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1. Topological measures of clustering in networks 

Node clustering coefficient.   

For each node i, the node clustering coefficient,
i

C , was defined as the probability that an 

edge between any two of its neighbours exists 1.  This concept is easily extended for 

directed networks, i.e., 
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where 
i

Ω  contains all neighbours of node i  and 
jk

a  is an element of the adjacency 

matrix so that 
jk

a = 1 if a directed link from j to k exists, otherwise it is zero.  The 

clustering coefficient C of a network is the average of Ci for all nodes with degree 2 or 

greater.  For directed networks, 
i

Ω  and, hence, Ci can be defined based on the �‘out�’, �‘in�’, 

or �‘all�’ neighbourhood utilizing either the out-going, in-coming, or all of the links of a 

node respectively.  If not stated otherwise, our analysis for directed networks is based on 

�‘out�’-neighborhood.   
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Link Clustering Coefficient 

For any directed or undirected link, we define the neighbourhoods for each of its end 

nodes, either by choosing nodes that it points to (out neighbourhood), nodes that point to 

it (in neighbourhood) or without considering direction (all neighbourhood), noting that a 

different type of the neighbourhood can be chosen for the source and the target node.  

Then, the whole set of pure neighbours (that exclude the source and the target nodes 

themselves) can be divided into three groups: the common nodes, nC , and two sets that 

are unique to the source and to the target.  In clustered networks the number of common 

nodes will be much larger than in the equivalent randomized network, and hence we use 

it as a local measure of clustering defined for each link.  More precisely, the link 

clustering coefficient, CL, for a given link is defined as 

T

C
L n

nC = ,                       (S2) 

Where Cn is the number of common neighbours of the link�’s end nodes, and  Tn  is the 

total number of end node neighbours excluding the end nodes themselves (see Figure 1a 

main).  We developed two quantitative measures to study the relationship of link weight 

w and CL in weighted networks.  

A similar measure of clustering local to the edges, called edge clustering, has 

been defined in ref 2 as the fraction of the triangles passing through an edge out of the 

total possible number of triangles that could potentially exist between the neighbours. 

This can be written as 
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 where )3(
, jiC is the edge coefficient,  

3
, jiz  is the number of triangles passing through the 

edge (i,j), and ki and kj are the degrees of the end nodes of the edge. For undirected 

networks this measure differs from CL only in the way it is normalized. However, our 

measure is a more conservative measure of clustering and our definition enables easier 

adoption to directed networks by merely changing the definition of neighbourhood. Thus, 

by taking into consideration the direction of the link between the two end nodes as well 

as their neighbours, we have examined 5 of the total 9 pairs of neighbourhood schemes 

(out-out, in-in, all-all, in-out, out-in; see Suppl. Fig. S6a). We have also explored many 

different normalization schemes, including the one used for edge clustering coefficient, 

none of which changes the nature of correlations with weights significantly. 

 

Excess  Clustering 

In our analysis, we use excess clustering, ∆C, which we define as the difference between 

the clustering coefficient of the original network, Corig, and that of an equivalent 

randomized network, CDSPR, with the degree sequence preserved (DSPR 3), 

  

DSPRorig CCC −=∆ ,       (S3) 

 

The reason for preferring ∆C over C is that C can indicate high clustering even when it 

arises trivially from the prescribed node degree sequence or degree distribution.  Notably, 

any complete graph has C = 1.  On the other hand, for a network to have significant ∆C, 

some form of targeted connectivity ought to be present in network formation. It is widely 

accepted that true clustering requires the presence of diverse node groups and some 
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preference of attaching to one group over the others are required 4-7, which in general can 

arise through the presence of hidden metric spaces8, 9.  

 

Technically, we obtained DSPR networks by repeated random selections of a pair of 

directed links with distinct source and target nodes, and then switching the target nodes.  

The number of switches was twice the total number of links.  At each pruning level, we 

estimated ∆C by averaging over a certain number of randomized networks (with slightly 

different values of CDSPR), which ranged from 2 randomizations for networks larger than 

10,000 nodes and up to 20 for the smallest networks..   

