Supplementary Information for:

Kinetic Resolution of 2-Substituted 1,2-Dihydroquinolines *via* Asymmetric Cu-Catalyzed Borylation Reaction

Duanyang Kong, Suna Han, Rui Wang, Meina Li, Guofu Zi, and Guohua Hou* Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China

Table of contents

1. General Information	
2. Experimental Procedure and Characterization	
3. Procedure for the synthesis of 3-9	S17
4. Deuterium Labeling Experiment	S22
5. X-ray Crystallography	
6. NMR spectra of all compounds	
7. SFC and HPLC spectra of all compounds	
8. Figures of single-crystals	S112

1. General Information

All the air or moisture sensitive reactions and manipulations were performed by using standard Schlenk techniques and in a nitrogen-filled glovebox. DME, THF, dioxane and toluene were distilled from sodium benzophenone ketyl. CH_2Cl_2 was distilled from calcium hydride. Anhydrous MeOH was distilled from magnesium.¹H NMR and ¹³C NMR spectra were recorded on Bruker AV (400 MHz) spectrometers and JEOL JNM-ECX600P and JNM-ECS600 (600 MHz) spectrometers (CDC1₃ was the solvent used for the NMR analysis, with TMS as the internal standard. Chemical shifts were reported upfield to TMS (0.00 ppm) for ¹H NMR. Data is represented as follows: chemical shift, integration, multiplicity (s = singlet, d = doublet, dd = double of doublets, t = triplet, q = quartet, m = multiplet) and coupling constants (*J*) in Hertz (Hz). Optical rotation was determined using Autopol III Automatic polarimeter (Rudolph research Analyical). HPLC analysis was conducted on Agilent 1260 series instrument. SFC analysis was conducted on Agilent 1260 series instrument. HRMS were recorded on a Waters LCT Premier XE mass spectrometer with APCI or ESI.

2. Experimental Procedure and Characterization

General procedure for the preparation of substrates ^[1]

To a solution of quinoline or substituted quinoline (10 mmol) in dry THF or Et_2O (20.0 mL) was added dropwise RMgBr (12 mmol) or *n*-BuLi (12 mmol, 2.4 M solution in hexane) at -78°C under a nitrogen atmosphere. After 2 h at -78 °C, ClCO₂R (12 mmol) was added and the solution became yellow. After 10-30 min, the solution was quenched with a solution of NH₄Cl, extracted with EtOAc. The organic layers were dried over MgSO₄, filtered and evaporated. The crude oil was purified by chromatography on silica gel.

General procedure of the kinetic resolution

In a nitrogen-filled glovebox, CuCl (0.025 mmol), (R, S_p)-JosiPhos-1 (0.025 mmol), B_2pin_2 (0.6 mmol) and KOMe (0.1 mmol) were placed in an oven-dried Schleck reaction vial, which was sealed with a rubber plug. The Schleck reaction vial was then removed from glovebox. THF (1.5 mL) was added to the Schleck vial through the rubber plug. After *rac*-1 (0.50 mmol) was added to the mixture at 0 °C, MeOH (1.0 mmol) was added dropwise. Upon completion of the reaction, the reaction mixture was passed through a short silica gel column eluting with Et₂O. The crude mixture was purified by chromatography on silica gel to give the corresponding borylation product 2 and the recovered starting material 1. The ee values of 1 and 2 were determined by HPLC or SFC analysis on a chiral stationary phase. Diastereomeric ratio was determined by ¹H NMR spectroscopy of the crude mixture.

Characterization of the products

(S)-methyl 2-(naphthalen-1-yl)quinoline-1(2H)-carboxylate (1a): Yield: 47%; ¹H

NMR (CDCl₃, 400 MHz) δ : 8.55 (d, J = 7.8 Hz, 1H), 7.85 (d, J = 8.2 Hz, 1H), 7.72 (d, J = 8.1 Hz, 1H), 7.64 (t, J = 7.1 Hz, 1H), 7.52 (t, J = 7.3 Hz, 2H), 7.31 (d, J = 7.1 Hz, 1H),

7.26-7.10 (m, 4H), 7.01 (d, J = 5.7 Hz, 1H), 6.67 (d, J = 9.6 Hz, 1H), 6.32 (dd, J = 9.5 Hz, 6.0 Hz, 1H), 3.80 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ : 155.9, 135.8, 134.6, 130.9, 129.5, 129.4, 129.1, 128.3, 127.8, 127.0, 126.8, 126.2, 125.9, 125.8, 125.3, 124.2, 53.9, 53.3. TOF-HRMS Calcd. for C₂₁H₁₇NO₂Na [M+Na⁺]: 338.1151, found 338.1153. 99.4% ee; $[\alpha]_D^{25} = -866$ (c = 1.0, CHCl₃); SFC condition: Lux 5u Cellulose-1 (250 × 4.60 mm), CO₂ : MeOH = 80:20, 2.5 mL/min, 254 nm; t_A = 6.5 min (minor), t_B = 7.6 min (major).

(S)-phenyl 2-(naphthalen-1-yl)quinoline-1(2H)-carboxylate (1b): Yield: 45%; ¹H NMR (CDCl₃, 400 MHz) δ : 8.76 (s, 1H), 7.73-7.69 (m, 2H), 7.61-7.58 (m, 3H), 7.55-7.38 (m, 3H), 7.39-7.14 (m, 8H), 6.81 (d, J = 9.2 Hz, 1H), 6.42 (dd, J = 9.5 Hz,

6.0 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ: 153.5, 151.3, 134.9, 134.3, 131.2, 130.7,

 $[\alpha]_D^{25} = -774$ (c = 1.0, CHCl₃); SFC condition: Lux 5u Cellulose-3 (250 × 4.60 mm), CO₂ : MeOH = 75:25, 3.0 mL/min, 230 nm; t_A = 1.7 min (major), t_B = 2.2 min (minor).

(S)-benzyl 2-(naphthalen-1-yl)quinoline-1(2H)-carboxylate (1c): Yield: 42%; ¹H NMR (CDCl₃, 400 MHz) δ : 8.61 (s, 1H), 7.93 (d, J = 8.0 Hz, 1H), 7.80-7.58 (m, 4H),

7.49 (s, 1H), 7.37-7.17 (m, 10H), 6.71 (d, J = 9.5Hz, 1H), 6.36 (dd, J = 9.2 Hz, 6.0 Hz, 1H), 5.44 (d, J = 12.5 Hz, 1H), 5.31 (d, J = 12.4 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ :

155.3, 136.7, 135.9, 134.7, 131.0, 129.5, 129.4, 129.3, 129.2, 128.7, 128.6, 128.5, 127.9, 127.2, 127.1, 126.4, 126.1, 125.8, 125.4, 124.3, 68.7, 53.6. TOF-HRMS Calcd. for $C_{27}H_{22}NO_2$ [M+H⁺]: 392.1645, found 392.1646. 99% ee; $[\alpha]_D^{25} = -828$ (c = 1.0, CHCl₃); SFC condition: Lux 5u Cellulose-3 (250 × 4.60 mm), CO₂ : MeOH = 70:30, 3.0 mL/min; t_A = 2.1 min (major), t_B = 2.3 min (minor).

(S)-isopropyl 2-(naphthalen-1-yl)quinoline-1(2H)-carboxylate (1d): Yield: 41%;

¹H NMR (CDCl₃, 400 MHz) δ : 8.55 (d, J = 8.5 Hz, 1H), 7.84 (d, J = 8.2 Hz, 1H), 7.71 (d, J = 8.1 Hz, 1H), 7.61 (t, J =7.3 Hz, 1H), 7.50 (t, J = 7.2 Hz, 2H) 7.31 (d, J = 7.5 Hz, 1H), 7.26-7.07 (m, 4H), 6.99 (d, J = 5.9 Hz, 1H), 6.65 (d, J = 9.6

Hz, 1H), 6.28 (dd, J = 15.5 Hz, 6.0 Hz, 1H), 5.07-5.04 (m, 1H), 1.57 (s, 1H), 1.32 (d, J = 6.2 Hz, 3H), 1.18 (d, J = 6.2 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ : 154.9, 136.0, 134.5, 130.8, 129.4, 129.3, 128.9, 128.2, 127.7, 126.9, 126.8, 126.1, 126.0, 125.7, 125.3, 124.9, 124.2, 53.1, 22.5. TOF-HRMS Calcd. for C₂₃H₂₂NO₂ [M+H⁺]: 344.1645, found 344.1644. 99% ee; $[\alpha]_D^{25} = -628$ (c = 1.0, CHCl₃); SFC condition: Lux 5u Cellulose-3 (250 × 4.60 mm), CO₂ : MeOH = 90:10, 3.0 mL/min, 210 nm; t_A = 3.9 min (major), t_B = 5.7 min (minor).

(S)-isobutyl 2-(naphthalen-1-yl)quinoline-1(2H)-carboxylate (1e): Yield: 45%; ¹H

NMR (CDCl₃, 400 MHz) δ : 8.64 (s, 1H), 7.89 (d, J = 8.2 Hz, 1H), 7.76 (d, J = 8.1

H_z, 1H), 7.70 (t, J = 7.1 Hz, 2H), 7.56 (t, J = 7.2 Hz, 1H) 7.44 (d, J = 7.1 Hz, 1H), 7.28 (d, J = 7.9 Hz, 2H), 7.20-7.13 (m, 3H), 6.68 (d, J = 9.5 Hz, 1H), 6.35 (dd, J =9.5, 6.0 Hz, 1H), 4.16-4.03 (m, 2H), 2.01-1.94 (m, 1H), 0.92 (t, J = 6.5 Hz, 6H). ¹³C NMR (CDCl₃, 100 MHz) δ : 155.6, 136.1, 134.7, 131.0, 129.5, 129.1, 128.3, 127.8, 127.1, 127.0, 126.3, 126.0, 125.8, 125.2, 124.3, 73.2, 53.5, 28.5, 19.7. TOF-HRMS Calcd. for C₂₄H₂₄NO₂ [M+H⁺]: 358.1801, found 358.1800. 99.9% ee; $[\alpha]_D^{25} = -688$ (c = 1.0, CHCl₃); SFC condition: Lux 5u Cellulose-3 (250 × 4.60 mm), CO₂ : MeOH = 90:10, 3.0 mL/min, 210 nm; t_A = 2.1 min (major), t_B = 2.3 min (minor).

