCACCAACAAAGGCA ACCTCAGATCAGCAATCACTATCTTCCCCCCAAAGAACGGATATGAAGCACGACTTTAGAATCTGGAATGC TCAGCTTATTCGCTATGCTGGATACAAACAGCCTGATGGTTCGGTGCTGGGAGACCCTGCAAATGTAGAA TTGACAGAGATCTGCATTCAACAGGGCTGGAAGGCCCCTCATG<mark>GACGCTTTGATGTACTACCTCT</mark>AATGC TCCAAGCAGATGGCAATGATCCTGAATTGTTTGAGATCCCTCCTGAACTGATAATGGAAGTCAACATAAG CTGCTGGAAATCGGAGGCTTGGAATTCAGTGCCTGTCCCTTCAGCGGATGGTACATGGGGACAGAAATTG GTGTTCGAGATTACTGTGACAACTCCCGCTACAACATACTGGAGGAAGTGGCCTTAAAAATGAATCTGGA CACAAGGAAAACCTCCTCTCTGTGGAAGGATCAAGCTCTGGTGGAGATAAACATTGCTGTGTTGTACAGT TTCCAGAGCGATAAAGTAACAATCGTGGACCATCACTCTGCTACTGAGTCTTTCATCAAACATATGGAGA ATGAATACCGGTGCCGAGGAGGCTGCCCAGCAGACTGGGTTTGGATAGTGCCGCCGATGTCTGGAAGCAT TACACCTGTATTTCACCAGGAAAATGTTAAACTACCGTCTTACACCTTCATTTGAGTACCAGCCGGATCCA TGGAATACCCACGTATGGAAAGGAGTTAATGGAACGCCAACAAAGAAAAGGGCCATTGGATTTAAAAAGC TGGCAAAGGCAGTTAAATTTTCGGCTAAATTAATGGGACAGGCCATGGCTAAAAGAGTAAAGGCCACAAT TCTCTACGCAACAGAAACTGGGAAATCACAAGTCTATGCAAAAACTTTATGCGAAATCTTCAAGCATGCA TTTGATGCAAAGGTTATGTCAATGGACGAATATGACGTTGTGCACTTGGAGCATGAAACACTTGTCCTAG TAGTGACAAGTACTTTTGGCAATGGTGATCCTCCAGAAAATGGAGAGAGTTTGGCTGTGCATTAATGGA AATGAGACATCCCAACTCTAACTTGGAGGAGGAGGAAAAGCTACAAAGTCCGTTTTAATAGCGTCTCGTCC TCTGCTGATGCCCAGAAATCATCTGCTAATGAGACGGGACCCAGAGACAACTTTGGAAGTGCAAGTCCCC TAGCTAATGTTAGATTCTCAGCATTCGGACTGGGCTCCCCGAGCTTATCCCCACTTCTGTGCCTTTGCCCG TGCGGACAAGAAGAATCATTTAGAACATGGGCCAAAAAAGTGTTTCAGGCTGCATGTGACGTCTTTTGTG TAGGAGATGATGTAAGTATTGAAAAAAGCAAACAACTCACTGATTAGCAATGACCGCAGCTGGAAAAGAAG CAAGTACCGAATCAGCTTTGTGGCCGAGGCACCAGAACTTACACAAGCTTTATACAGTATTCACAAGAAG AAAGTGTATGGAGCTCGTTTGTTGTCTCGCCAGAACTTGCAAAAGCCCCAAAATCCAGCCGATCCACTATAT TCCTCAAACTTCACTCTAATGGACATAAAGAACTGTGCTATAAACCTGGAGACCATTTAGGAGTCTTTCC TGGAAACCATGAAGATCTAGTGAATGCCTTGATAGAGCGATTAGACGATGCTCCTCCTGTGAACCAAATG GTGAGGGTGGAGATGCTGGAAGAAGAAAGAAATACCGCTTTAGGTGTGATCAGTAACTGGACAGAGGAGGAGGAAC GAATTCCACCCTGCACCATTTTCCAAGCCTTTAAGTATTTCCTAGATATTACAACGCCCCCTACCCCTCT GGTTTGCAGGAATATGAGCAGTGGAAGTGGTACAAGAATCCAACTATTGTTGAGGTTCTAGAGGAGTTCC CTTCAATTCAGATGCCTTCATCCCTGCTGCTTACACAACTACCCCTGCT<mark>ACAACCA</mark>CGATACTACTCCAT CAGCTCTTCACCTGAGATGTATCCAGAAGAAGTCCACCTTACTGTTGCTGTTGTGCCCTACCGCACAAGA GATGGAGATGGGCCTATACACCATGGTGTCTGCTCCTCATGGCTCAACAGAATACACCCAGATGAAGTTG TGCCCTGCTTTGTCAGAGGAGCTCCAAGTTTCCAAATGCCCGAAGACCCACAGGTCCCCTGCATTCTGAT AGGACCAGGCACTGGTATTGCTCCATTTAGGAGTTTTTGGCAGCGCGTCTCTACGATATGCAGCACAGA GGACTGAAACCTTGTCCCATGATCTTGGTCTTTGGGTGTAGGGAATCCAAAATTGACCACATCTACAAAG AGGAAACAATGCATGCAAAGAACAAAGGAGTGTTTAAAGAACTCTTCACAGCATATTCTCGGGAACCTAA TAAACCAAAGAAATATGTTCAAGATGTACTGAAGGAACAGTTATCTGAAGTCACATACAAAGCTCTGAAG GATCAAGGGGGTCACATATATATTTGTGGTGATGTCAACATGGCTGGGGATGTCCTGAAGAGTCTTCAAC ATGTTGTGAAAGAGAGCGGAAATCTGACGATAGAAGAAGCTGGGGCCTTCATCAGCAAGCTAAGGGATGA CAATCGGTACCATGAAGATATTTTTGGAGTCACTCTTAGGACATATGAAGTTACAAATCGACTCAGATCT GAATCTATTGCATTCATTGAGGAAAGCAAAAAGGACTCAGATGAGGTTTTCTGCTCATAA