 

WN and OHO network topologies 

In our models, we tested two common small-world topologies.  The Watts-Newman 

topology (WN)10 is a simpler version of the Watts-Strogatz topology1. Long range 

random links are added to a regular lattice connecting K nearest neighbors without 

rewiring the existing lattice links. In essence, it is a simple superposition of an Erdos-

Renyi network with a regular lattice network. In our implementation, we use K = 4 and p 

= 2/N, yielding average degree of 10. The Ozik-Hunt-Ott (OHO)11 topology is a growing 

network model which starts with a simple lattice to which new nodes are inserted in 

between two randomly chosen neighbors and forming links to K nearest neighbors. This 

model yields a highly clustered network with C ~ 0.7 which is independent of N and 

exponentially distributed degree distribution. We used K = 6, for which the average 

degree is 12. 
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2. Supplementary Analysis 

Alternative measure of correlation between weights and clustering  

We showed that an integrative weight organization can be introduced in typical small-

world topologies by assigning link weights wij proportional to the clustering coefficients 

of the corresponding end nodes i and j as in Eq. 3 in the main text. This assignment 

results in high positive values for M and 
LCR .  In addition, we studied the correlation Rw 

between the weights in the original network, w, and those assigned by the Eq. 3 in the 

text, i.e.  

),(Corr jiijw CCwR ⋅= .       (S4) 

We calculated Rw for natural and simulated networks and found, as shown in Suppl.  Fig.  

S9 that Rw correlates with 
LCR  (R = 0.73).   

 

Relationship between 
LCR and M  

Many global network characteristics can be explained in terms of local interaction rules, 

e.g. a scale free degree distributions can arise from a local preferential attachment rule 

Barabasi 12.  In the current study, our results imply that the observed invariance of 

clustering and its global robustness to the loss of weak links, as measured with M  is 

related to the local weight-clustering correlations in integrative networks, quantified with 

LCR . If the relationship is deterministic then tuning the value of 
LCR  would provide the 

means for a network to achieve desired global properties, e.g. high modularity13 or in our 

case the robustness of clustering in which the average clustering coefficient is nearly 
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invariant to the loss of weak links. While we observe high correlation between RC L
and M 

in real world networks, we see that within each quadrant the correlation between the two 

is not strong.  It appears intuitive that having higher weights in clustered neighbourhoods 

will be more likely to preserve its clustered nature when the weak links are removed,  

however achieving the invariance in C is not guaranteed by the presence of positive  RCL
. 

The precise relationship between the two variables is difficult to determine, and certainly 

it would be unwarranted to suggest that the local integrative nature causes or determines 

the robustness. Since in any particular real world network we cannot vary 
LCR , we turn to 

models in order to determine what effect it has on robustness.  In many weighting models 

that can reproduce the local integrative property, i.e. high 
LCR , we find that M is not 

necessarily very high.  We also find that variations in RCL
 are often uncorrelated or 

negatively correlated with variations in M. For example, in figure S8a we plot M vs. 
LCR  

during 'learning at last step' (data taken from Fig. 6 main text).  The tortuous trajectory of 

this recurrence plot reveals the complex relationship between the two variables during 

learning.  In fact, after a brief initial period,  M and 
LCR  are negatively correlated (R=-

0.24) .  Similarly, in a recent social network model 13, when varying the main parameter 

(see the section on Growing Networks), integrative networks with varying 
LCR are 

produced, however M tends to be in the lower half of the first quadrant and the two 

variables are only weakly correlated (see Fig.  S8b, correlations reported in the figure). 

 

 Thus it appears that RCL
 provides some constraints on the domain of M values, however, 

its precise boundaries are difficult to obtain. A constraint between M and  
LCR that can be 
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precisely established is that  for independent weights both are expected to be zero, i.e. 