(S)-methyl 6-methoxy-2-(naphthalen-1-yl)quinoline-1(2*H*)-carboxylate (1f): Yield: H_3CO $(7\%; {}^{1}H NMR (CDCl_3, 400 MHz) \delta: 8.62 (s, 1H),$ 7.86 (d, J = 8.1 Hz, 1H), 7.74 (d, J = 8.1 Hz, 1H), 7.66 (t, J = 7.2 Hz, 1H), 7.53 (t, J = 7.2 Hz, 1H), 7.35-7.23

(m, 3H), 7.03 (s, 1H), 6.78-6.65 (m, 3H), 6.35 (dd, J = 9.5 Hz, 6.0 H_Z, 1H), 3.81 (d, J = 3.1 H_Z, 6H). ¹³C NMR (CDCl₃, 100 MHz) δ : 156.7, 155.6, 134.2, 130.7, 129.9, 128.9, 128.7, 128.3, 126.7, 125.8, 125.6, 125.5, 123.9, 113.3, 111.2, 55.5, 53.5, 52.7. TOF-HRMS Calcd. for C₂₂H₂₀NO₃ [M+H⁺]: 346.1437, found 346.1441. 99.3% ee; $[\alpha]_D^{25} = -765$ (c = 1.0, CHCl₃); SFC condition: Lux 5u Cellulose-3 (250 × 4.60 mm), CO₂ : MeOH = 90:10, 3.0 mL/min, 210 nm; t_A = 2.6 min (major), t_B = 3.5 min (minor).

(S)-methyl 6-methyl-2-(naphthalen-1-yl)quinoline-1(2H)-carboxylate (1g): Yield:

43%; ¹H NMR (CDCl₃, 400 MHz) δ : 8.69 (s, 1H), 7.92-7.02 (m, 10H), 6.67 (d, *J* = 7.8 Hz, 1H), 6.37-6.33 (m, 1H), 3.86 (s, 3H), 2.39 (s, 3H). ¹³C NMR (CDCl₃, 100

MHz) δ : 156.1, 135.7, 135.0, 134.7, 133.3, 131.1, 129.5, 129.2, 129.1, 127.8, 127.5, 127.2, 126.3, 126.0, 125.6, 124.4, 54.0, 53.4, 21.6. TOF-HRMS Calcd. for C₂₂H₁₉NO₂Na [M+Na⁺]: 352.1308, found 352.1305. 99.2% ee; $[\alpha]_D^{25} = -837$ (c = 1.0, CHCl₃); SFC condition: Lux 5u Cellulose-3 (250 × 4.60 mm), CO₂ : MeOH = 75:25, 3.0 mL/min, 210 nm; t_A = 2.7 min (major), t_B = 4.2 min (minor).

(S)-methyl 7-methyl-2-(naphthalen-1-yl)quinoline-1(2H)-carboxylate (1h): Yield:

44%; ¹H NMR (CDCl₃, 400 MHz) δ : 8.62 (s, 1H), 7.89 (d, J = 8.0 Hz, 1H), 7.77-7.68 (m, 2H), 7.58-7.27 (m, 4H),7.09-6.96 (m, 3H), 6.67 (d, J = 8.7 Hz, 1H), 6.29 (t, J = 6.5

Hz, 1H), 3.85 (s, 3H), 2.37 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ: 156.0, 138.4, 135.7, 134.6, 131.0, 129.5, 129.1, 128.3, 127.1, 126.7, 126.3, 126.2, 126.1, 125.8, 125.4, 124.3, 54.0, 53.4, 22.3. TOF-HRMS Calcd. for $C_{22}H_{19}NO_2Na$ [M+Na⁺]: 352.1308, found 352.1305. 99.4% ee; $[\alpha]_D^{25} = -817$ (c = 1.0, CHCl₃); SFC condition: Lux 5u Cellulose-3 (250 \times 4.60 mm), CO₂ : MeOH = 75:25, 3.0 mL/min, 210 nm; t_A = 2.5 min (major), $t_B = 3.5$ min (minor).

(S)-methyl 2-(naphthalen-2-yl)quinoline-1(2H)-carboxylate (1i): Yield: 46%; ¹H NMR (CDCl₃, 600 MHz) δ: 7.73-7.68 (m, 4H), 7.41-7.38 (m, 4H), 7.19-7.01 (m, 3H),

[≷]0

6.69 (d, J = 9.5 Hz, 1H), 6.34-6.24 (m, 2H), 3.83 (s, 3H). ¹³C NMR (CDCl₃, 150 MHz) δ: 155.4, 136.9, 134.7, 133.3, 133.0, 128.6, 128.2, 127.9, 127.7, 127.3, 126.5, 126.2,

126.1, 125.9, 125.3, 124.8, 124.6, 55.8, 53.4. TOF-HRMS Calcd. for C₂₁H₁₇NO₂Na $[M+Na^+]$: 338.1151, found 338.1153. 99% ee; $[\alpha]_D^{25} = -685$ (c = 1.0, CHCl₃); SFC condition: Lux 5u Cellulose-3 (250 \times 4.60 mm), CO₂ : MeOH = 75:25, 3.0 mL/min, 210 nm; $t_A = 4.3 \text{ min}$ (major), $t_B = 5.4 \text{ min}$ (minor).^[1]

(S)-methyl 2-phenylquinoline-1(2H)-carboxylate (1j): Yield: 43%; ¹H NMR $(CDCl_3, 400 \text{ MHz}) \delta$: 7.50 (s, 1H), 7.28-7.18 (m, 6H), 7.12-7.03 (m, 2H), 6.65 (d, J = 8.6 Hz, 1H), 6.22-6.17 (m, 2H),

3.84 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ : 155.3, 139.7, 134.8, 128.7, 128.4, 127.9, 127.3, 127.2, 126.5, 125.5, 124.7, 124.5, 55.8, 53.3. TOF-HRMS Calcd. for C₁₇H₁₅NO₂Na [M+Na⁺]: 288.0995, found 288.0995. 99% ee; $[\alpha]_D^{25} = -694$ (c = 1.0, CHCl₃); SFC condition: Lux 5u Cellulose-3 (250 × 4.60 mm), CO_2 : MeOH = 75:25, 3.0 mL/min, 230 nm; t_A = 2.1 min (major), t_B = 2.3 min (minor).^[1]

(S)-methyl 2-(o-tolyl)quinoline-1(2H)-carboxylate (1k): Yield: 47%; ¹H NMR $(\text{CDCl}_3, 400 \text{ MHz}) \delta$: 7.61 (d, J = 5.7 Hz, 1H), 7.27-7.23 (m, 1H), 7.17-7.07 (m, 5H), 6.97 (t, J = 7.7 Hz, 1H), 6.55 (d, J = 9.6 Hz, 1H), 6.37 (d, J = 5.8 Hz, 1H), 6.12 (dd, J = 9.6Hz, 6.0 Hz, 1H), 3.81 (s, 3H), 2.57 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ :

155.8, 139.4, 136.1, 134.8, 131.2, 129.0, 128.5, 128.3, 127.6, 127.2, 126.9, 125.1, 125.0, 124.8, 54.4, 53.8, 20.1. TOF-HRMS Calcd. for C₁₈H₁₇NO₂Na [M+Na⁺]: 302.1151,

found 302.1153. 99.5% ee; $[\alpha]_D^{25} = -842$ (c = 1.0, CHCl₃); SFC condition: Lux 5u Cellulose-3 (250 × 4.60 mm), CO₂ : MeOH = 75:25, 3.0 mL/min, 230 nm; t_A = 1.7 min (major), t_B = 2.1 min (minor).

(S)-methyl 2-(m-tolyl)quinoline-1(2H)-carboxylate (11): Yield: 43%; ¹H NMR

(CDCl₃, 400 MHz) δ : 7.52 (s, 1H), 7.21-7.17 (m, 1H), 7.14-7.02 (m, 6H), 6.64 (d, J = 9.2 Hz, 1H), 6.22-6.15 (m, 2H), 3.85 (s, 3H), 2.28 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz)

δ: 155.8, 140.1, 138.7, 135.2, 129.1, 129.0, 128.3, 127.7, 126.8, 125.7, 125.2, 124.8, 124.5, 56.2, 53.7, 22.0. TOF-HRMS Calcd. for $C_{18}H_{17}NO_2Na$ [M+Na⁺]: 302.1151, found 302.1153. 99% ee; $[\alpha]_D^{25} = -784$ (c = 1.0, CHCl₃); SFC condition: Lux 5u Cellulose-3 (250 × 4.60 mm), CO₂ : MeOH = 90:10, 3.0 mL/min, 210 nm; t_A = 3.4 min (major), t_B = 3.8 min (minor).

(S)-methyl 2-(3,5-dimethylphenyl)quinoline-1(2H)-carboxylate (1m): Yield: 44%;

¹H NMR (CDCl₃, 400 MHz) δ : 7.55 (s, 1H), 7.26-7.05 (m, 3H), 6.89 (d, J = 14.4 Hz, 3H), 6.64 (d, J = 9.3 Hz, 1H), 6.23-6.15 (m, 2H), 3.86 (s, 3H), 2.25 (s, 6H). ¹³C NMR (CDCl₃, 100 MHz) δ : 155.9, 140.2, 138.6, 135.3, 130.0,

129.0, 128.2, 127.7, 126.9, 125.6, 125.3, 125.2, 124.8, 56.2, 53.7, 21.9. TOF-HRMS Calcd. for $C_{19}H_{20}NO_2$ [M+H⁺]: 294.1488, found 294.1488. 99% ee; $[\alpha]_D^{25} = -810$ (c = 1.0, CHCl₃); SFC condition: Lux 5u Cellulose-3 (250 × 4.60 mm), CO₂ : MeOH = 90:10, 2.5 mL/min, 230 nm; t_A = 2.0 min (major), t_B = 2.6 min (minor).

(S)-methyl 2-(3-chlorophenyl)quinoline-1(2H)-carboxylate (1n): Yield: 43%; ¹H

NMR (CDCl₃, 400 MHz) δ : 7.51 (s, 1H), 7.28-7.05 (m, 7H), 6.70-6.66 (m, 1H), 6.18 (d, J = 5.6 Hz, 2H), 3.85 (s,

3H). ¹³C NMR (CDCl₃, 100 MHz) δ : 155.7, 142.2, 134.9, 130.4, 128.5, 127.8, 127.4, 127.0, 126.5, 125.8, 125.1, 55.4, 53.9. TOF-HRMS Calcd. for C₁₇H₁₄NO₂NaCl [M+Na⁺]: 322.0605, found 322.0610. 99.9% ee; $[\alpha]_D^{25} = -836$ (c = 1.0, CHCl₃); SFC condition: Lux 5u Cellulose-3 (250 × 4.60 mm), CO₂ : MeOH = 90:10, 3.0 mL/min, 210 nm; t_A = 2.8 min (major), t_B = 3.2 min (minor).