>fos cds + miR-34a, let-7i

ATGTATCACGCCTTCTCCAGCAACACTGACTACGATGCAGCTTCTTCCCCGTTGCAGCAGTGCATCTCCAG CCGGGGGACAGCCTGACCTACTACCCGTCCTGCAGCCTCCTTCTCTAGTATGGGGTCTCCTGTTTCACC ACAGGACTTTGGTGATTCAAGTAGCAGCTTTGTACCCACAGTCACTGCCACTTTCCACCTCTGCAGATCTT CAGTGGCTTGTGCAGCCAGCCCTTATTTCTTCTGTAGCCCCATCACAGTCTCGGGCACACCCCATATGCGT CCACTCCAGTTTACAGTCGATCTGGTGTTATGAAAGGATCTACTGGAAGAGGTCAGAGTCTGGGAAGAAG GCAGCAAGCCAAGTGCCGCCAACCGTCGCCGGGAGTTAACAGACACTCTTCAAGCGGAAACTGATGACCTGG AGGACCAGAAATCTGACCTGCAGGCAGAGATTGCCAGCCTTCTGAAGGAGAAGGAAAAGCTGGAGTTTAT ACTTGCAGCTCACAAACCAGCTTGCAAAATTCCCACATGACCTTGAAGGAGCTTTTCAAGATTTGACCTCC TCTTTTGATTTGGGTCTGATCTCTGAGACACCCTGTTCTTCCAGCTCTCAGGAGCCTGTAGCAGAGCCTT TGTTTCCCTTTGGCCTTTCTCAGCCTTCCATGCCTGACAAGGAGAACACCCAGCTGCAAGTCTCTATGGA ACTCAAATCTGAACCACTGGATGATTTTCTCTTTTAACTCTCCTCATGCCGGTGCTGGTGTATCTGATGCA GCACGCTCTGTGCCAGATGTAGATCTTACCAGCTCTCTGTACACATCAGAATGGGAGCCACTCTATAGCA ATCTGTCTGTAGACATGGAGCCTTTGTGCACACCAGTTGTTACCTG<mark>CACTCCAACATGCACTACCTAT</mark>AC AACATCATTTGTCTTCACATACCCAGAATCTGACCACTTCCCCCAACTGTGGAGCCGCACATCGGAGGGGGA AGCAGCAACGAGCAGTCATCAGACTCTCTAAACTCTCCCACCCTATTGGCACTGTAA

>foxile + miR-155, miR-21

TCTACCAGTATGTTGCTGATAACTTTCCTTCTACAACAAGAGCAAAGCTGGGTGGCAGAATTCAATTCG ACACAACCTGTCTCTAAATGATTGCTTCAAGAAAGTACCAAGAGATGAAGATGATCCAGGCAAGGGCAAT TATTGGACCTTGGACCCAAACTGTGAAAAAATGTTTGACAACGGAAACTTCCGCAGAAAGAG<mark>GAAAAGAA</mark> AGTCTGATGTCAGCCCCAATGGACAGTTATCTTCTGACAAGCCTGAAGGGAGCCCGCTAAGTGAGAGCCC TACGAATGGAGAGCATCAGGACATGTTGGGAAATTCTTCACCAGGAACAGATGACTCCCCTGAAAAAAGG TCACCTCCATCTATAACCCCCATGCCTTAATAACTTTCTCCCCAGTATGACTGCATATGTTAATAGTG CTACCCCAATCAGTAGGTCAGTTCCACTTGGACTCAGTAACGAAACCTCTGATAAGATGGGACAGAACAT GGTTGGATTCAATTCCTACACTCCTCTTTCAAATATGCCAAGCCATGGAGGGTCTGACTGGTCATCTACC TGAGTACAAACAATACTCTCTATAACAGAGAAGGTACAGAAGTATAACTGGGTGGTACCAATTTTATAGC AGTCACGACAAAGTCCTTGTTGGCATATACATAGCATGCTTTTACTCTACAGAGTTCTCTTTATTCTTAT ACAACAGGCACCTGCTGTGGTTCATAAGTTTTAGTGAGTTGCTTCTACGGTGTTTCAAAGCTTTTCTATC AAAATATGAAATGGCAAGCCTGCCAATTAGTGTTTTTGTAAAAAAAGTAAAAGTTACTCAGAATTTGTT TTACACTGACCTTTTTACTGTACCTTTCTGACGCACTACAGTGGTGAAATACTGTATTTAGAGAAAAAA AGAAAATTGCAAAGTAATGCTTTTCATACT<mark>TCAAATATAACGTTTAGCATTTG</mark>ATTGTAATTTGGTCTGC TAACGTGTATTTATAAATGTTTACCTTGGATGTATAATATGTGGGGGGGTAATGTGTTGGGTCCTCAGACC TGTCTTCGGCTACTTACATGTTTTGTAAATGTTTAATATTTTATATGTATTATAGCTAAATTCACTGTGG