fixed to the origin (see Appendix, main text). It also appears from many examples studied 

here, and intuitively, that positive 
LCR leads to positive M and vice versa, thus, they tend 

to appear in the first and third quadrants of M vs. 
LCR plots. On the other hand, we 

already know that some of the real world networks examined in our study violate these 

constraints. For example, the C. elegans network yields high M, but negligible 
LCR  and 

the US airports network  shows positive 
LCR  , but slightly negative M. In order to test 

these constraints further, we introduce a weighting scheme that creates a tension between 

high M and   
LCR . It utilizes the fact that the weighting model in Eq.3 (main text) 

produces high M, but not as high 
LCR  as one would obtain if   CL was used directly to 

develop a weighting scheme.  We balance the two opposing weighting tendencies with a 

parameter, a. More specifically, we applied weights according to    

 

),(~ ji
Ljiij aCCCw −⋅ ,                               (S5) 

where  a is a control parameter which we studied for a wide range of values ranging from 

much smaller than 1 (0.01) to much larger than 1 (100) spaced logarithmically. We 

identify a range of a for which the measures had different signs, i.e. fall outside the 

Upper-Right and Lower-Left quadrants of Fig. 4. Indeed, as shown in Fig. S8c, in which 

the weighting scheme was applied for OHO and WN topologies, the measure can take on 

opposite signs. We also note that for a wide range of negative values of 
LCR , the two 

measures were either uncorrelated (OHO; Fig. S8c, top) or even slightly anti-correlated 
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(WN; Fig. S8c, bottom), and that for WN topology the trajectory does not pass through 

the origin (Fig. S8c, arrow) .  

 

Giant Component and Mean Path Length Pruning Analysis 

Results of pruning will also depend on the initial level of sparsity in the network and the 

network pre-processing. For example, for a fully connected, i.e. complete network, the 

excess clustering is zero and hence an increase in ∆C is to be expected. For the fMRI 

functional network, we established an independent and commonly used threshold, thus 

declaring the default level of significance in measured correlations. In gene and actor 

networks, due to their extremely large size we were forced to omit the weakest links. 

Since the pruned networks exhibited robustness to bottom pruning, we could proceed 

consistently. We note that care has to be taken that such pre-processing does not change 

the character of the network. 

 

3. Description of networks analyzed 

Sources of weighted networks 

The weighted networks used in the present study were obtained from numerous  sources.  

Neuronal avalanche networks were obtained from our own laboratory, DSI and fMRI 

networks were obtained from the group of Olaf Sporns, but the majority of the networks 

were obtain from the following three sources/databases: 1) the data provided by Mark EJ 

Newman at http://www-personal.umich.edu/~mejn/netdata/ , 2)  Pajek (a software 

program for large network analysis) website, originally found at http://vlado.fmf.uni-

lj.si/pub/networks/pajek/ but has since migrated to http://pajek.imfm.si/doku.php , 3) 
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University of Florida Sparse Matrix Collection (UFSMC) at 

http://www.cise.ufl.edu/research/sparse/matrices/  which is also hosted at 

http://aws.amazon.com/datasets/Mathematics/2379.  One can also search this database 

at http://www2.research.att.com/~yifanhu/GALLERY/GRAPHS/search.html 

or at http://aws.amazon.com/datasets/Mathematics/2379.  We now provide more details 

about each of the networks (network groups) studied. 

 

Weighted neuronal avalanche networks (Avalanche networks, n = 3) 

Functional cortical architectures of neuronal avalanches represent weighted directed 

networks derived as described previously 14.  In short, spontaneous synchronized activity 

was recorded in organotypic cortex slices cultured on integrated, planar 8x8 multi-

electrode arrays (MEA) 15.  The local voltage fluctuations at each electrode site was 

thresholded and the time series of suprathreshold events at each electrode was taken as 

node activations in a 60-node networks (corner electrodes were not present).  Cascades of 

node activations have been shown to form spatiotemporal clusters whose size 

distributions obey a power law with slope of -1.5, the hallmark of neuronal avalanches.  

By observing the spatio-temporal evolution of node activities on the network, a directed, 

weighted graph is derived 14.  The first data set was based on 7 cultures with stationary 

avalanche rate 15.  In a second data set, avalanche rate changed by an order of magnitude 

due to external slow driving 16.  We used three data sets to study functional neuronal 

avalanche connectivity in awake macaque monkeys.  The first data set was derived from 

monkey 1 described in 17 based on ongoing avalanche activity in premotor cortex (N = 32 

microelectrodes).  The 2nd and 3rd data sets were obtained in 2 other awake, quietly sitting 
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macaque monkeys (NIMH) by recording ongoing avalanche activity in the premotor 

cortex with 10x10-electrode arrays (0.6 mm interelectrode distance; N ~ 100).  

Functional architectures were reconstructed as described in 14 using a time step of 2 ms 

and an LFP threshold of -2.5 SD of signal fluctuations.   

 

Structural and functional human cortex core (Human Brain, n = 2) 

The structural and functional connectivity data of the human cerebral cortex from the 

same 5 human subjects was recently published 18 and is available at 

http://www.indiana.edu/~cortex/resources.html.  The nodes in these networks represent 

cortical regions of interests (N = 998) distributed over 66 functional cortical areas.  The 

structural human cortex core has been identified using diffusion spectrum imaging (DSI) 

which includes ~15,000 fiber bundles of various densities that reflect the connection 

capacity between regions.  The functional connectivity was based on correlations in the 

resting BOLD signal of fMRI between the same N = 998 cortical regions of interest.  

Since such a network is fully connected (complete), we obtained the sparse functional 

networks by keeping only those links for which pair-wise correlations R in the fMRI 

signal were larger than 0.2.   

 

Gene regulatory networks (Gene, n = 3)  

We used two human gene regulatory networks (N≅ 22300 and 14300) and one mouse 

network (N≅45100). They were obtained from the University of Florida Sparse Matrix 

Collection (UFSMC), posted by Vicenzo Belcastro�’s group, and described in 19.  Nodes 

in these networks represent individual genes and the links between them relate the 
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expression level of each gene with the expression of other genes.  The weights do not 

represent correlations, but rather a value of a parameter value in ODE-based algorithm, 

NIR 20.  Due to the large size of these networks and a very large number of significant 

links, we studied networks that were either sub-sampled versions of the original networks 

(see Suppl Figure 1 for networks sub-sampled at N = 1000 and N = 2000 nodes) or in 

which only links with an interaction parameter greater than 0.08 were kept, yielding very 

sparse networks that could be analyzed in a reasonable amount of time.  Either method 

led to the same conclusion in terms of our pruning and link clustering analysis.  The sub-

sampled versions produced very similar results and were robust even if only 1000 or 

2000 nodes were used in sub-sampling (see Suppl. Fig. S1).  The results were also similar 

to those of the thresholded networks with the full set of nodes shown in Fig. 1e. 

 

Actor Collaboration Network (Actor, n = 1) 

The actor networks were reconstructed using data from the Internet Movie Database 

(IMDb), provided by the Pajek Group provided in a Matlab format on the Pajek website 

http://pajek.imfm.si/doku.php.  The original data contained a bipartite graph connecting 

428K movies to 896K actors that were participating in them.  From this bipartite graph, 

we reconstructed a weighted network in which the nodes represent actors and the link 

weights represent the number of movies in which they appeared together.  To make this 

network computationally manageable, we first only considered movies with more than 5 

actors in it and for the following categories: Drama, Short Documentary, Comedy, 

Western, Family, Mystery, Thriller, Music, Crime, Sci-Fi, Horror, War, Fantasy, 

Romance, Adventure, Animation, Action, Musical, Film-Noir. Second, we only kept  

© 2012 M acmillan Publishers Limited.  A ll rights reserved. 



Pajevic & Plenz          Suppl. Info.: The organization of  strong links in complex networks 12 

 

actors who appeared in at least 10 movies.  The final network had N = 53K nodes and its 

properties are listed in Table I. 

 

© 2012 M acmillan Publishers Limited.  A ll rights reserved. 



Pajevic & Plenz          Suppl. Info.: The organization of  strong links in complex networks 13 

 

�“Les Miserables�” Characters network (Les Miserables, n = 1) 

The co-appearance network of characters in the novel Les Miserables has 77 nodes and 

weights represent the number of chapters in which a pair of characters appeared together.  

This network was originally created and studied in 21 and was obtained from the MEJ 

Newman web-site (http://www-personal.umich.edu/~mejn/netdata/).  

