

Supplementary Material
In this section, we give further technical details of the methods that we developed or tailored for our developing our videomo-
saicking framework. For the sake of completeness, we briefly mention the standard methods that we used in the framework and
refer readers to the cited literature for details. The focus of this supplementary material is on the modifications and additions
that we made at individual steps of the framework. We will also provide the values of the parameters that were used during the
implementation.

Extraction of SIFT Keypoints

In order to extract and describe keypoints, we used an off-the-shelf version of the SIFT algorithm1 that was implemented in
opencv2 and ported into Matlab as mex libraries3. The SIFT algorithm has been extensively tested on natural images, from
which values of its default parameters have been set. We made a few modifications in its default values to increase the efficiency
of the algorithm for our specific reflectance confocal microscopy (RCM) data. SIFT is basically composed of 2 steps; detection
of keypoints and calculation of the keypoint descriptors. In the SIFT algorithm, keypoints are defined by their high contrast
relative to their neighbors. Useful keypoints may occur at different spatial scales (fine to coarse) of the image. SIFT explores
this space using a Difference-of-Gaussian (DoG) representation in a two-step algorithm. First the image is downsampled
repeatedly at different octave-based scales (e.g. downsampled by 2 in each direction). Then at each octave the image is filtered
by Gaussian filters with different variances, and these images are then subtracted from each other. This procedure allows
a search for keypoints at multiple octaves and at multiple scales within the octave, as illustrated in Figure S1. In order to
obtain enough keypoints that lead to reliable matches between RCM frames, we experimented with different numbers of octave
and scale parameters in the DoG representation (Figure S1). We observed that using a DoG representation with five octaves
(corresponds to five times downsampling) and five scales (different variances of the Gaussian filter) at each octave gave a good
balance between computational complexity and the number of extracted keypoints (which was typically ⇠ 3000 as noted in
Methods). The initial variance of the Gaussian filters was s = 1.6 pixels, and it increases as k

p
(2)s for k 2 [1, . . . ,5]

Figure S1. An example DoG representation: At each octave, the frame is convolved with Gaussian filters with increasing
variances (called scales) and the convolved images are subtracted from each other to create the DoG representation at that
particular octave. For illustrative purposes we show three DOG levels at three octaves, different from what we actually used in
practice.

The second stage of SIFT is to calculate descriptors for each keypoint. We used standard SIFT descriptor1. These SIFT
descriptors are feature vectors which concatenate histograms of the gradients at different angles in a spatial region around the
keypoint. See Fig. S2 for a detailed illustration of this process.

Registration
Registration parameters between two consecutive frames can be calculated by analyzing the displacement of the keypoints in
these images (optical flow). First, we matched the keypoints between two consecutive frames. The initial tentative matching is
done by calculating a similarity metric between keypoint descriptors using an `2 (euclidean) distance. Each keypoint in each

1/5

Figure S2. Histograms of gradients around each keypoint are used as descriptors. For each of the 16 subregions (each
subregion is 4⇥4 pixels) around the keypoint, an 8 bin histogram of gradients is formed. These 16 histograms are concatenated
to form a length-128 SIFT descriptor. For visual purposes, we only show a few of the keypoints

frame was matched with the 2 most similar keypoints in the following frame. Keypoints for which the ratio of its distance to its
second closest match to its distance to the closest match was larger than 1.5 were counted as strong matches. The rest of the
pairs (and the respective keypoints) were eliminated from the list of potential matches for subsequent processing.

Unfortunately, matching the keypoint based only on similarity between their descriptors is unreliable, as microscopic
images often contain repeated textural patterns with similar appearance. For any microscope motion, all keypoints should move
in a tandem fashion. Therefore, the relative displacement between the matched keypoints pairs must be similar, and thus should
be well approximated by a single transformation matrix:

Kt+1 = HtKt (1)

where Ht is a 3-by-3 transformation matrix and Kt ,Kt+1 are triplets of homogeneous coordinates of matched keypoints between
consecutive frames t and t +1. In general, for more than 3 matches, solutions to (1) will be inconsistent as we have many more
constraints than free parameters. To robustly find a representative transformation, we used a procedure called RANSAC4 to find
an Ht that describes the motion between all matched keypoints with small error. In a single iteration, RANSAC solves (1) for
one randomly-chosen triplet of matches, resulting in an estimate Ĥ j

t , where j is the iteration number. The resulting Ĥ j
t is then

used to calculate expected locations of all remaining keypoints from the earlier frame in the next frame. An estimation error
E j associated with transformation matrix Ĥ j

t is then calculated by summing the `2 distance between the estimated keypoint
locations (H j

t Kt) and their actual location (Kt+1) in the following frame.