>tuba4b + miR-155, miR-21

TGTACTGCCTGGAACATGGGATCCAACCAGACGGTCAGATGCCCAGTGACAAAACCATTGGTGGAGGAGA TGATTCATTTACCACATTCTTCAGTGAGACAGGAGCTGGGAAGCATGTCCCCCCGTGCTGTTGTGGAC CTGGAGCCAACTGTGATTGATGAAGTGCGGACAGGCATGTATCGGCAGCTGTTTCATCCAGAGCAACTTA TCAGTGGCAAAGAAGATGCAGCCAATAACTATGCCAGAGGACATTACACCATTGGCAAGGAAATCATTGA CCCAGTTCTGGACAGAATACGTAAACTGGCTGATCAGTGCACAGGACTGCAGGGATTTTTAGTCTTCCAC AGTTTCGGGGGTGGCACTGGCTCTGGATTCACCTCCCTGCTTATGGAACGTCTCTCTGTTGACTATGGCA AGAAGTCCAAGTTGGAATTCTCCATCTATCCTGCTCCTCAGGTTTCAACTGCTGTAGTGGAACCCTACAA CTCCATTCTTACCACTCACACAACACTTGAGCACTCAGACTGTGCATTCATGGTGGACAATGAAGCCATT TATGACATCTGCAGAAGGAACTTGGACATTGAACGTCCAACCTACACCAACCTGAAACCGTCTGATAAGCC AGATTGTG<mark>TCCTCTATCACTGCCTCTCAG</mark>ATTTGATGGAGCTCTGAATGTGGACCTAACTGAATTCCA AACTAACTTAGTACCCTACCCCCGTATCCATTTCCCTCTGGCCACCTATGCCCCCTGTTATCTCTGCAGAG TGAAATGTGACCCCCGACATGGTAAATACATGGCTTGTTGCCTGCTATACCGTGGTGATGTGGTGCCCAA AGATGTCAATGCTGCTATTGCTGCCATCAAGACAAAACGCACCATCCAGTTTGTTGATTGGTGCCCAACT GGATTCAAGGTTGGTATCAACTATCAACCCCCCAACAGCAGTTCCTGGTGGGGGATCTGGCCAAAGTTCAGC GTGCTGTGTGCATGTTAAGTAACACCACCGCCATTGCTGAGGCCTGGGCTCGTCTGGATCACAAGTTTGA GAGGCCCGTGAAGATATGGCTGCCCTGGAGAAGGATTATGAAGAGGTTGGAATTGACTCCTATGAAGATG AAGATGAAGGAGGAGGAGTAATTATTTCTTCTTCCATCATCTTAATTGGAATATGCAAGATATTTTTTTC ACACTGCCCCTCTCAACAGTAAAAAACCCAATGCTAGAAATGTATATCCTGCCAGCTTCTCCTGAATTTTA TTTTTAATGTGAATATCTTATTTGTAGCAGTTGAGGTTATTTTAGTGAAAAAAATGTGCAAAATTTAAAAA ΔΑΔΑΔΑΔΑΔΑ

		Two-tailed RT-qPCR	TaqMan	Quanta	miQPCR
	Assay	25.85	254.27	11.97	11.97
C t	RT reagents/rxn	2.44	0.74	4.82	7.25
Cost per: (USD)	qPCR reagents/rxn	0.43	0.91	0.43	0.43
	Assay + 20 RT and 60 qPCR reactions	100.62	323.81	134.21*	182.83**

Cost was estimated based on reaction volumes and reagents used as described in Materials and methods. Prices were taken from vendor/distributor websites as of June 2017, without VAT and special discounts. Prices for kits with comparable size were taken (usually 50 rxn/ RT kit, 500 rxn/PCR mastermix). Assay cost was calculated based on prices for custom oligonucleotides from Integrated DNA Technologies, except for TaqMan, where the sequences are proprietary and assays are sold commercially.

* Cost of another widely used commercial method based on poly(A) tailing - miRCURY LNA[™] microRNA qPCR system (Exiqon) is 354.7 USD (assay 152.1 USD, RT reagents/rxn 7.2 USD, qPCR reagents/rxn 1.0 USD)

** miQPCR method requires additional initial purchase of pre-adenylated linker (~ 850 USD)

Cost estimate: