The application of chiroptical spectroscopy (circular dichroism) in quantifying binding events in lanthanide directed synthesis of chiral luminescent self-assembly structures

Oxana Kotova,^{*a*}* Salvador Blasco,^{*a*} Brendan Twamley,^{*a*} John O'Brien,^{*a*} Robert D. Peacock,^{*b*} Jonathan A. Kitchen,^{*a,c*} Miguel Martinez-Calvo^{*a*} and Thorfinnur Gunnlaugsson^{*a*}*

Scheme S1. Schematic representation of the ligands 1(S), 1(R) and 5(S), 5(R) along with their corresponding Eu(III) complexes.

Figure S1. ¹H NMR of **2** (400 MHz, CDCl₃).

Figure S2. ¹³C NMR of **2** (100 MHz, CDCl₃).

Figure S3. ¹H NMR of **4(***S***)** (400 MHz, CDCl₃).

Figure S4. ¹³C NMR of **4(***S***)** (100 MHz, CDCl₃).

Figure S5. ¹H NMR of **4(***R***)** (400 MHz, CDCl₃).

Figure S6. ¹³C NMR of **4**(*R*) (100 MHz, CDCl₃).

Figure S7. ¹H NMR of **1(***R***)** (600 MHz, CD₃OD).

Figure S8. ¹³C NMR of **1**(*R*) (150 MHz, CD₃OD).

Figure S9. ¹³C NMR of **1(***S***)** (150 MHz, CD₃OD).

Figure S10. ¹H NMR spectrum of $Eu(1(R))_3$ (600 MHz, CD₃CN): (A) full spectrum and (B) zoomed spectrum.

(A)

(B)

Figure S11. ¹H NMR spectrum of $Eu(1(S))_3$ (600 MHz, CD₃CN).

(A)

(B)

Figure S12. The calculated and experimental isotopic distribution patterns (MALDI-MS⁺) for (A) $Eu(1(S))_3$ and (B) $Eu(1(R))_3$.

Figure S13. The changes in the absorption spectrum of (A) $\mathbf{1}(S)$ and (C) $\mathbf{1}(R)$ in CH₃CN together with the corresponding linear fit of the changes at 270 nm (B) and (C) upon varying the concentration from 2.5×10^{-5} M to 2.59×10^{-6} M.

Figure S14. The absorption and fluorescence emission spectra of (A) $\mathbf{1}(S)$ (-) and $\mathbf{Eu}(\mathbf{1}(S))_3$ (-) in CH₃CN (c($\mathbf{1}(S)$) = 1×10⁻⁵ M); (B) $\mathbf{1}(R)$ (-) and $\mathbf{Eu}(\mathbf{1}(R))_3$ (-) in CH₃CN (c($\mathbf{1}(R)$) = 1×10⁻⁵ M).

Figure S15. The absorption, excitation and fluorescence emission spectra of $Eu(1(S))_3$ ((A), (B)) and $Eu(1(R))_3$ ((C), (D)) in CH₃CN (c = 2.72×10^{-5} M) and CH₃OH (c = 5.79×10^{-5} M). (A) (B)

Figure S16. The changes in the (A) absorption, (B) fluorescence and (C) Eu(III)-centred emission spectra of $\mathbf{1}(\mathbf{R})$ (c = 1×10⁻⁵ M) upon addition of Eu(CF₃SO₃)₃ in CH₃CN (25 °C, 0.05 M (C₂H₅)₄NCl).

Figure S17. Experimental binding isotherms of the changes in the Eu(III)-centred emission spectrum of (A) **1(S)** and (B) **1(R)** ($c = 1 \times 10^{-5}$ M) upon addition of Eu(CF₃SO₃)₃ in CH₃CN (25 °C, 0.05 M (C₂H₅)₄NCl).

Figure S18. (A) Recalculated emission spectra, (B) experimental binding isotherms (•••) and their corresponding fit (–) by means of SPECFIT for the changes in the fluorescence spectra of **1**(*S*) (c = 1×10^{-5} M) upon addition of Eu(CF₃SO₃)₃ in CH₃CN (25 °C, 0.05 M (C₂H₅)₄NCl).

Figure S19. (A) Experimental binding isotherms and their corresponding fit obtained using nonlinear regression analysis program SPECFIT, (B) speciation-distribution diagram obtained from the fit of the changes in the absorption spectrum of 1(R) upon addition of Eu(CF₃SO₃)₃ in CH₃CN (25 °C, 0.05 M (C₂H₅)₄NCl).

Figure S20. (A) Recalculated emission spectra, (B) experimental binding isotherms (•••) and their corresponding fit (–) by means of SPECFIT for the changes in the fluorescence spectra of **1**(*R*) (c = 1×10^{-5} M) upon addition of Eu(CF₃SO₃)₃ in CH₃CN (25 °C, 0.05 M (C₂H₅)₄NCl).

D-HA	Donor-Acceptor		Angle		
	1(<i>R</i>)	1(<i>S</i>)	1(<i>R</i>)	1(<i>S</i>)	
O2-H2 O11 ^{#2}	2.5709(17)	2.5740(14)	160	159	
C7-H7A O1 ^{#1}	3.467(2)	3.4744(17)	174	174	
C14-H14A O26	$3.249(2)^{\#3}$	3.2426(17) ^{#1}	129	129	
O26-H26 O35 ^{#2}	2.5889(16)	2.5915(14)	156	156	
C31-H31A O25 ^{#1}	3.479(2)	3.4876(17)	172	172	
Symmetry	#1 = x, y, z+1				
Transformations used to	#2 = x,y,z-1 #2 x+1 y z+1				
generate equivalent atoms	#3 X+1,y,Z+1				

Table S1. Intermolecular hydrogen bond distances (Å) and angles (°) for 1(*R*) and 1(*S*).

Table S2. Intermolecular hydrogen bond distances (Å) and angles (°) for $Eu(1(R))_3$.

D-HA	Donor-Acceptor	Angle	
N2—H2…O16 ^{#1}	3.031(14)	172.0	
N4—H4A…O23	2.88(3)	155.1	
N6—H6…O10 ^{#2}	3.140(12)	152.0	
N8—H8…O20	2.78(2)	155.3	
N10—H10…O19	2.981(17)	161.0	
$N12-H12\cdots O1^{\#2}$	2.83(2)	164.8	
O19—H19A…O5	2.78(2)	178.2 (13)	
O19—H19B…O17 ^{#1}	2.98(2)	178.6 (13)	
O20—H20A…O8 ^{#3}	2.80(2)	177.4 (14)	
O22—H22A…O8 ^{#4}	4.00(6)	167 (4)	
O23—H23A···O2 ^{#5}	2.64(3)	178 (2)	
O23—H23B…O24	2.80(3)	177 (2)	
O24—H24A···O13 ^{vi}	2.93(2)	125.6 (15)	
O24—H24B····O14 ^{vi}	2.87(3)	111.3 (15)	
Symmetry codes: (i) $x-1/2$, $-y+1/2$, $-z+1$; (ii) $-x+1$, y , $-z+3/2$; (iii) $x+1/2$, $-y+1/2$,			
-z+1; (iv) $-x+1/2$, $-y+1/2$, $z-1/2$; (v) $-x+1/2$, $y+1/2$, $-z+3/2$; (vi) $x-1/2$, $y+1/2$, z .			

Table S3. Selected coordination bond distances ((Å) and angles (°)	for Eu(1(<i>I</i>	?)))3.
--	----	----------------	----	---------	-------------	-------------	-----

Eu1—O1	2.389 (14)	O10—Eu2	2.336 (14)
Eu1—O3	2.432 (12)	O12—Eu2	2.468 (14)
Eu1—O4	2.294 (15)	O13—Eu2	2.421 (14)
Eu1—O6	2.415 (15)	O15—Eu2	2.392 (14)
Eu1—O7	2.423 (6)	O16—Eu2	2.352 (15)
Eu1—O9	2.469 (12)	O18—Eu2	2.433 (11)
Eu1—N1	2.542 (15)	N7—Eu2	2.581 (15)
Eu1—N3	2.564 (18)	N9—Eu2	2.558 (19)
Eu1—N5	2.596 (17)	N11—Eu2	2.513 (17)

O4—Eu1—N1	68.1 (5)	O10—Eu2—N11	73.3 (5)
O1—Eu1—N1	65.4 (5)	O16—Eu2—N11	63.1 (5)
O6—Eu1—N1	141.3 (6)	O15—Eu2—N11	138.8 (5)
O7—Eu1—N1	74.6 (4)	O13—Eu2—N11	71.6 (5)
O3—Eu1—N1	63.7 (5)	O18—Eu2—N11	63.5 (5)
O9—Eu1—N1	139.0 (5)	O12—Eu2—N11	136.9 (5)

O4—Eu1—N3	64.2 (7)	O10—Eu2—N9	135.0 (6)
O1—Eu1—N3	137.3 (6)	O16—Eu2—N9	136.4 (6)
O6—Eu1—N3	63.3 (6)	O15—Eu2—N9	62.5 (6)
O7—Eu1—N3	138.3 (5)	O13—Eu2—N9	64.0 (7)
O3—Eu1—N3	72.1 (5)	O18—Eu2—N9	75.6 (5)
09—Eu1—N3	73.3 (4)	O12—Eu2—N9	74.1 (5)
N1—Eu1—N3	117.6 (6)	N11—Eu2—N9	123.4 (6)
O4—Eu1—N5	141.5 (6)	O10—Eu2—N7	63.6 (5)
O1—Eu1—N5	72.6 (5)	O16—Eu2—N7	77.0 (5)
06—Eu1—N5	70.8 (5)	O15—Eu2—N7	68.5 (5)
07—Eu1—N5	62.2 (5)	O13—Eu2—N7	144.8 (5)
O3—Eu1—N5	136.0 (7)	O18—Eu2—N7	135.0 (5)
O9—Eu1—N5	63.2 (6)	O12—Eu2—N7	61.4 (5)
N1—Eu1—N5	121.6 (6)	N11—Eu2—N7	121.0 (5)
N3—Eu1—N5	120.9 (6)	N9—Eu2—N7	115.6 (6)

Figure S21. (A) Changes in CD spectra of 1(R) (-) (c = 1×10^{-5} M, 25 °C) upon addition of Eu(CF₃SO₃)₃ and (B) experimental binding isotherms representing the changes in the CD bands of 1(R) (closed circles) and 1(S) (open circles) upon gradual Eu(CF₃SO₃)₃ addition in CH₃CN.

Figure S22. Changes in CD spectra of 1(S) (-) (c = 1×10⁻⁵ M, 25 °C) upon addition of Eu(CF₃SO₃)₃ in CH₃CN.

Figure 23. (A) Changes in CD spectra of 1(R) (-) (c = 1×10^{-5} M, 25 °C) upon addition of Eu(CF₃SO₃)₃ and (B) experimental binding isotherms representing the changes in the CD bands upon gradual Eu(CF₃SO₃)₃ addition in CH₃CN ((C₂H₅)₄NCl, 0.05 M).

Table S4. Summary of CPL results for $Eu(1(S))_3$ and $Eu(1(R))_3$ in methanol at 25 °C.

Electronic	Wavelength/nm	<i>g</i> lum		
transition		$Eu(1(S))_{3}$	$Eu(1(R))_{3}$	
${}^{5}D_{0} \rightarrow {}^{7}F_{1}$	589	0.16	-0.15	
${}^{5}D_{0} \rightarrow {}^{7}F_{1}$	592	0.19	-0.17	
${}^{5}D_{0} \rightarrow {}^{7}F_{2}$	614	-0.09	0.10	
${}^{5}\mathrm{D}_{0} \rightarrow {}^{7}\mathrm{F}_{3}^{*}$	650	0.25	-0.14	
${}^{5}D_{0} \rightarrow {}^{7}F_{4}$	693	-0.05	0.05	
${}^{5}D_{0} \rightarrow {}^{7}F_{4}^{*}$	703	0.24	-0.17	

* – relatively significant difference for the g_{lum} values between two enantiomers in the case of ${}^{5}D_{0} \rightarrow {}^{7}F_{3}$ and ${}^{5}D_{0} \rightarrow {}^{7}F_{4}$ transitions is most likely due to the noise as both of these are possessing very low in intensity

Figure S24. ¹H NMR spectrum of 1(S) (c = 4.26×10^{-4} M; CD₃CN, 600 MHz).

Figure S25. ¹³C NMR spectrum of 1(S) (c = 4.26×10^{-4} M; CD₃CN, 600 MHz).

Figure S26. 2D TOCSY spin network for 1(S) (c = 4.26×10^{-4} M; CD₃CN, 600 MHz).

Figure S27. The changes in the ¹H NMR spectra of 1(R) (c = 4.26×10^{-4} M) upon gradual addition of La(CF₃SO₃)₃ in CD₃CN.

Figure S28. CD spectra of **EuL**₃ ($\mathbf{L} = \mathbf{1}(S)$, $\mathbf{1}(R)$; $\mathbf{c} = 1 \times 10^{-5}$ M) recorded in CH₃CN at various temperatures: (A) and (C) represent full spectrum range while (B) and (D) zoomed areas.

Figure S29. The changes in the main CD bands of EuL₃ ($\mathbf{L} = \mathbf{1}(S)$, $\mathbf{1}(R)$; $\mathbf{c} = 1 \times 10^{-5}$ M) in CH₃CN versus temperature of the solution.

Figure S30. Space filling representation of Eu(1(R))₃ complex. Only fragment 1 is shown for clarity.

Figure S31. Intramolecular π - π interactions between pyridine and 2-naphthyl moieties within Eu(1(*R*))₃.