 

Words co-occurrence and Free Association Networks (Words, n = 2) 

We used two different word networks.  In the word co-occurrence Reuters News 9/11 

network,  nodes represent keywords that occurred together in Reuters News articles on 

September 11, 2001 , the day of the terrorist attacks in USA.  The link weights represent 

the frequency of their co-occurrence.  Originally produced by Steve Corman and Kevin 

Dooley at Arizona State University, the data are publicly available at http://pajek.imfm.si. 

The Free Association Word network (FA Word) is a directed network, in which source 

nodes represent normed words/cues to which >6,000 participants were asked to write the 

first word, the target node, that came to mind that was meaningfully related or strongly 

associated to the presented word,.  The mechanics of this survey consists of a long list of 

words with the blank shown next to each item.  For example, if given BOOK _________, 

they might write READ on the blank next to it.  This procedure is called a discrete 

association task because each participant is asked to produce only a single associate to 

each word.  This network can be found on the Pajek (http://vlado.fmf.uni-

lj.si/pub/networks/data/dic/fa/FreeAssoc.htm), or USF website 

(http://w3.usf.edu/FreeAssociation/AppendixA/index.html).  

For additional details see also http://w3.usf.edu/FreeAssociation/Intro.html. 
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 Caenorabditis elegans (C. elegans) Network   

The neural system of the nematode worm C. elegans is comprised of a total of N = 302 

neurons, most of which are linked together into one large, network.  Our calculations are 

based on three versions of this network.  We used  a recently improved C. elegans 

neuronal data base 22 that contains one network based on chemical, i.e.  synaptic, 

connections and one network based on electrical, i.e. gap-junction, mediated connections 

between neurons (available at http://mit.edu/lrv/www/elegans/).  Link weights in these 

networks represent multiplicity of connections between neurons.  For comparison, we 

also analysed an earlier version of this network 23 with its small-worldliness introduced in 

1 and which is available at http://www-personal.umich.edu/~mejn/netdata/.  Results for 

all three networks did not differ substantially and were averaged for presentation 

purposes.   

 

Scientific author collaboration networks (Collaboration Networks, n = 4)  

In author collaboration networks, authors from different disciplines in physics represent 

nodes and are connected, if they co-author a paper. Link weights in these networks 

quantify the number of papers co-authored, each paper carrying the weight inversely 

proportional to the total number of the authors.  The disciplines �‘Condensed Matter�’, 

�‘Network Sciences�’, �‘High Energy Physics�’, and �‘Astrophysics�’ with N = 1,500  �– 17,000 

authors, i.e. nodes, were analysed (available at   

http://www-personal.umich.edu/~mejn/netdata/).   
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Airline  transportation network (Transportation Networks, n = 2)   

The US Air airline network is an undirected, weighted transportation network with N = 

332 nodes representing airports around the world. Link weights represent the relative 

number of the flights US Air had in 1997 

(http://www.cise.ufl.edu/research/sparse/matrices/Pajek/USAir97.html).  We also used an 

airport network (http://wiki.gephi.org/index.php/Datasets) in which the nodes constitute 

500 airports in the US and link weights represent the number of passengers transported 

each year. 

 

Weighted Growing Networks 

We created networks based on two popular models of weighted evolving networks, i.e., 

in which weights are assigned during growth as nodes and links are added.  The two 

growth models (GM) assign weights according to (1) resources reserved based on the 

degree of the connecting node 24 or (2) fixed resources distributed based on the relative 

node strengths 25.  These two rules were originally applied to preferential attachment 

models and as such did not produce networks with any excess clustering.  We therefore 

applied the corresponding weight assignment rules to the OHO 11 growing network, 

which has significant ∆C and  named them (1) GM1 OHO and (2) GM2 OHO. 