(S)-methyl 2-(4-chlorophenyl)quinoline-1(2H)-carboxylate (1o): Yield: 40%; ¹H

NMR (CDCl₃, 600 MHz) δ : 7.45-7.42 (m, 1H), 7.19-7.16 (m, 7H), 6.66 (d, J = 8.3 Hz, 1H), 6.17-6.15 (m, 2H), 3.83 (s, 3H). ¹³C NMR (CDCl₃, 150 MHz) δ : 155.2, 138.0, 134.4,

133.7, 129.3, 128.8, 128.6, 128.0, 127.7, 127.0, 126.5, 125.9, 124.6, 54.9, 53.4. TOF-HRMS Calcd. for $C_{17}H_{14}NO_2NaCl$ [M+Na⁺]: 322.0605, found 322.0610. 99% ee; $[\alpha]_D^{25} = -745$ (c = 1.0, CHCl₃); SFC condition: Lux 5u Cellulose-3 (250 × 4.60 mm), CO₂ : MeOH = 90:10, 3.0 mL/min, 230 nm; t_A = 4.7 min (major), t_B = 8.4 min (minor).

(S)-methyl 6-methoxy-2-(4-methoxyphenyl)quinoline-1(2H)-carboxylate (1p):

Yield: 45%; ¹H NMR (CDCl₃, 400 MHz) δ : 7.20 (d, J = 8.5 Hz, 3H), 6.78-6.60 (m, 5H), 6.21-6.17 (m, 2H), 3.83 (s, 3H), 3.77 (s, 3H), 3.71 (s, 3H). ¹³C NMR

(CDCl₃, 100 MHz) δ : 159.8, 156.8, 131.9, 129.8, 129.1, 128.8, 128.1, 126.4, 125.8, 114.7, 114.3, 113.7, 111.6, 55.9, 55.7, 55.6, 53.7. TOF-HRMS Calcd. for C₁₉H₂₀NO₄ [M+H⁺]: 326.1386, found 326.1393. 99% ee; $[\alpha]_D^{25} = -695$ (c = 1.0, CHCl₃); SFC condition: Lux 5u Cellulose-3 (250 × 4.60 mm), CO₂ : MeOH = 75:25, 3.0 mL/min, 210 nm; t_A = 2.2 min (major), t_B = 2.9 min (minor).

(*R*)-methyl 2-methylquinoline-1(2*H*)-carboxylate (1q): Yield: 41%; ¹H NMR (CDCl₃, 400 MHz) δ : 7.56 (s, 1H), 7.22-7.18 (m, 1H), 7.07-7.05 (m, 2H), 6.42 (d, *J* = 9.6 Hz, 1H), 6.02-5.98 (m, 1H), 5.14-5.07 (m, 1H), 3.80 (s, 3H), 1.11 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz)

δ: 155.2, 134.7, 131.2, 128.0, 127.5, 126.7, 125.0, 124.7, 124.6, 53.5, 49.5, 19.1. TOF-HRMS Calcd. for C₁₂H₁₄NO₂ [M+H⁺]: 204.1019, found 204.1025. 99% ee; [α]_D²⁵ = -365 (c = 1.0, CHCl₃); SFC condition: Lux 5u Cellulose-3 (250 × 4.60 mm), CO_2 : MeOH = 90:10, 2.5 mL/min, 210 nm; t_A = 2.6 min (major), t_B = 3.0 min (minor).^[1]

(*R*)-methyl 2-butylquinoline-1(2H)-carboxylate (1r): Yield: 40%; ¹H NMR (CDCl₃, 400 MHz) δ : 7.54 (s, 1H), 7.22-7.18 (m, 1H), 7.06 (d, J = 4.4 Hz, 2H), 6.44 (d, J = 9.6 Hz, 1H), 6.07-6.03 (m, 1H), 4.99 (d, J = 5.0 Hz, 1H), 3.78 (s, 3H), 1.43-1.25 (m, 6H), 0.85

(t, J = 7.2 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ : 155.6, 135.0, 130.8, 128.0, 127.8, 126.6, 125.4, 125.1, 124.8, 53.4, 53.3, 33.2, 27.9, 23.0, 14.5. TOF-HRMS Calcd. for C₁₅H₁₉NO₂Na [M+Na⁺]: 268.1308, found 268.1304. 99% ee; $[\alpha]_D^{25} = -427$ (c = 1.0, CHCl₃); SFC condition: Lux 5u Cellulose-3 (250 × 4.60 mm), CO₂ : MeOH = 80:20, 3.0 mL/min, 230 nm; t_A = 2.9 min (major), t_B = 3.2 min (minor). ^[1]

1-methyl-1H-indene (1s): n-Butyllithium (41.3 mmol) was added dropwise to a

solution of indene (34.4 mmol) in 80 mL diethyl ether at -78 °C. This was slowly allowed to warm to room temperature and stirred for 4 h

in total. CH₃I (68.8 mmol) was then added dropwise to this orange-yellow solution at -78 °C. This was slowly allowed to warm to room temperature and stirred for 4 h, and the reaction was terminated by the addition of 50 mL of a saturated aqueous NH₄Cl solution. The organic material was extracted into Et₂O, separated, dried (MgSO₄), filtered and the solvent removed at a rotary-evaporator. The residue was distilled at reduced pressure to afford a colorless oil **1s.** Yield: 68%; ¹H NMR (CDCl₃, 400 MHz) δ : 7.46-7.22 (m, 4H), 6.81 (dd, *J* = 5.5 Hz, 1.6 Hz, 1H), 6.51 (dd, *J* = 5.5 Hz, 1.6 Hz, 1H), 3.55-3.43 (m, 1H), 1.35 (d, *J* = 7.6 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ : 149.7, 144.5, 141.9, 130.7, 126.9, 125.3, 123.2, 121.6, 45.7, 16.7.^[2]

(E)-but-1-ene-1,3-diyldibenzene (1t): A mixture of styrene (2 mmol), $Pd(OAc)_2$ (5.0 mol %) in CH_2Cl_2 (4 mL) in a round-bottomed flask was stirred at room temperature. Then, TFA (2 mmol) was added. The mixture was magnetically stirred at room

temperature for 10 min until the complete consumption of styrene (observed by TLC). After the evaporation of the solvent under vacuum, the residue was purified by silica gel chromatography to afford **1t.** Yield: 72%; ¹H NMR (CDCl₃, 400 MHz) δ : 7.58-7.44 (m, 8H), 7.43-7.38 (m, 2H), 6.67-6.58 (m, 2H), 3.88-3.82 (m, 1H), 1.69 (d, J = 7.0 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ : 146.4, 138.3, 135.9, 129.3, 129.2, 128.1, 127.8, 127.0, 126.9, 43.4, 22.0.^[3]

(2*R*,3*R*)-methyl 2-(naphthalen-1-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)-3,4-dihydroquinoline-1(2*H*)-carboxylate (2a): Yield: 45%; ¹H NMR (CDCl₃,

 $\begin{array}{c} \text{Bpin} \\ \text{N} \\ \text{O} \\$

1.12 (s, 6H), 1.06 (s, 6H). ¹³C NMR (CDCl₃, 100 MHz) δ : 155.8, 140.9, 138.4, 133.8, 133.7, 130.4, 128.7, 127.4, 127.3, 126.7, 125.6, 125.4, 125.3, 124.8, 124.5, 124.2, 123.9, 83.8, 57.5, 52.8, 28.9, 24.7, 24.6. TOF-HRMS Calcd. for C₂₇H₃₁BNO₄ [M+H⁺]: 444.2346, found 444.2348. 97% ee; $[\alpha]_D^{25} = +74.2$ (c = 1.0, CHCl₃); HPLC condition: Lux 5u Cellulose-1 (250 × 4.60 mm), ipa : hex = 10:90, 1.0 mL/min, 254 nm; t_A = 4.6 min (minor), t_B = 5.7 min (major).

(2*R*,3*R*)-phenyl 2-(naphthalen-1-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)-3,4-dihydroquinoline-1(2*H*)-carboxylate (2b): Yield: 44%; ¹H NMR (CDCl₃,

 $\begin{array}{c} \text{Bpin} \\ \text{N} \\$

(s, 6H), 1.09 (s, 6H). ¹³C NMR (CDCl₃, 100 MHz) δ : 153.6, 151.2, 140.7, 138.1, 133.9, 130.4, 129.1, 128.8, 127.7, 127.5, 126.9, 125.8, 125.5, 125.4, 125.3, 124.6, 124.2, 121.8, 83.9, 28.9, 24.7, 22.8. TOF-HRMS Calcd. for C₃₂H₃₃BNO₄ [M+H⁺]: 506.2503, found 506.2506. 97% ee; $[\alpha]_D^{25} = +85.4$ (c = 1.0, CHCl₃); HPLC condition: Lux 5u Cellulose-1 (250 × 4.60 mm), ipa : hex = 10:90, 1.0 mL/min, 254 nm; t_A = 5.2 min (minor), t_B = 9.8 min (major).

(2R,3R)-benzyl 2-(naphthalen-1-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,4-dihydroquinoline-1(2*H*)-carboxylate (2c): Yield: 46%; ¹H NMR (CDCl₃, 400 MHz) δ : 8.29 (d, J = 8.1 Hz, 1H), 7.95-7.85 (m, 2H), 7.73 (d, J = 7.9 Hz, 1H), 7.49-7.42 (m, 2H), 7.35-7.26 (m, 3H), 7.20-7.09 (m, 5H), 6.91 (d, J = 7.2 Hz, 2H),

6.42 (d, J = 8.4 Hz, 1H), 5.04 (q, J = 12.5 Hz, 2H), 2.82-2.67 (m, 2H), 1.85-1.79 (m, 1H), 1.11 (s, 6H), 1.05 (s, 6H). ¹³C NMR (CDCl₃, 100 MHz) δ : 155.5, 141.6, 138.8,

for C₃₃H₃₅BNO₄ [M+H⁺]: 520.2660, found 520.2664. 94% ee; $[\alpha]_D^{25} = +84.1$ (c = 1.0, CHCl₃); HPLC condition: Lux 5u Cellulose-1 (250 × 4.60 mm), ipa : hex = 1:99, 1.0 mL/min, 254 nm; t_A = 11.4 min (minor), t_B = 13.0 min (major).

(*2R*,*3R*)-isopropyl 2-(naphthalen-1-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,4-dihydroquinoline-1(*2H*)-carboxylate (2d): Yield: 47%; ¹H NMR (CDCl₃,

400 MHz) δ : 8.34 (d, J = 8.3 Hz, 1H), 7.87-7.81 (m, 2H), 7.68 (d, J = 8.0 Hz, 1H), 7.50-7.43 (m, 2H), 7.34-7.25 (m, 3H), 7.16 (d, J = 6.5 Hz, 1H), 7.08-7.05 (m, 1H), 6.26 (d, J = 9.3 Hz, 1H), 4.85-4.75 (m, 1H), 2.80-2.64 (m, 2H), 1.77-1.71 (m, 1H), 1.13 (d, J = 6.2 Hz, 3H), 1.10 (s, 6H),

1.02 (s, 6H), 0.63 (d, J = 5.9 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ : 155.2, 142.2, 139.1, 134.2, 133.9, 130.8, 129.1, 127.7, 127.6, 127.1, 125.9, 125.8, 124.9, 124.7, 124.6, 123.9, 84.3, 69.6, 57.8, 29.6, 25.2, 25.0, 22.5, 21.9. TOF-HRMS Calcd. for C₂₉H₃₅BNO₄ [M+H⁺]: 472.2659, found 472.2663. 91% ee; $[\alpha]_D^{25} = +64.4$ (c = 1.0, CHCl₃); HPLC condition: Lux 5u Cellulose-1 (250 × 4.60 mm), ipa : hex = 10:90, 1.0 mL/min, 254 nm; t_A = 3.9 min (minor), t_B = 4.6 min (major).

(2*R*,3*R*)-isobutyl 2-(naphthalen-1-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,4-dihydroquinoline-1(2*H*)-carboxylate (2e): Yield: 43%; ¹H NMR (CDCl₃,

400 MHz) δ : 8.30 (d, J = 8.2 Hz, 1H), 7.84-7.79 (m, 2H), 7.68 (d, J = 8.0 Hz, 1H), 7.49-7.41 (m, 2H), 7.32-7.24 (m, 3H), 7.15-7.13 (m, 1H), 7.07-7.04 (m, 1H), 6.33 (d, J = 8.8 Hz, 1H), 3.79-3.71 (m, 2H), 2.77-2.60 (m, 2H),

1.78-1.73 (m, 1H), 1.66-1.59 (m, 1H), 1.09 (s, 6H), 1.03 (s, 6H), 0.64 (d, J = 6.7 Hz, 3H), 0.56 (d, J = 6.6 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ : 155.4, 141.3, 138.6, 133.8, 133.3, 130.3, 128.7, 127.3, 126.6, 125.4, 125.3, 124.6, 124.3, 124.1, 123.6,

83.8, 72.1, 57.3, 28.9, 27.7, 24.7, 24.6, 19.0, 18.9. TOF-HRMS Calcd. for $C_{30}H_{37}BNO_4$ [M+H⁺]: 486.2816, found 486.2819. 93% ee; $[\alpha]_D^{25} = +71.1$ (c = 1.0, CHCl₃); HPLC condition: Lux 5u Cellulose-1 (250 × 4.60 mm), ipa : hex = 10:90, 1.0 mL/min, 254 nm; t_A = 4.0 min (minor), t_B = 4.5 min (major).

(2*R*,3*R*)-methyl 6-methoxy-2-(naphthalen-1-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,4-dihydroquinoline-1(2*H*)-carboxylate (2f): Yield: 45%; ¹H

NMR (CDCl₃, 400 MHz) δ : 8.35 (d, J = 7.8 Hz, 1H), 7.82 (d, J = 7.8 Hz, 1H), 7.70-7.63 (m, 2H), 7.51-7.43 (m, 2H), 7.34-7.25 (m, 2H), 6.86 (dd, J = 8.8 Hz, 2.6 Hz, 1H), 6.74 (d, J = 2.3 Hz, 1H), 6.33 (d, J = 9.3 Hz,

1H), 3.82 (s, 3H), 3.59 (s, 3H), 2.78-2.59 (m, 2H), 1.81-1.75 (m, 1H), 1.12 (s, 6H), 1.06 (s, 6H). ¹³C NMR (CDCl₃, 100 MHz) δ : 155.8, 136.2, 133.8, 131.5, 130.4, 128.7, 128.5, 127.4, 126.0, 125.6, 125.4, 125.3, 124.7, 124.3, 121.8, 112.3, 112.1, 83.8, 55.5, 52.7, 29.7, 29.5, 26.9, 24.7. TOF-HRMS Calcd. for C₂₈H₃₃BNO₅ [M+H⁺]: 474.2451, found 474.2454. 96% ee; $[\alpha]_D^{25} = +58.5$ (c = 1.0, CHCl₃); Enantiomeric excess of the corresponding hydroxyl compound obtained by oxidation with NaBO₃ in THF/H₂O (1:1); HPLC condition: Lux 5u Cellulose-4 (250 × 4.60 mm), ipa : hex = 20:80, 1.0 mL/min, 254 nm; t_A = 16.5 min (minor), t_B = 17.8 min (major).

(2*R*,3*R*)-methyl 6-methyl-2-(naphthalen-1-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,4-dihydroquinoline-1(2*H*)-carboxylate (2g): Yield: 46%; ¹H NMR

 $(\text{CDCl}_3, 400 \text{ MHz}) \delta$: 8.35 (d, J = 7.7 Hz, 1H), 7.82 (d, J = 7.8 Hz, 1H), 7.69 (d, J = 8.0 Hz, 1H), 7.60 (s, 1H), 7.51-7.43 (m, 2H), 7.34-7.25 (m, 2H), 7.11 (d, J = 8.2 Hz,

1H), 7.00 (s, 1H), 6.32 (d, J = 9.2 Hz, 1H), 3.59 (s, 3H), 2.75-2.57 (m, 2H), 2.36 (s, 3H), 1.78-1.73 (m, 1H), 1.11 (s, 6H), 1.05 (s, 6H). ¹³C NMR (CDCl₃, 100 MHz) δ : 156.3, 141.5, 136.3, 134.3, 133.9, 130.9, 129.2, 128.3, 127.9, 127.8, 126.1, 125.9, 125.8, 125.1, 124.8, 84.3, 53.3, 29.5, 27.5, 25.2, 25.1, 21.5. TOF-HRMS Calcd. for C₂₈H₃₃BNO₄ [M+H⁺]: 458.2502, found 458.2507. 96% ee; $[\alpha]_D^{25} = +64.7$ (c = 1.0, CHCl₃); Enantiomeric excess of the corresponding hydroxyl compound obtained by oxidation with NaBO₃ in THF/H₂O (1:1); HPLC condition: Lux 5u Cellulose-4 (250 ×

4.60 mm), ipa : hex = 30:70, 1.0 mL/min, 254 nm; $t_A = 8.0$ min (minor), $t_B = 8.7$ min (major).

(2*R*,3*R*)-methyl 7-methyl-2-(naphthalen-1-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,4-dihydroquinoline-1(2*H*)-carboxylate (2h): Yield: 47%; ¹H NMR

 $(\text{CDCl}_3, 400 \text{ MHz}) \delta$: 8.35 (d, J = 8.1 Hz, 1H), 7.82 (d, J = 7.9 Hz, 1H), 7.69 (d, J = 7.9 Hz, 1H), 7.58 (s, 1H), 7.51-7.43 (m, 2H), 7.32 (t, J = 7.4 Hz, 1H), 7.25 (t, J = 4.2 Hz, 1H), 7.04 (d, J = 7.6 Hz, 1H), 6.91 (d, J = 7.6 Hz, 1H),

6.32 (d, J = 9.2 Hz, 1H), 3.58 (s, 3H), 2.73-2.56 (m, 2H), 2.40 (s, 3H), 1.76-1.71 (m, 1H), 1.10 (s, 6H), 1.03 (s, 6H). ¹³C NMR (CDCl₃, 100 MHz) δ : 156.3, 141.6, 138.6, 136.7, 134.2, 130.8, 129.2, 127.8, 127.5, 126.0, 125.9, 125.8, 125.7, 125.2, 124.9, 124.7, 84.3, 53.3, 29.0, 27.5, 25.2, 25.1, 22.1. TOF-HRMS Calcd. for C₂₈H₃₃BNO₄ [M+H⁺]: 458.2502, found 458.2507. 95% ee; $[\alpha]_D^{25} = +80.2$ (c = 1.0, CHCl₃); Enantiomeric excess of the corresponding hydroxyl compound obtained by oxidation with NaBO₃ in THF/H₂O (1:1); HPLC condition: Lux 5u Cellulose-4 (250 × 4.60 mm), ipa : hex = 30:70, 1.0 mL/min, 254 nm; t_A = 6.4 min (minor), t_B = 11.1 min (major).

(2*R*,3*R*)-methyl 2-(naphthalen-2-yl)-3-(4,4,5,5-tetramethyl-1,3-dioxolan-2-yl)-3,4dihydroquinoline-1(2*H*)-carboxylate (2i): Yield: 45%; ¹H NMR (CDCl₃, 600

Bpin MHz) δ: 7.76-7.67 (m, 5H), 7.42-7.38 (m, 2H), 7.32-7.27 (m, 2H), 7.13 (d, J = 6.5 Hz, 1H), 7.09-7.07 (m, 1H), 5.67 (d, J = 10.3 Hz, 1H), 3.66 (s, 3H), 2.70-2.63 (m, 2H), 1.62-1.58 (m, 1H), 1.20 (d, J = 14.0 Hz, 12H). ¹³C NMR (CDCl₃, 150 MHz) δ: 155.7, 142.3, 138.0, 134.9, 133.3, 132.6, 128.2, 127.9, 127.7, 126.9, 126.6, 125.9, 125.5, 125.2, 124.6, 124.2, 84.0, 61.1, 52.9, 32.2, 29.0, 25.1, 24.6. TOF-HRMS Calcd. for C₂₇H₃₁BNO₄ [M+H⁺]: 444.2346, found 444.2348. 94% ee; $[\alpha]_D^{25} = +59.4$ (c = 1.0, CHCl₃); HPLC condition: Enantiomeric excess of the corresponding hydroxyl compound obtained by oxidation with NaBO₃ in THF/H₂O (1:1); Lux 5u Cellulose-4 (250 × 4.60 mm), ipa : hex = 40:60, 1.0 mL/min, 254 nm; t_A = 5.3 min (minor), t_B = 8.4 min (major).

(2*R*,3*R*)-methyl 2-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,4-dihydroquinoline-1(2*H*)-carboxylate (2j): Yield: 47%; ¹H NMR (CDCl₃, 400 MHz) δ :

Bpin
7.66 (d,
$$J = 7.9$$
 Hz, 1H), 7.28-7.05 (m, 8H), 5.56 (d, $J = 9.9$ Hz,
1H), 3.69 (s, 3H), 2.67-2.63 (m, 2H), 1.60-1.54 (m, 1H), 1.23
(d, $J = 4.4$ Hz, 12H). ¹³C NMR (CDCl₃, 100 MHz) δ : 156.1,

145.2, 138.5, 135.2, 129.4, 128.7, 127.3, 127.2, 127.0, 126.9, 125.6, 124.5, 84.3, 61.3, 53.3, 29.3, 25.4, 25.1. TOF-HRMS Calcd. for $C_{23}H_{29}BNO_4$ [M+H⁺]: 394.2188, found 394.2191. 94% ee; $[\alpha]_D^{25} = +54.9$ (c = 1.0, CHCl₃); HPLC condition: Lux 5u Cellulose-1 (250 × 4.60 mm), ipa : hex = 10:90, 1.0 mL/min, 254 nm; t_A = 4.8 min (minor), t_B = 5.7 min (major).

