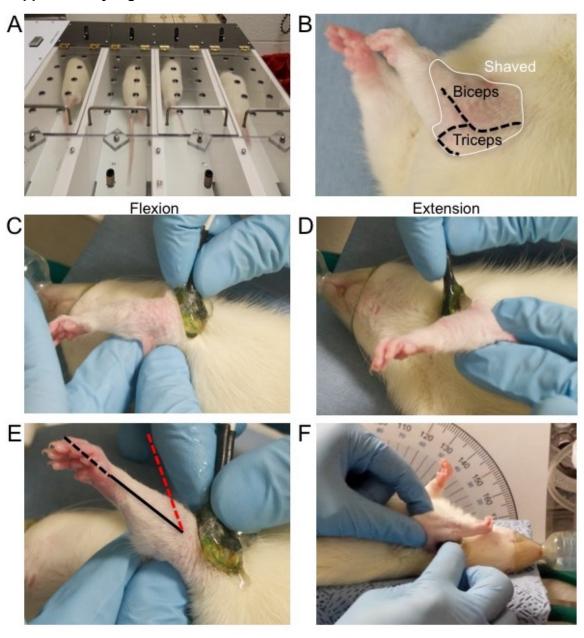
Biological effects of dosing aerobic exercise and neuromuscular electrical stimulation in rats.

Stefania Dalise^{1,6*}, Loredana Cavalli^{1,6*}, Harmanvir Ghuman^{1,2*}, Brendon Wahlberg^{3*}, Madeline Gerwig⁴, Carmelo Chisari⁶, Fabrisia Ambrosio^{1,2,5}, Michel Modo^{1,2,3, CA}

University of Pittsburgh, ¹McGowan Institute for Regenerative Medicine, ²Department of Bioengineering, ³Department of Radiology, ⁴Department of Neuroscience, ⁵Department of Physical Medicine and Rehabilitation, Pittsburgh, Pennsylvania, USA; ⁶ University Hospital of Pisa, Department of Neuroscience, Unit of Neurorehabilitation, Pisa, Italy.

* contributed equally


Corresponding Author:

Dr. Mike Modo
University of Pittsburgh
McGowan Institute for Regenerative Medicine
3025 East Carson St
Pittsburgh, PA 15203
USA

+1 (412) 383 7200

e-mail: mmm154@pitt.edu

Supplementary Figures

Supplementary Figure 1. Aerobic exercise (AE) and neuromuscular stimulation (NMES). **A**. AE was administered using a treadmill that afforded the running of 4 rats simultaneously. The same apparatus was used to evaluate maximum performance capacity of animals. **B**. For NMES, the biceps and triceps were individually stimulated after exposure of the skin by trimming the overlying hair. **C**. Stimulation of the biceps resulted in a flexion of the forelimb. **D**. In contrast, stimulation of the triceps produced an extension of the forearm. **E**. A 30° extension and flexion of the forearm was considered a successful administration of NMES. **F**. A goniometer was used to determine if an appropriate extension and flexion was achieved.