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Fig. S1:(A) Structure of Tyrocidine. (B) Structure of Daptomycin.

Appendix

While the DPR algorithm is guaranteed to converge to the equilibrium distribution, we have no

estimate of the convergence rate, i.e., how many iterationsdoes it take for the markov chain to

reach equilibrium distribution. Convergence rate of the markov chain is critically dependent on

the choice ofRandomTransition(Peptide), and with a bad choice ofRandomTransition(Peptide),
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convergence can be so slow that there would be no improvementfor DPR as compared to naive

Monte Carlo simulations. We explain this concept with the following example. Consider the

two score transition probability matricesP andQ shown inTable 4 (p is a small value). While

both transition matrices have similar equilibrium distribution π = (1/(1+ 2p + 4p2),2p/(1+

2p+4p2),4p2/(1+2p+4p2)), they are different in the sense that for the former, there isa path

s1 → s2 → s3 going from the most common state to the rarest state, where the probability of each

transition is proportional top, while in the latter case no such path exist, and the probability of

going to the most rare state is always quadratic withp, no matter which state the transition is

originated from. By choosing oversampling factorsµ = (1,1/2p,1/4p2), the modified transition

probability matrices calculated from DPR paper are shown inTable 4.

Table S1:The score transition probability matricesP andQ, and modified probability transition matricesP′ andQ′,
coming from performing DPR onP andQ.

P =





1− p p 0
0.5 0.5− p p
0 0.5 0.5



 Q =





1/(1+2p+4p2) 2p/(1+2p+4p2) 4p2/(1+2p+4p2)
1/(1+2p+4p2) 2p/(1+2p+4p2) 4p2/(1+2p+4p2)
1/(1+2p+4p2) 2p/(1+2p+4p2) 4p2/(1+2p+4p2)





P′ =





1− p p 0
p 1−2p p
0 p 1− p



 Q′ =





1/(1+2p+4p2) 2p/(1+2p+4p2) 4p2/(1+2p+4p2)
2p/(1+2p+4p2) 1/(1+2p+4p2) 4p2/(1+2p+4p2)
4p2/(1+2p+4p2) 4p2/(1+2p+4p2) (1+2p−4p2)/(1+2p+4p2)





The eigenvalues ofP′ are 1,1− p,1−3p, while eigenvalues ofQ′ are 1,1−12p2/(1+2p+

4p2),1− 2p/(1+ 2p+ 4p2). The convegence rate of each markov chain is determined by the

largest non-unity eigenvalue of their matrices, which means in the former case equilibrium distri-

bution can be reached in the number of samples growing by 1/p, while in the latter case it grows by

1/p2. Finally, note that the number of random samples that a crudemonte carlo approach would

require for estimating such a probability distribution is proportional to 1/p2. This means while

using DPR withRandomTransition that gives score transition probability matrixQ has no overall

payback as compared to naive Monte Carlo, transition probability matrix P can greatly reduce the

number of samples required for accurately estimate the probability distribution.

In general an effectiveRandomTransition should have the following two properties to be ef-

fective. First, it should make the whole space of all peptides connected. Second, its score transition

2



probability matrix should have paths from most common states to rarest states, where each edge

has a significant probability (e.g., larger than 10−6). Then, it would be possible to estimate the

equilibrium probability distribution of such a matrix in just several million iterations.
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