(2R,3R)-methyl 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(*o*-tolyl)-3,4-dihydroquinoline-1(2*H*)-carboxylate (2k): Yield: 45%; ¹H NMR (CDCl₃, 400 MHz) δ : 7.56 (d, J = 8.0 Hz, 1H), 7.28-7.24 (m, 1H), 7.16 (d, J = 6.6 Hz, 1H), 7.11-7.00 (m,

4H), 6.90 (d, J = 7.6 Hz, 1H), 5.69 (d, J = 10.3 Hz, 1H), 3.67 (s, 3H), 2.66-2.64 (m, 2H), 2.60 (s, 3H), 1.59-1.53 (m, 1H), 1.19 (d, J = 7.9 Hz, 12H). ¹³C NMR (CDCl₃, 100 MHz) δ : 156.1, 143.5, 138.8, 135.9, 135.6, 130.8, 127.4, 127.2, 127.1, 127.0, 126.5,

125.8, 124.6, 84.3, 58.0, 53.2, 29.9, 27.5, 25.2, 19.9. TOF-HRMS Calcd. for $C_{24}H_{31}BNO_4$ [M+H⁺]: 408.2345, found 408.2345. 99% ee; $[\alpha]_D^{25} = +78.4$ (c = 1.0, CHCl₃); HPLC condition: Lux 5u Cellulose-1 (250 × 4.60 mm), ipa : hex = 10:90, 1.0 mL/min, 254 nm; t_A = 4.3 min (minor), t_B = 5.3 min (major).

(*2R*,*3R*)-methyl 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(*m*-tolyl)-3,4-dihydroquinoline-1(*2H*)-carboxylate (2l): Yield: 46%; ¹H NMR (CDCl₃, 400 MHz)

 δ : 7.62 (d, J = 8.0 Hz, 1H), 7.27-7.22 (m, 1H), 7.12-6.96 (m, 6H), 5.47 (d, J = 10.1 Hz, 1H), 3.68 (s, 3H), 2.67-2.58 (m, 2H), 2.27 (s, 3H), 1.53-1.47 (m, 1H), 1.22 (d, J = 5.1 Hz, 12H). ¹³C NMR (CDCl₃, 100 MHz) δ : 156.1, 145.2, 138.5,

138.1, 135.3, 128.7, 127.9, 127.6, 127.3, 126.9, 125.6, 124.5, 123.7, 84.3, 61.3, 53.3, 29.3, 25.4, 25.1, 22.0. TOF-HRMS Calcd. for $C_{24}H_{31}BNO_4$ [M+H⁺]: 408.2345, found 408.2345. 93% ee; $[\alpha]_D^{25} = +65.8$ (c = 1.0, CHCl₃); HPLC condition: Lux 5u

Cellulose-1 (250 × 4.60 mm), ipa : hex = 10:90, 1.0 mL/min, 254 nm; $t_A = 4.3$ min (minor), $t_B = 5.1$ min (major).

(*2R*,*3R*)-methyl 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(*m*-tolyl)-3,4-dihydroquinoline-1(*2H*)-carboxylate (2m): Yield: 47%; ¹H NMR (CDCl₃, 400 MHz)

δ: 7.63 (d, J = 8.0 Hz, 1H), 7.27-7.23 (m, 1H), 7.12-7.04 (m, 2H), 6.81 (d, J = 16.2 Hz, 3H), 5.44 (d, J = 10.2 Hz, 1H), 3.69 (s, 3H), 2.63-2.60 (m, 2H), 2.22 (s, 6H), 1.51-1.44 (m, 1H), 1.23 (d, J = 6.0 Hz, 12H). ¹³C NMR (CDCl₃, 100 MHz)

δ: 156.1, 145.3, 138.6, 138.0, 135.4, 128.8, 127.2, 126.9, 125.6, 124.4, 84.3, 61.4, 53.3, 30.2, 29.4, 25.4, 25.0, 21.9. TOF-HRMS Calcd. for C₂₅H₃₃BNO₄ [M+H⁺]: 422.2502, found 422.2500. 92% ee; [α]_D²⁵ = +58.6 (c = 1.0, CHCl₃); HPLC condition: Lux 5u Cellulose-1 (250 × 4.60 mm), ipa : hex = 10:90, 1.0 mL/min, 254 nm; t_A = 4.1 min (minor), t_B = 4.8 min (major).

(2*R*,3*R*)-methyl 2-(3-chlorophenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)-3,4-dihydroquinoline-1(2*H*)-carboxylate (2n): Yield: 44%; ¹H NMR (CDCl₃,

600 MHz) δ: 7.60 (d, J = 6.2 Hz, 1H), 7.26-7.25 (m, 2H), 7.17-7.06 (m, 5H), 5.44 (d, J = 10.5 Hz, 1H), 3.69 (s, 3H), 2.62 (d, J = 7.5 Hz, 2H), 1.45-1.41 (m, 1H), 1.23 (d, J = 7.0Hz, 12H). ¹³C NMR (CDCl₃, 150 MHz) δ: 155.6, 147.1,

137.7, 135.0, 134.0, 129.7, 127.0, 126.9, 126.8, 126.7, 125.2, 124.4, 84.1, 60.7, 53.0, 32.4, 29.0, 25.1, 24.6. TOF-HRMS Calcd. for $C_{23}H_{27}BCINO_4Na$ [M+Na⁺]: 450.1618, found 450.1620. 92% ee; $[\alpha]_D^{25} = +69.2$ (c = 1.0, CHCl₃); SFC condition: Lux 5u Cellulose-1 (250 × 4.60 mm), CO₂ : MeOH = 90:10, 3.0 mL/min, 254 nm; t_A = 3.5 min (minor), t_B = 4.0 min (major).

(2*R*,3*R*)-methyl 2-(4-chlorophenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)-3,4-dihydroquinoline-1(2*H*)-carboxylate (2o): Yield: 43%; ¹H NMR (CDCl₃,

400 MHz) δ : 7.58 (d, J = 7.6 Hz, 1H), 7.27-7.05 (m, 7H), 5.46 (d, J = 10.3 Hz, 1H), 3.68 (s, 3H), 2.63 (d, J = 7.5 Hz, 2H), 1.50-1.45 (m, 1H), 1.22 (s, 12H). ¹³C NMR (CDCl₃,

100 MHz) $\delta:$ 156.0, 143.9, 138.1, 135.4, 132.9, 128.9, 128.4, 127.3, 127.1, 125.6,

124.8, 84.5, 60.9, 53.4, 29.4, 27.5, 25.5, 25.1. TOF-HRMS Calcd. for $C_{23}H_{27}BCINO_4Na \ [M+Na^+]$: 450.1618, found 450.1620. 90% ee; $[\alpha]_D^{25} = +55.8$ (c = 1.0, CHCl₃); SFC condition: Lux 5u Cellulose-1 (250 × 4.60 mm), CO₂ : MeOH = 90:10, 2.5 mL/min, 210 nm; t_A = 4.5 min (minor), t_B = 5.2 min (major).

(2*R*,3*R*)-methyl 6-methoxy-2-(4-methoxyphenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,4-dihydroquinoline-1(2*H*)-carboxylate (2p): Yield: 46%; ¹H

NMR (CDCl₃, 600 MHz) δ : 7.45 (d, J = 0.9 Hz, 1H), 7.13 (d, J = 8.7 Hz, 2H), 6.77-6.67 (m, 4H), 5.43 (d, J = 10.2 Hz, 1H), 3.79 (s, 3H), 3.74 (s, 3H), 3.67 (s, 3H), 2.62-2.55 (m, 2H), 1.50-1.46 (m, 1H), 1.21 (d, J = 10.2 Hz, 1H), 3.79 (m, 2H), 1.50-1.46 (m, 1H), 1.21 (d, J = 10.2 Hz, 1H), 3.79 (m, 2H), 1.50-1.46 (m, 1H), 1.21 (m, J = 10.2 Hz, 1H), 3.79 (m, 2H), 1.50-1.46 (m, 1H), 1.21 (m, J = 10.2 Hz, 1H), 3.79 (m, 2H), 1.50-1.46 (m, 1H), 1.21 (m, J = 10.2 Hz, 1H), 3.79 (m, 2H), 1.50-1.46 (m, 1H), 1.21 (m, J = 10.2 Hz, 1H), 3.79 (m, 2H), 1.50-1.46 (m, 1H), 1.21 (m, J = 10.2 Hz, 1H), 3.79 (m, 2H), 1.50-1.46 (m, 1H), 1.21 (m, J = 10.2 Hz, 1H), 3.79 (m, 2H), 1.50-1.46 (m, 1H), 1.21 (m, J = 10.2 Hz, 1H), 3.79 (m, 2H), 1.50-1.46 (m, 1H), 1.21 (m, J = 10.2 Hz, 1H), 3.79 (m, 2H), 1.50-1.46 (m, 1H), 1.21 (m, J = 10.2 Hz, 1H), 3.79 (m, 2H), 3.79 (m,

= 3.6 Hz, 12H). ¹³C NMR (CDCl₃, 150 MHz) δ : 158.3, 156.1, 155.7, 136.8, 136.6, 131.0, 127.7, 126.2, 113.6, 112.0, 111.8, 83.8, 60.1, 55.5, 55.2, 52.8, 32.1, 29.2, 25.0, 24.6. TOF-HRMS Calcd. for C₂₅H₃₂BNO₆Na [M+Na⁺]: 476.2220, found 476.2221. 93% ee; $[\alpha]_D^{25} = +60.8$ (c = 1.0, CHCl₃); Enantiomeric excess of the corresponding hydroxyl compound obtained by oxidation with NaBO₃ in THF/H₂O (1:1); HPLC condition: Lux 5u Cellulose-4 (250 × 4.60 mm), ipa : hex = 20:80, 1.0 mL/min, 254 nm; t_A = 6.6 min (minor), t_B = 7.6 min (major).

(2*S*,3*R*)-methyl 2-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,4-dihydroquinoline-1(2*H*)-carboxylate (2q): Yield: 48%; ¹H NMR (CDCl₃, 400 MHz) δ :

7.40 (d, J = 8.0 Hz, 1H), 7.16-6.98 (m, 3H), 4.57-4.53 (m, 1H), 3.74 (s, 3H), 2.65-2.48 (m, 2H), 1.23 (s, 12H), 1.21 (s, 3H), 1.19-1.05 (m, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ : 155.9, 137.2,

135.6, 127.1, 126.5, 126.1, 124.6, 84.1, 53.1, 28.7, 25.6, 25.3, 25.2, 22.0. TOF-HRMS Calcd. for $C_{18}H_{27}BNO_4$ [M+H⁺]: 332.2031, found 332.2034. 90% ee; $[\alpha]_D^{25} = +59.2$ (c = 1.0, CHCl₃); HPLC condition: Lux 5u Cellulose-1 (250 × 4.60 mm), ipa : hex = 3:97, 1.0 mL/min, 254 nm; t_A = 5.9 min (minor), t_B = 6.4 min (major).