 

Social Network Weighting Model 

In this weighting social network model13 (SN) the weights and links evolve in 

time, while the number of nodes is kept fixed throughout. It uses local neighbourhood 

searches to increase the number of common neighbours and corresponding link weights.  
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The two critical model parameters that we varied are the relative weight increase for 

closed triangles, δ, which we studied for 3 different values (δ = 0.25, 0.5, and 1, and on a 

network with size N = 100 and 500), and p∆, a probability that a neighbour of a given 

nodes neighbour will form a new connection if the one did not exist (p∆ =0.001 and 

0.005). Except for the size of the networks being smaller, the other parameters being set 

are similar to the ones used in Kumpula et al. 13  Since we use smaller networks the 

average degrees in our networks were closer to 5, rather than 10 reported in 13, and we 

did not tune p∆ to achieve the desired characteristics. For us this model was just the 

means to explore further the relationship between the local weight-clustering correlations 

and the robustness, hence the precise implementation of the networks with the same 

characteristics was of lesser importance. 

 

 

4. Supplementary Table 

 

Table 1:  Summary of network properties.  The first column contains the network name 

and the number of actual networks analyzed in parenthesis. The data columns are as 

follows: N: number of network nodes.  <k>: mean node degree.  <d>: mean network 

diameter.  rA : assortativity based on degree-degree correlations. C: average node 

clustering coefficient.  ∆C: mean excess clustering.  Q: Network modularity obtained 

using Girvan-Newman algorithm 26, 27. M and 
LCR as defined in the main text.  
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Networks (#nets) N k  d  rA C ∆C Q M RCL
 

Neural    
DSI Human Brain (5) 998 36 3.1 0.29 0.47 0.42 0.68 ± 0.08 0.34 0.59 

fMRI Human Brain (5) 998 67 2.7 0.25 0.53 0.44 0.62 0.56 0.63 
Avalanche Monkey (3) 77 ± 14 13 ± 4 2.6 ± 0.19 0.3 ± 0.13 0.51 ± 0.03 0.29 ± 0.03 0.48 ± 0.03 0.39 0.45 
Avalanche Culture (7) 59 16 ± 3 2.3 ± 0.17 0.28 ± 0.11 0.63 ± 0.03 0.32 ± 0.03 0.5 ± 0.06 0.65 0.31 

Aval. Culture Driven (7) 58 ± 1 16 ± 4 2.2 ± 0.16 0.24 ± 0.11 0.57 ± 0.03 0.26 ± 0.03 0.41 ± 0.07 0.72 0.22 
C-elegans (3) 285 ± 10 7.9 3.6 ± 0.3 0.02 ± 0.07 0.23 ± 0.01 0.15 ± 0.01 0.5 ± 0.04 0.4 0.002 

Transportation  
         

US Air (1) 332 13 2.7 -0.21 0.75 0.24 0.2 -0.19 -0.025 
US airports (1) 500 12 3 -0.27 0.73 0.18 0.28 -0.059 0.31

   
Human           

Actors (1) 53960 6.6 7.6 0.18 0.58 0.53 0.68 0.47 0.36
Les Miserables (1) 77 6.6 2.6 -0.16 0.74 0.47 0.53 0.25 0.16

          
Genes    

Human Gene 1 (1) 22282 15 5.3 0.068 0.66 0.52 0.69 0.59 0.53
Human Gene 2 (1) 14337 19 3.6 -0.0047 0.65 0.46 0.6 0.56 0.55 
Mouse Gene (1) 45101 5.5 4.9 0.3 0.57 0.51 0.74 0.6 0.59

   
Language          

Reuters News 9/11 (1) 13314 22 3.1 -0.11 0.39 0.22 0.24 0.2 0.14
Language Free Assoc. (1) 10617 6.8 4.8 -0.0076 0.13 0.12 0.52 0.37 0.23 

   
Collaboration   

Condensed Matter (1) 16726 5.7 6.6 0.18 0.74 0.74 0.52 -0.16 -0.19 
High Energy Physics (1) 8361 3.8 7 0.29 0.64 0.63 0.52 -0.091 -0.13

Astrophysics (1) 16706 15 4.8 0.24 0.73 0.72 0.53 -0.04 -0.19
Network Science (1) 