2/5

By solving (1) multiple times on randomly selected triplets, RANSAC calculates a vector of error values E j, whose `2 is
taken as measure of the robustness of H j

t . The Ĥ j
t matrix that results in the smallest error over all iterations is chosen as the

transformation matrix Ĥt . Testing many subsets is computationally costly, while testing on a smaller number of subsets leads to
poor generalizability and thus poor registration. We observed experimentally that for the RCM images 3000 trials gave a good
balance between computational complexity and generalizability.

Even with this choice of Ht , there are typically keypoint matches that are significantly inconsistent with the resulting
transformation. Thus we made a second pass through the keypoint matches to discard those matches whose projected location
in the second frame was not consistent with their actual location. Our experiments on RCM images suggested that discarding
matches for which this location error was larger than 50 pixels gave a good trade-off between consistency and having too few
matches. We will refer in the sequel to the remaining set of matches as inlier matches.

After RANSAC, the final step in registration is the refinement of Ĥt to best fit all inlier matches. In addition, in our
application, we are only interested in registering consecutive frames that were collected during smooth motion of the microscope.
In such cases the change in scale and warping (distortion) between the registered frames should be relatively small. Moreover,
when the inlier matches are mostly concentrated on a portion of the frames, we want to prevent having a transformation matrix
that is overfit to that portion of the image, which can lead to distortion in the rest of the frame. These goals can be characterized
by an optimization problem which aims to find the registration transformation Ht that minimizes the total mismatch over all
inlier matches while leading to the small frame-to-frame warping and scale change.

The total mismatch between the inlier matches can be calculated using the `2 error metric described before. The distortion
induced by the registration can be quantified by analyzing the coefficients of the affine transformation matrix H. More
specifically, the upper left 2-by-2 portion of the matrix controls the rotation and shearing in the registration and the entries in the
first two rows of the last column (H(1,3) and H(2,3)) control the translation. Finally, the last row (H(3,1),H(3,2),H(3,3)) controls
the projective geometry, which represents how the matches deviate from a 2D geometry. In order to avoid transformation
matrices that lead to too much distortion, we introduced an additional cost parameter that penalizes the scale change and shear
in the final transformation matrix. This parameter serves as a regularization term to force the final affine transformation matrix
to favor translation and rotation motion between frames and limit shearing that may warp and distort the frame. Given the inlier
matches K̄t and K̄t+1 that we found through RANSAC, we solve the following optimization problem

minH ||K̄t+1 �HtK̄t ||⇤ (1+ pen), (2)
pen = |1�Ht(1,1)|+ |1�Ht(2,2)|+ |Ht(1,2)+Ht(2,1)|+ |Ht(3,1)+Ht(3,2)|⇤102. (3)

The first two terms in the penalty limit scale changes, the third term limits shearing and warping, and the last term limits the
projective warping (deviation from 2D). Here we optimize Eq. 3 over all inlier matches. As an aside, we noted that, as expected,
the effect of the additional penalty parameter was minimal when the inlier matches were homogeneously spread across the
frames.

Scene Cut Identification
As described in Methods, our framework was designed to automatically detect sudden and unwanted motion of the microscope
and then cut the longer sequence into internally consistent subsequences as needed. We developed a method that uses the
coefficients of the transformation matrix Ht to determine where to cut. Since, as described in detail above in the Frame
Registration section of the manuscript, the diagonal coefficients of Ht encode how much warping and distortion is introduced in
the final registration, we quantify warping and distortion as

De f ormationFactor = (1� H(1,1)
H(3,3)

)+(1� H(2,2)
H(3,3)

), (4)

which is similar to the regularization term in Eq. (3). This factor quantitatively determines the degree to which the final
transformation matrix imposes translation, rotation, and shearing. We place cuts between frames when this deformation factor
is larger than 1. In addition, we calculate the ratio between the area covered by the earlier frame before and after the registration
transformation. If this ratio is larger (smaller) than an experimentally determined threshold of 2.5 (1/2.5), then we also place a
scene cut between those two frames.