(2S,3R)-methyl 2-butyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,4-di-

hydroquinoline-1(2*H*)-carboxylate (2r): Yield: 47%; ¹H NMR (CDCl₃, 600 MHz) δ : 7.35 (s, 1H), 7.07-6.93 (m, 3H), 4.55 (q, J = 6.83 Hz, 1H), 3.67 (s, 3H), 2.63-2.55 (m, 2H), 1.49-1.43 (m, 1H), 1.18-1.13 (m, 18H), 0.76 (t, J = 6.9 Hz, 3H). ¹³C NMR (CDCl₃, 150 MHz) δ: 155.6, 137.1, 127.3, 126.0, 125.5, 124.1, 83.6, 55.2, 52.6, 34.8,

28.1, 27.2, 24.8, 24.7, 22.8, 14.2. TOF-HRMS Calcd. for $C_{21}H_{33}BNO_4$ [M+H⁺]: 374.2501, found 374.2504. 93% ee; $[\alpha]_D^{25} = +61.5$ (c = 1.0, CHCl₃); Enantiomeric excess of the corresponding hydroxyl compound obtained by oxidation

with NaBO₃ in THF/H₂O (1:1); HPLC condition: Lux 5u Cellulose-4 (250 × 4.60 mm), ipa : hex = 30:70, 1.0 mL/min, 254 nm; $t_A = 6.7$ min (minor), $t_B = 8.0$ min (major).

3. Procedure for the synthesis of 3-7

Procedure for the synthesis of 3^[4]

In a round bottom flask, **2f** (0.2 mmol) was dissolved in THF/H₂O (1:1, 4 mL). NaBO₃•4H₂O (1.0 mmol) was added at room temperature. After stirred for 2 h, the reaction mixture was extracted with EtOAc, dried over Na₂SO₄, and filtered. The residue was purified by silica gel chromatography to afford **3**.

(2*S*,3*R*)- methyl 3-hydroxy-6-methoxy-2-(naphthalen-1-yl)-3,4-dihydroquinoline-1(2*H*)-carboxylate (3): Yield: 94%; ¹H NMR (CDCl₃, 600 MHz) δ : 8.20 (d, *J* = 7.9 Hz, 1H), 7.82-7.81 (m, 2H), 7.70 (d, *J* = 8.1 Hz, 1H), 7.47-7.43 (m, 2H), 7.29-7.20 (m, 2H), 6.85 (dd, *J* = 9.0 Hz, 2.9 Hz, 1H), 6.63 (d, *J* = 2.7 Hz, 1H), 6.09 (d, *J* = 5.4 Hz, 1H), 4.19 (s, 1H), 3.78 (s, 3H), 3.58 (m, 3H), 2.76-2.67 (m, 2H), 2.57 (s, 1H),. ¹³C NMR (CDCl₃, 150 MHz) δ : 156.3, 156.1, 137.3, 133.8, 130.9, 130.8, 129.0, 128.1, 127.8, 126.4, 125.8, 125.6, 124.9, 123.7, 123.4, 114.0, 113.0, 71.5, 61.5, 55.6, 53.2, 34.4. TOF-HRMS Calcd. for C₂₂H₂₂NO₄ [M+H⁺]: 364.1543, found 362.1551. 96% ee; [α]_D²⁵ = -21.6 (c = 1.0, CHCl₃); HPLC condition: Lux 5u Cellulose-4 (250 × 4.60 mm), ipa : hex = 20:80, 1.0 mL/min, 254 nm; t_A = 16.5 min (minor), t_B = 17.8 min (major). **Procedure for the synthesis of 4**^[4,5]

In a round bottom flask, **2a** (0.2 mmol) was dissolved in THF/H₂O (1:1, 4 mL). NaBO₃•4H₂O (1.0 mmol) was added at room temperature. After stirred for 2 h, the reaction mixture was extracted with EtOAc, dried over Na₂SO₄, and filtered. The resulting crude material was used in the next reaction without further purification. To a solution of this intermediate in a mixture of MeOH and H₂O (1:1, 5.5 mL) was added KOH (9.0 mmol) at rt. The resulting mixture was heated to 100 °C. After the reaction was completed, and the reaction mixture was extracted with DCM, dried over Na₂SO₄ and evaporated under reduced pressure. The residue was purified by silica gel chromatography to afford **4**.

(2*S*,*3R*)-2-(naphthalen-1-yl)-1,2,3,4-tetrahydroquinolin-3-ol (4): Yield: 89%; ¹H NMR (CDCl₃, 400 MHz) δ : 8.24 (d, *J* = 8.2 Hz, 1H), 7.91-7.79 (m, 2H), 7.62-7.41 (m, 4H), 7.13-7.04 (m, 2H), 6.75-6.65 (m, 2H), 5.21 (d, *J* = 4.7 Hz, 1H), 4.45 (t, *J* = 5.2 Hz, 1H), 4.27 (s, 1H), 2.91-2.79 (m, 2H), 2.03 (d, *J* = 7.3 Hz, 1H), 1.57 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ : 143.9, 137.9, 134.4, 131.3, 131.1, 129.6, 129.0, 128.1, 127.0, 126.4, 126.2, 125.0, 123.5, 118.3, 117.7, 113.8, 68.3, 59.0, 33.3. TOF-HRMS Calcd. for C₁₉H₁₈NO [M+H⁺]: 276.1382, found 276.1385. 97% ee; $[\alpha]_D^{25} = +18.5$ (c = 1.0, CHCl₃); SFC condition: Lux 5u Cellulose-1 (250 × 4.60 mm), CO₂ : MeOH = 90:10, 2.5 mL/min, 230 nm; t_A = 3.5 min (minor), t_B = 3.7 min (major).

Procedure for the synthesis of 5^[6]

In a round bottom flask, **2a** (0.5 mmol) was dissolved in a THF and H_2O (4:1, 2 mL). NaIO₄ (0.75 mmol) was then added at rt, and the suspension was stirred for 15 min.

HCl (aq, 1.0 M, 0.50 mL) was added. After the completion of the reaction, the reaction mixture was extracted with EtOAc. The combined organic layers were washed with H_2O and brine, dried with Na_2SO_4 , filtered, and concentrated under vacuum to give a white solid **5**.

(*2R*,*3R*) -(1-(methoxycarbonyl)-2-(naphthalen-1-yl)-1,2,3,4-tetrahydroquinolin-3yl) boronic acid (5): Yield: 80%; $[\alpha]_D^{25} = +43.2$ (c = 1.0, CHCl₃). ¹H NMR (CDCl₃, 400 MHz) δ : 8.24 (d, J = 8.2 Hz, 1H), 8.01-7.74 (m, 3H), 7.57-7.49 (m, 2H), 7.36-7.23 (m, 4H), 7.16-7.13 (m, 2H), 6.15 (d, J = 5.3 Hz, 1H), 4.30 (s, 1H), 3.64 (s, 3H), 2.83 (d, J = 5.1 Hz, 2H), 2.07 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ : 155.9, 137.8, 137.3, 133.9, 130.7, 129.4, 129.1, 128.2, 127.4, 126.5, 125.8, 125.6, 124.3, 123.6, 123.6, 123.5, 123.2, 71.2, 61.6, 53.3, 34.1. TOF-HRMS Calcd. for C₂₁H₂₁BNO₄ [M+H⁺]: 362.1562, found 362.1559.

Procedure for the synthesis of 6^[7]

In a round bottom flask, **2a** (0.5 mmol) was dissolved in MeOH (2 mL), An aqueous solution of KHF₂ (4.5M, 2.5 mmol) was added to the flask. The solution was stirred at rt for 4 h. After the evaporation of the solvent under vacuum, the residual pinacol was removed by adding three portions of Et₂O, retiring the resulting solution. The solid that was obtained was triturated with acetone and filtered through a plug of Celite. The acetone solution was evaporated to yield a white solid **6**.

(2*R*,3*R*)-potassium (1-(methoxycarbonyl)-2-(naphthalen-1-yl)-1,2,3,4-tetrahydroquinolin-3-yl) trifluoroborate (6) Yield: 83%; $[\alpha]_D^{25} = -21.6$ (c = 1.0, CH₃COCH₃). ¹H NMR (CD₃CN, 600 MHz) δ : 8.42 (d, *J* = 8.2 Hz, 1H), 7.78 (d, *J* = 7.9 Hz, 1H), 7.62 (d, *J* = 8.0 Hz, 1H), 7.46-7.02 (m, 8H), 6.13 (d, *J* = 9.1 Hz, 1H), 3.44 (s, 3H), 2.61-2.41 (m, 2H), 0.95 (s, 1H). ¹³C NMR (CD₃CN, 150 MHz) δ : 155.7, 144.9, 139.0, 138.4, 133.4, 131.6, 128.1, 126.5, 126.2, 125.4, 125.3, 125.2, 125.1, 124.8, 124.2, 123.9, 58.2, 51.8, 38.4, 29.7. TOF-HRMS Calcd. for C₂₁H₁₈BF₃NO₂ [M-K⁺]:

384.1392, found 384.1396.

Procedure for the synthesis of 7^[8]

To a solution of **2a** (0.113 mmol) and dibromomethane (19.4 μ L, 0.283 mmol) in THF (1.2 mL) was added dropwise *n*-BuLi (0.25 mmol, 2.4 M solution in hexane) at -78 °C under an nitrogen atmosphere. The resulting mixture was stirred for 10 min at -78 °C and then warmed to rt and allowed to stir for 2 h. The reaction was quenched with a saturated aqueous solution of NH₄Cl, extracted with EtOAc. The resulting organic layer was dried over MgSO₄, filtered and concentrated in vacuo. The resulting intermediate was dissolved in THF/H₂O (1:1, 4 mL). NaBO₃•4H₂O (0.565 mmol) was added at room temperature. After stirred for 2 h, the reaction mixture was extracted with EtOAc, dried over Na₂SO₄, and filtered. The residue was purified by silica gel chromatography to afford **7**.