 
Learning 

1589 3.5 5.8 0.46 0.88 0.87 0.61 -0.042 -0.43 

LSCrit (10) 60 11 2.3 ± 0.03 0.12 ± 0.04 0.68 0.44 0.78 ± 0.06 0.15 0.27 
LSSub (10) 60 11 2.3 ± 0.04 0.15 ± 0.02 0.67 0.43 0.79 ± 0.02 0.17 0.016 
LSSup (10) 60 11 2.3 ± 0.02 0.15 ± 0.03 0.68 0.44 0.64 ± 0.14 0.075 0.25 
ASCrit (10) 60 11 2.3 ± 0.05 0.15 ± 0.03 0.68 0.44 0.44 ± 0.04 -0.1 -0.059 
ASSub (10) 60 11 2.3 ± 0.03 0.15 ± 0.03 0.68 0.44 0.33 ± 0.02 -0.11 -0.21 
ASSup(10) 60 11 2.3 ± 0.04 0.15 ± 0.04 0.68 0.44 0.47 ± 0.01 -0.0011 6.3e-16 

          
Models   

OHO Type I (10) 100 12 2.7 ± 0.06 0.2 ± 0.015 0.67 0.52 0.57 ± 0.01 -0.0023 -0.011 
OHO Type II (10) 100 12 2.7 ± 0.07 0.2 ± 0.016 0.67 0.52 0.5 ± 0.01 -0.41 -0.41 
OHO Type III (10) 100 12 2.7 ± 0.07 0.19 ± 0.03 0.67 0.52 0.65 ± 0.01 0.58 0.55 

WN Type I (10) 100 9.8 2.5 -0.03 ± 0.03 0.46 0.37 0.56 ± 0.01 0.0063 -0.005 
WN Type II (10) 100 9.8 2.5 -0.01 ± 0.04 0.46 0.37 0.54± 0.01 -0.4 -0.13 
WN Type III (10) 100 9.8  2.5 ± 0.05 0.05 ± 0.04 0.46 0.4  0.6 ± 0.01 0.4 0.48 

          
Growth Models   

GM1 OHO W1 (10) 100 12 2.7 ± 0.03 0.19 ± 0.02 0.67 0.52 0.5 ± 0.01 -0.46 -0.3 

GM2 OHO W2 (10) 60 11 2.3 ± 0.04 0.2 ± 0.03 0.67 0.43 0.5 ± 0.01 0.038 -0.17 
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5. Supplementary Figures 

Figure S1 | Integrative weight organization for gene networks is also obtained when 

reducing network size by random node sub-sampling instead of removal of weakest 

links, e.g. 0.08 threshold used in figure 1. a, Results obtained by sub-sampling N = 

2,000 nodes from the original gene networks. For each genome, five sub-sampled 

networks were averaged and their link clustering analysis (left) and pruning analysis 

(right) are shown.  b, Corresponding analysis for sub-sampling N = 1,000 nodes (10 

subsamples averaged for each genome).   

 

Figure S2 | Visualization of the trend in link clustering.  a, Plot of CL vs. link weight 

rank for every link in eight different networks as labelled.  Note that these plots reveal 

that the values of CL are very heterogeneous at every weighting level, but also show 

trends consistent with those visualized using average values within ten bins (cf. Fig. 1 

main text).  b, Distributions of CL values are plotted for each bin for different networks. 

For the integrative networks the distributions, while being very broad, are reasonably 

well localized and show clear increasing trend. 

 

Figure S3. | Definition of excess node clustering. a, Bottom�–pruning analysis of the 

node clustering coefficient C for n = 7 weighted, directed functional neuronal avalanche 

networks. ∆C: excess node clustering.  DSPR: degree�–sequence preserved randomization.  

b, Single example of a bottom�–pruned network at f = 0.3 and 0.9 indicated by red arrows 

in left panel.  
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Figure S4 | Changes in ∆C are the result of changes in Corig, and CDSPR, so the same 

change in excess clustering can be obtained in many different ways. To obtain a more 

detailed picture, the same networks and weight organizations as in Figure 3 in the main 

text are shown here with both Corig (solid lines) and CDSPR (broken lines) plotted 

separately, with left panels showing bottom�–pruning and right top�–pruning.  a, Bottom �–

pruning (left) and top�–pruning (right) of OHO (black) and WN (blue) neutral networks 