Graph-cut based Stitching
As noted in the Methods section, in order to preserve resolution and cellular detail, we designed a method that retains the
actual measured pixel values while ensuring image fidelity. Specifically, we adopted a graph-cuts based stitching algorithm that
determines where to place a flexible, data-driven boundary that in effect composes the stitched image from two parts, each
coming from pairs of neighboring original frames.

3/5

In the exposition here, we refer to the current state of the mosaic, composed from the previous and current images in the
video sequence, as M and an ”incoming” frame that we wish to stitch as F . After registration we obtain a transformed version
of F , which we denote F 0, which overlaps with some pixels of M. Thus in each location of the overlap area, we have two
candidates pixels to choose from, one from M and the other from F 0. The stitching step seeks a single continuous stitching
boundary going through the overlap area, one side of which comes from M and the other side from F 0, as shown in Fig. 6 in
the manuscript. We model the problem of finding the optimal stitching border as a graph-cuts based labeling problem, where
the label L(p) of each pixel p in the new video-mosaic is either M or F 0. This pixel labeling problem can be approached as a
graph partitioning by representing the pixels of the two images as the nodes of the graph. In this graph topology, labeling two
neighboring pixels with different labels means the stitching boundary cuts the edge between these two pixels. The total cost of
choosing a certain stitching boundary is associated with sum of the cost of the individual edges that the boundary cuts through
(Fig. 6).

In our implementation the total cost of cutting an edge is composed of 2 terms as

C(L) =Cu(p,L(p))+Cb(p,L(p)), (5)

where the terms are the “unary cost” (Cu) and the “binary” cost (Cb)). Since we want to insure that the stitching boundary goes
through the overlap area, we defined the unary cost as

Cu(p,L(p) =

(
0 p 2 {M\F 0}
W else

(6)

where {M\F 0} is the set of pixels in the overlap area of M and F 0 and W is a very large cost value, which always dominates
the binary cost.

In the overlap region, the unary cost is set to be zero as noted above for all pixels because each pixel has the same equal
probability of being in the final mosaic. Therefore, only the binary cost determines where the stitching border goes within the
overlap area. The binary cost term for the cutting the connection between two pixels is calculated in two terms as:

Cb(p,L(p)) =Cs +Ch (7)

where Cs, is the “similarity” cost, and Ch is the homogeneity cost. The similarity cost

Cs(p) = Gh(|M�F 0|)⇥Kh(p)+Gv(|M�F 0|)⇥Kv(p) (8)

with

Kh(p) =

(
0 if L(p) = L(q), q is 2 horizontal neighborhoods of p
1 else.

(9)

and

Kv(p) =

(
0 if L(p) = L(q), q is 2 vertical neighborhoods of p
1 else.

(10)

is the absolute difference between the two candidate pixel intensity values from M and F 0. It forces the stitching boundary to go
through pixels with are similar in both M and F 0. The homogeneity cost

Ch(p) = |—xM+—xF 0|⇥Kh(p)+ |—yM+—yF 0|⇥Kv(p) (11)

is the absolute intensity differences between candidate pixels and their spatial neighbors (“homogeneity” cost, Ch) (Fig. 6-Left
column). It forces the stitching boundary to go through areas with small intensity variation.

Once the cost (function of labels) is calculated for each pixel, we minimize the overall cost with respect to the labels using
Boykov’s graph-cut method5. In the highly unlikely case that this solution is not unique, the algorithm randomly picks one
of the candidate stitching borders. In this way, the pixels of the final mosaic are uniquely chosen from pixels of either of the
frames as shown in Fig. 6.

4/5

References
1. Lowe, D. Object recognition from local scale-invariant features. In Computer Vision, 1999. The Proceedings of the Seventh

IEEE International Conference on, vol. 2, 1150–1157 (1999).

2. Bradski, G. Dr. Dobb’s Journal of Software Tools (2000).

3. mexopencv. https://github.com/kyamagu/mexopencv. Accessed: 2016-11-27.

4. Fischler, M. A. & Bolles, R. C. Random sample consensus: A paradigm for model fitting with applications to image
analysis and automated cartography. Commun. ACM 24, 381–395 (1981). URL http://doi.acm.org/10.1145/

358669.358692.

5. Boykov, Y., Veksler, O. & Zabih, R. Fast approximate energy minimization via graph cuts. Pattern Analysis and Machine
Intelligence, IEEE Transactions on 23, 1222–1239 (2001).

5/5

https://github.com/kyamagu/mexopencv
http://doi.acm.org/10.1145/358669.358692
http://doi.acm.org/10.1145/358669.358692

	References