(2R,3R)-methyl 3-(hydroxymethyl)-2-(naphthalen-1-yl)-3,4-dihydroquinoline-1

(2*H*)-carboxylate (7) Yield: 66%; ¹H NMR (CDCl₃, 400 MHz) δ 8.26 (d, *J* = 8.4 Hz, 1H), 7.97-7.65 (m, 3H), 7.50-7.40 (m, 2H), 7.39-7.02 (m, 5H), 6.23 (d, *J* = 7.5 Hz, 1H), 3.72-3.50 (m, 5H), 2.73-2.66 (m, 2H), 2.45-2.19 (m, 1H), 1.93 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ : 156.0, 139.5, 138.1, 133.8, 131.0, 130.9, 129.0, 128.2, 127.8, 126.9, 126.3, 125.7, 125.5, 124.4, 123.3, 63.7, 55.6, 53.2, 46.1, 29.3. 97% ee; TOF-HRMS Calcd. for C₂₂H₂₂NO₃ [M+H⁺]: 348.1594, found 348.1598. [α]_D²⁵ = +36.4 (c = 1.0, CHCl₃); HPLC condition: Lux 5u Cellulose-4 (250 × 4.60 mm), ipa : hex = 20:80, 1.0 mL/min, 254 nm; t_A = 6.3 min (minor), t_B = 7.5 min (major).

Procedure for the synthesis of 8^[9]

To a solution of 1-bromo-3-methoxybenzene (17.3 μ L, 0.137 mmol) in THF (0.5 mL) was added dropwise ^{*n*}BuLi (0.137 mmol, 2.4 M solution in hexane) at -78 °C under an nitrogen atmosphere. After stirred for 1 h at -78 °C, a THF solution (0.5 mL) of **2a** (0.113 mmol) was added. After stirred for 1 h at -78 °C, the solvent was removed under reduced pressure and MeOH (1.2 ml) was added to the mixture. A MeOH solution (1.8 mL) of NBS (0.208 mmol) was then added at -78 °C and the reaction stirred for 1 h at -78 °C. Aqueous Na₂S₂O₃ was added and the reaction mixture was allowed to warm to rt. The mixture was extracted with CH₂Cl₂, dried over MgSO₄, and filtered. The residue was purified by silica gel chromatography to afford **8**.

(2*R*,3*S*)-methyl 3-(3-methoxyphenyl)-2-(naphthalen-1-yl)-3,4-dihydroquinoline-1 (2*H*)-carboxylate (8) Yield: 53%; ¹H NMR (CDCl₃, 400 MHz) δ 7.76-7.57 (m, 4H), 7.40-7.01 (m, 10H), 6.75-6.53 (m, 2H), 6.39 (d, *J* = 1.7 Hz, 1H), 6.14-5.96 (m, 1H), 3.56 (s, 3H), 3.50 (s, 3H), 3.29-3.06 (m, 2H), 2.97-2.77 (m, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ : 159.6, 155.6, 143.3, 140.1, 138.3, 133.4, 133.0, 131.1, 129.5, 128.5, 127.7, 127.5, 127.1, 125.7, 125.3, 125.2, 125.1, 124.7, 124.3, 123.2, 119.9, 113.6, 112.7, 62.3, 55.1, 53.0, 52.3, 34.0. TOF-HRMS Calcd. for C₂₈H₂₆NO₃ [M+H⁺]: 424.1907, found 424.1911. 95% ee; $[\alpha]_D^{25} = +29.4$ (c = 1.0, CHCl₃); HPLC condition: Lux 5u Cellulose-1 (250 × 4.60 mm), ipa : hex = 10:90, 1.0 mL/min, 254 nm; t_A = 11.7 min (minor), t_B = 13.1 min (major).

Procedure for the synthesis of 9

A 25 mL round bottom flask was charged with compound 1p (0.5 mmol), MeOH (5 mL), and 10% Pd/C (10 mg). The reaction vessel was purged with hydrogen three times and then the mixture was stirred under atmospheric hydrogen (using a hydrogen balloon) at room temperature until no starting material was detected by TLC. The catalyst was filtered and the filtrate was concentrated under reduced pressure. The residue was purified via flash chromatography to afford **9** as yellow oil.

(*S*)-methyl 6-methoxy-2-(4-methoxyphenyl)-3,4-dihydroquinoline-1(2*H*)-carboxylate (9): Yield: 92%; ¹H NMR (CDCl₃, 400 MHz) δ : 7.55 (s, 1H), 7.14 (d, *J* = 8.3 Hz, 2H), 6.81 (d, *J* = 8.3 Hz, 3H), 6.66 (m, 1H), 5.42 (t, *J* = 7.4 Hz, 1H), 3.79 (s, 3H), 3.75 (s, 3H), 3.71 (s, 3H), 2.69-2.55 (m, 2H), 2.51-2.45 (m, 1H), 1.91-1.82 (m, 21H). ¹³C NMR (CDCl₃, 100 MHz) δ : 158.9, 156.6, 156.2, 135.9, 135.2, 131.2, 127.8, 126.7, 114.3, 113.1, 112.4, 58.1, 55.9, 55.8, 53.5, 33.7, 27.0. TOF-HRMS Calcd. for C₁₉H₂₂NO₄ [M+H⁺]: 328.1543, found 328.1546. 99% ee; $[\alpha]_D^{25} = -544$ (c = 1.0, CHCl₃); SFC condition: Lux 5u Cellulose-3 (250 × 4.60 mm), CO₂ : MeOH = 75:25, 3.0 mL/min, 210 nm; t_A = 4.5 min (minor), t_B = 5.2 min (major).

4. Deuterium Labeling Experiment

The borylation of *rac*-**1a** under the optimized conditions using CD_3OD instead of MeOH gave product **2a'**, bearing a deuterium label at its 4-position (> 95% D), with high enantioselectivity (97% ee).

Deuterium Labeling **2a**': ¹H NMR (CDCl₃, 400 MHz) δ : 8.32 (d, J = 7.6 Hz, 1H), 7.80 (d, J = 8.2 Hz, 1H), 7.74 (d, J = 5.8 Hz, 1H), 7.67 (d, J = 8.1 Hz, 1H), 7.48-7.42 (m, 2H), 7.31-7.27 (m, 2H), 7.22 (d, J = 6.7 Hz, 1H), 7.16-7.14 (m, 1H), 7.09-7.07 (m, 1H), 6.33 (d, J = 8.9 Hz, 1H), 3.57 (s, 3H), 2.63-2.59 (m, 1H), 1.76 (dd, J = 9.0 Hz, 3.1 Hz, 1H), 1.09 (s, 6H), 1.03 (s, 6H).

5. X-ray Crystallography

Single-crystal X-ray diffraction measurements were carried out on a Rigaku Saturn CCD diffractometer at 100(2) K using graphite monochromated Cu K α radiation ($\lambda = 1.54184$ Å). An empirical absorption correction was applied using the SADABS program.¹⁰ All structures were solved by direct methods and refined by full-matrix least squares on F^2 using the SHELXL program package.¹¹ All the hydrogen atoms were geometrically fixed using the riding model. The crystal data and experimental data for **1b**, **2a** and **2p** are summarized in **Table S1**.

References

- [1] F. Amiot, L. Cointeaux, E. J. Silve and A. Alexakis, *Tetrahedron* 2004, 60, 8221.
- [2] N. E. Grimmer, N. J. Coville, C. B. de Koning, J. M. Smith, L. M. Cook, J. Organomet. Chem. 2000, 616, 112.
- [3] H. Ma, Q. Sun, W. Li, J. Wang, Z. Zhang, Y. Yang, Z. Lei, *Tetrahedron lett.* 2011, 52, 1569.
- [4] K. Kubota, K. Hayama, H. Iwamoto and H. Ito, *Angew. Chem., Int. Ed.* 2015, 54, 8809.
- [5] J. Yang, H. Wu, L. Shen and Y. Qin, J. Am. Chem. Soc. 2007, 129, 13794.
- [6] C. W. Liskey and J. F. Hartwig, J. Am. Chem. Soc. 2013, 135, 3375.
- [7] M. Guisan-Ceinos, A. Parra, V. Martin-Heras and M. Tortosa, Angew. Chem., Int. Ed. 2016, 55, 6969.
- [8] M. V. Joannou, B. S. Moyer, S. J. Meek, J. Am. Chem. Soc. 2015, 137, 6176.
- [9] A. Bonet, M. Odachowski, D. Leonori, S. Essafi and V. K. Aggarwal, Nat. Chem. 2014, 6, 584.
- [10] G. M. Sheldrick, SADABS, Program for Empirical Absorption Correction of Area Detector Data, University of Göttingen, Göttingen, Germany, 1996.
- [11] G. M. Sheldrick, Acta Cryst., 2008, A64, 112-122.

Crystal parameters

Compound	1b	2a	2p
Formula	C ₂₆ H ₁₉ NO ₂	C ₂₇ H ₃₀ NBO ₄	C ₂₅ H ₃₂ NBO ₆
Fw	377.42	443.33	453.32
crystal system	orthorhombic	orthorhombic	orthorhombic
space group	$P2_{1}2_{1}2_{1}$	<i>P</i> 2 ₁ 2 ₁ 2 ₁	$P2_{1}2_{1}2_{1}$
<i>a</i> (Å)	7.657(1)	8.521(1)	11.094(1)
b (Å)	9.515(1)	15.612(2)	14.666(1)
<i>c</i> (Å)	26.125(1)	17.520(1)	14.750(1)
α (deg)	90	90	90
β (deg)	90	90	90
$\gamma(\text{deg})$	90	90	90
$V(\text{\AA}^3)$	1903.42(5)	2330.58(5)	2399.83(8)
Z	4	4	4
$D_{\rm calc}$ (g/cm ³)	1.317	1.263	1.255
μ (Mo/K α) _{calc} (cm ⁻¹)	0.658	0.665	0.718
size (mm)	$0.30\times 0.25\times 0.15$	$0.30\times 0.25\times 0.20$	$0.30\times 0.10\times 0.05$
<i>F</i> (000)	792	944	968
2θ range (deg)	9.89 to 146.69	7.58 to 146.73	8.50 to 146.56
no. of reflns, collected	5060	9699	7673
no of obsd reflns	3309	4390	4326
no of variables	262	303	305
abscorr ($T_{\text{max}}, T_{\text{min}}$)	1.00, 0.84	1.00, 0.68	1.00, 0.70
R	0.029	0.032	0.035
$R_{ m w}$	0.07	0.080	0.083
$R_{\rm all}$	0.030	0.032	0.039
Absolute structure parameter	0.13(11)	-0.03(7)	0.01(12)
Gof	1.09	1.06	1.06
CCDC	1542782	1542784	1542783

Table S1. Crystal Data and Experimental Parameters for Compounds 1b, 2a and 2p

5. NMR spectra of all compounds (S)-methyl 2-(naphthalen-1-yl)quinoline-1(2H)-carboxylate (1a):

190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0 -10.