(solid lines) and corresponding DSPR controls (broken lines; n = 10).  Note linear decay 

as predicted by theory for both the original and randomized controls.  b, For bottom�–

pruning, C remains relatively high in this dispersive network model, but the increase in 

CDSPR leads to an overall reduction in ∆C, particularly for OHO topology.  c, Conversely, 

CDSPR increases for top�– but not bottom�–pruning in integrative networks.  The symmetry 

between the integrative vs. dispersive and bottom vs. top pruning for OHO topology is 

the result of its inverse linear relationship between the node clustering coefficients and 

degrees. In most topologies, node clustering coefficient and node degree are inversely 

related, C ~ k- , with 0< <1 and thus we expect similar results in other topologies. 

 

Figure S5 | Same simulations as in figure 3 main text, but now using the �“all�” 

definition for the neighbourhood in directed networks, showing virtually the same 

results. a, Neutral networks with independent link weights implemented on OHO (black) 

and WN (red) topologies.  Left: LC∆ does not correlate with weight rank.  Right: 

C∆ decreases monotonically with f  for bottom�– (solid lines) and top�–pruning (broken 

lines). b, Corresponding analysis for dispersive networks where ijw are assigned as the 
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geometric mean of the end-node degrees ki and kj .  c, Corresponding analysis for 

integrative networks.   See main text Figure 3 for further details. Simulations of n = 10 

networks each (N = 100; <k> = 12, 10 for OHO, WN).   

 

Figure S6 |  Scatter plot of M and 
LCR  for directed weighted networks (see Suppl. Table 

and Fig. 4 main text for details) using different definitions of neighbourhood. Src: Source 

node; Targ: Target node. We see that 
LCR is very robust to the choice of neighbourhood, 

while M shows greater variability. Nevertheless, classification of networks into 

dispersive, neutral, and integrative is fairly robust to neighbourhood definition. For 

network legend see Fig. 4 main text and Fig. S9. 

 

Figure S7 | Link clustering trends and robustness to pruning for evolving network 

models (a) GM1  applied to OHO growth model. (b) GM2 applied to OHO growth 

model.  

 

Figure S8 | We explored the relationship between the two measures of weight 

organization, M and
LCR . a, Recurrence plot of M vs. 

LCR  during last step learning.  

Plot covers learning from the 100,000 to 10 million learning steps (same values as in Fig. 

6c, d).   Average of n = 10 networks.  While both M and 
LCR  remain in the positive 

quadrant, their trends during learning are fairly un-correlated (R = -0.24) which suggests 

that a simple monotonically increasing relationship between measures M and RCL does 

not exist. b, Implementation of the weighted social network model13 for two different 

values of p∆ , p∆ =0.001 and p∆ =0.005, as indicated, and three values. All models were 
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run between 10 and 25 node generations, i.e. that many times each node was on average 

removed randomly, together with all of its links. In most cases it took less than 5 

generations for the main network parameters to became stationary (e.g. average degree 

and clustering coefficient). We report the values of 
LCR and M during the stationary 

period. The results indicate that 
LCR does provide constraints for M however their values 

are uncorrelated during the time evolution. Furthermore (see also Fig. 4), its M is lower 

than the one observed in real world networks. c, Results for OHO and WN topologies 

using 16 different values for parameter a in Eq. S5, approximately logarithmically spaced 

between 0.01 and 100. Three different network sizes were used N = 60 (black), N = 100 

(blue), N = 200 (red). These results indicate that of 
LCR  does not always constrain the 

values of M to be in the positive/negative quadrant, nor the passage through the origin of 

their trajectory. From these results and other results we can only say that having positive  

LCR is necessary but not sufficient condition for having high robustness observed in some 

biological networks. 

 

Figure S9 | Comparison of 
LCR with alternative network measures. a, 

LCR  correlates 

with Rw as described in Eq. S4. Thus, link weights organize along two different local 

measures of clustering, the relative fraction of common neighbours, and the clustering 

coefficients of the corresponding end nodes.  b, The local measure 
LCR  positively 

correlates with modularity Q, a global measure of community structure, which in the 

current analysis takes link weight into account (R = 0.35) 26. 
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