(S)-isobutyl 2-(naphthalen-1-yl)quinoline-1(2H)-carboxylate (1e):

(S)-methyl 2-(3,5-dimethylphenyl)quinoline-1(2H)-carboxylate (1m):

(S)-methyl 2-(4-chlorophenyl)quinoline-1(2H)-carboxylate (1o):

(2R,3R)-methyl 2-(naphthalen-1-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,4-dihydroquinoline-1(2H)-carboxylate (2a):

(2R,3R)-phenyl 2-(naphthalen-1-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,4-dihydroquinoline-1(2H)-carboxylate (2b):

(2*R*,3*R*)-benzyl 2-(naphthalen-1-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,4-dihydroquinoline-1(2*H*)-carboxylate (2c):

(2R,3R)-isopropyl 2-(naphthalen-1-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,4-dihydroquinoline-1(2H)-carboxylate (2d):

(2R,3R)-isobutyl 2-(naphthalen-1-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,4-dihydroquinoline-1(2H)-carboxylate (2e):

(2R,3R)-methyl 6-methoxy-2-(naphthalen-1-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,4-dihydroquinoline-1(2H)-carboxylate (2f):

(2R,3R)-methyl 7-methyl-2-(naphthalen-1-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,4-dihydroquinoline-1(2H)-carboxylate (2h):

(2R,3R)-methyl 2-(naphthalen-2-yl)-3-(4,4,5,5-tetramethyl-1,3-dioxolan-2-yl)-3,4-dihydroquinoline-1(2H)-carboxylate (2i):

(2R,3R)-methyl 2-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,4-dihydroquinoline-1(2H)-carboxylate (2j):

(2R,3R)-methyl 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(o-tolyl)-3,4-di-hydroquinoline-1(2H)-carboxylate (2k):

(2R,3R)-methyl 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(m-tolyl)-3,4-di-hydroquinoline-1(2H)-carboxylate (2l):

(2R,3R)-methyl 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(m-tolyl)-3,4-di-hydroquinoline-1(2H)-carboxylate (2m):

(2R,3R)-methyl 2-(4-chlorophenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,4-dihydroquinoline-1(2H)-carboxylate (2o):

(2*S*,3*R*)-methyl 2-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,4-dihydroquinoline-1(2*H*)-carboxylate (2q):

(2*S*,3*R*)- methyl 3-hydroxy-6-methoxy-2-(naphthalen-1-yl)-3,4-dihydroquinoline-1(2*H*)-carboxylate (3):

(2*S*,*3R*)-2-(naphthalen-1-yl)-1,2,3,4-tetrahydroquinolin-3-ol (4):

(2R,3R) -(1-(methoxycarbonyl)-2-(naphthalen-1-yl)-1,2,3,4-tetrahydroquinolin-3-yl) boronic acid (5):

(2R,3R)-potassium (1-(methoxycarbonyl)-2-(naphthalen-1-yl)-1,2,3,4-tetrahydroquinolin-3-yl) trifluoroborate (6):

(2R,3R)-methyl 3-(hydroxymethyl)-2-(naphthalen-1-yl)-3,4-dihydroquinoline-1 (2H)-carboxylate (7):

(2*R*,3*S*)-methyl 3-(3-methoxyphenyl)-2-(naphthalen-1-yl)-3,4-dihydroquinoline-1 (2*H*)-carboxylate (8):

(S)-methyl 6-methoxy-2-(4-methoxyphenyl)-3,4-dihydroquinoline-1(2H)-carbox-ylate (9):

7. SFC and HPLC spectra of all compounds

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	۶
1	6.516	BV	0.0891	3.04038	4.09755e-1	0.3053
2	7.605	BB	0.2294	992.67297	65.27299	99.6947
Total	s:			995.71335	65.68275	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.721	BV R	0.0290	2317.33032	1229.18518	99.7687
2	2.173	BB	0.0422	5.37300	1.97892	0.2313
Total	s :			2322.70332	1231.16410	

Signal 3: MWD1 D, Sig=230,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area ۶
 1 2	2.138 2.327	VV R VB	0.0368 0.0409	3241.92139 20.84065	1361.82837 7.73643	99.3613 0.6387
Total	s:			3262.76204	1369.56480	

Signal 2: MWD1 C, Sig=210,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area ۶
 1 2	3.949 5.709	 BB BB	0.0740	807.14948 6.50504	168.21577 9.19135e-1	99.2005 0.7995
Total	s:			813.65451	169.13491	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	१
1	2.132	BV R	0.0374	2827.12524	1202.76563	99.9425
2	2.331	BB	0.0404	1.62646	6.68677e-1	0.0575
Total	s:			2828.75170	1203.43430	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	용
1	2.615	VV R	0.0487	933.03027	295.72791	99.6700
2	3.536	VV	0.0841	3.08945	4.86691e-1	0.3300
Total	s:			936.11973	296.21460	

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area ۶
 1 2	2.670 4.223	VB R BV R	0.0526 0.0898	8920.10449 34.99500	2662.62915 5.89195	99.6092 0.3908
Total	s:			8955.09949	2668.52110	

Peak 1	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	۶
1	2.578	BB	0.0487	725.20166	230.80426	99.6500
2	3.496	BV	0.0618	2.54709	5.10098e-1	0.3500
Total	s:			727.74875	231.31436	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	۶
1	4.331	VB R	0.0865	6431.01563	1154.85425	99.3195
2	5.476	BV R	0.1060	44.06280	5.87289	0.6805
Total	s:			6475.07842	1160.72714	

Totals :

2322.70332 1231.16410

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1 2	3.409 3.832	BV R VB R	0.0585 0.0660	3573.56274 21.45264	958.04547 5.00184	99.4033 0.5967
Total	s:			3595.01539	963.04731	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	۶
1	2.052	BV R	0.0347	4499.36133	2039.08789	99.3630
2	2.659	BV	0.0411	28.84402	10.80485	0.6370
Total	s:			4528.20535	2049.89274	

Peak I #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area ۶
· 1 2	4.776 8.455	VV R VB	0.0879 0.1668	3690.78418 21.23185	651.10272 1.58006	99.4280 0.5720
Totals	s:			3712.01603	652.68278	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	۶
1	2.242	BB	0.0454	1826.28442	637.03552	99.4054
2	2.972	BB	0.0657	10.92443	2.67387	0.5946
Total	s:			1837.20886	639.70939	

Peak #	RetTime	Туре	Width	Area	Height	Area
	[III.II]			[IIIA0~5]	[
1 2	4.615 5.715	VV BB	0.1263 0.1596	283.21667 1.74411e4	33.96539 1687.68201	1.5979 98.4021
Total	s:			1.77243e4	1721.64740	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	양
1	5.234	BB	0.1338	24.16607	2.77010	1.7898
2	9.811	BB	0.2961	1326.04944	69.03043	98.2102
Total	s:			1350.21551	71.80053	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	영
1	11.423	BB	0.3313	121.52647	5.59640	3.2625
2	13.010	BB	0.3818	3603.40820	144.08247	96.7375
Total	s:			3724.93468	149.67887	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	ð
1	3.931	BB	0.0920	101.02320	16.83179	4.5177
2	4.653	вв	0.1139	2135.16553	286.55093	95.4823
Total	s :			2236.18873	303.38272	

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area ۶
 1 2	4.031 4.532	BB BB	0.0965 0.1142	214.38449 6125.07959	34.00666 829.24957	 3.3817 96.6183
Total	s:			6339.46408	863.25624	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	용
1	16.559	BB	0.5138	197.61757	6.26783	1.9247
2	17.830	BB	0.6649	1.00699e4	232.67824	98.0753
Total	ls :			1.02675e4	238.94607	

Peak 1	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	۶
1	8.020	BB	0.2001	43.77079	3.44834	2.2967
2	8.752	BB		1862.00842	123.58708	97.7033
Total	s:			1905.77921	127.03543	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	۶
1	6.386	VB	0.1782	663.16229	57.63523	2.6284
2	11.106	BB	0.4179	2.45672e4	918.90814	97.3716
Total	ls :			2.52303e4	976.54337	

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area ۶
 1 2	5.335 8.413	 BB BB	0.1955 0.3252	194.60635 6613.37744	17.27102 336.63840	2.8585 97.1415
Total	s:			6807.98380	353.90942	

Peak : #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area ۶
 1 2	4.828 5.677	BV VB	0.3429	121.82275 3608.46924	4.95448 126.10669	3.2658 96.7342
Total	s:			3730.29199	131.06117	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	4.367	BB	0.1093	8.66824	1.30749	0.7085
2	5.265	BB	0.1366	1214.72839	146.67262	99.2915
Total	s:			1223.39663	147.98011	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	ç
1	4.372	BB	0.1131	44.09037	5.97571	3.4811
2	5.183	BB	0.1348	1222.48132	138.79312	96.5189
Total	s:			1266.57169	144.76883	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	왕
1	4.187	BB	0.1056	54.88206	7.94840	3.9020
2	4.879	BB	0.1212	1351.63513	172.87549	96.0980
Total	s:			1406.51719	180.82389	

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area ۶
 1 2	4.524 5.236	BV R VV R	0.1859 0.2585	755.50800 1.35479e4	54.04028 733.19049	5.2820 94.7180
Total	s:			1.43034e4	787.23077	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	۶
1	6.600	BB	0.1841	544.87994	46.02865	3.5704
2	7.699	BBA	0.2606	1.47160e4	891.40393	96.4296
Total	s:			1.52609e4	937.43258	

Peak 1	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	۶
1	5.969	BV	0.2803	36.59196	1.96500	5.0831
2	6.497	VB		683.28021	35.75909	94.9169
Total	s:			719.87218	37.72409	

Peak 1	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	6.731	BB	0.2060	272.34567	25.20897	3.3420
2	8.022	BB		7876.91016	564.92621	96.6580
Total	s:			8149.25583	590.13518	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	16.559	BB	0.5138	197.61757	6.26783	1.9247
2	17.830	BB	0.6649	1.00699e4	232.67824	98.0753
Total	ls :			1.02675e4	238.94607	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	۶
1	3.535	BV E	0.0684	20.97322	4.71424	1.1233
2	3.736	VV R		1846.19556	393.86246	98.8767
Total	s:			1867.16878	398.57670	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	۶
1	6.277	VV	0.1680	628.06512	57.23338	1.6013
2	7.485	BB	0.2996	3.85943e4	1952.39661	98.3987
Total	s:			3.92224e4	2009.62998	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	۶
1	11.780	BB	0.3499	78.37698	3.46513	2.3083
2	13.097	BB	0.4047	3317.01221	127.84676	97.6917
Totals :				3395.38919	131.31189	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	۶
1	2.217	VB R	0.0439	15.49684	5.33096	0.6981
2	2.424	BV R	0.0474	2204.23462	725.51215	99.3019
Total	s:			2219.73146	730.84311	

8. Figures of single-crystals

Figure S1. Structure of compound 1b.

Figure S2. Structure of compound 2a.

Figure S3. Structure of compound 2p.