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Calculation of pre and Vin

172

To calculate the field effect mobilitiy (ure), we use the measured plot of the I4s' '~ versus Vs and

extract the mobility value based on the following equation

wc;
las = (52 s Vs — Ven)? (S1)

where L, W, and C; are the channel length, the width, and the gate capacitance per unit area,
correspondingly. The threshold voltage (V) is defined as the voltage where the linear regime of
the curve extends and intercept with the Vg. On the basis of the measured transfer curve, pre and

threshold voltage (V) can be obtained.

Optimized P3HT weight composition in P3HT-NF/PDMS composites

To validate why the composite with 20 wt% of P3HT weight composition is chosen, composites
with higher weight compositions are also studied for the comparison purposes. We compared
P3HT-NF/PDMS composites with different weight compositions for 20, 50, and 90 wt%. As
shown in fig. S4, we present the optical microscope images, TFT transfer curves with and without
mechanical stretching, and the ure for each composite.

Upon stretching up to 50% mechanical strain, significant decrease in the ure with an increase of
P3HT weight composition was observed (fig. S4D). Specifically, the ure for 90 wt% P3HT

weight composition decreased from 2.7 cm?/V-s to 0.1 cm?/V-s (96% decrease) while TFT with

50 wt% P3HT weight composition decreased from 1.1 cm?/V-s to 0.2 cm?/V-s (82% decrease).
This decrease in the pre with an increase of P3HT weight composition is attributed to a significant
amount of microcracks. For the 20 wt% P3HT weight composition, only 40% decrease in the pre
was obtained which is attributed to no obvious cracks (fig. S4A). To obtain semiconductor
composite with the moderate pre decrease and without microcracks while stretching, we therefore

choose the one with 20 wt% of P3HT weight composition.

Calculation of temperature coefficient of resistance

The curve of relative resistance change (R/Ro) with regards to the temperature (T (K)) was fitted
by using OriginPro® software. Based on the thermistor characteristics, the fitted curve uses the
exponential decay function with the formula as following



R/ =A+Be~cT (S2)

Based on Fig. 3h, the obtained fitting parameters A, B and C in the fitted curve (black line) are

shown in the following table.

Value Standard Error

A 0.44 0.0092

B 3.92 x10° 1.25 x10°

C 0.044 0.001

Due to nonlinear characteristics of the relative resistance decrease with an increase of the
temperature, the temperature coefficients of resistance (TCR) at 303 K (30 °C), 313 K (40°C) and
323 K (50°C), were calculated by using the differentiated function of the fitted curve as follows
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The obtained TCR values at 303 K (30°C), 313 K (40°C) and 323 K (50°C) are —-0.028/K, —
0.023/K and —0.016/K, respectively.

Calculation of Hertzian contact pressure
The applied pressure to the sensor was calculated based on Hertzian contact model. When a
sphere with radius R is indented into an elastic flat rubber to depth d, the radius of the contact

area can be defined as a = VRd. The applied force F as a function of d can be expressed as the
following (47)

F=Z2E*RY2q%? (S4)

1 1—-v?  1-v3
where — = — + —=
E* E, E,

, and the E1, E, v1, v2 are the elastic moduli and poisson’s ratios of the

sphere (that is, glass) and the rubber (that is, PDMS). The modulus E1 and possion’s ratio v1 Of the
PDMS are 1 MPa and 0.5 (32). The modulus E2 and possion’s ratio v, of the glass are 70 GPa and



0.25 (46). The normal pressure distribution along the contact area of radius r can be expressed as
(47)

~2\1/2
p(r) =1, (1-5) (55)
Therefore, the maximum contact pressure can be given by
3F
pO - 2 a (86)

Sign language translation program

The actual translation from the electrical resistance change to the sign language letters is
demonstrated based on a custom-built software using Matlab® (details in fig. S12). The logic of
the software is displayed in the flowchart (fig. S12A). First, electrical resistance at each bending
angle is averaged. Second, the averaged values (m) are classified into 4 different color groups,
that is, blue (m < 0.9 GQ), green (0.9 GQ <m < 1.1 GQ), pink (1.2 GQ <m < 1.4 GQ) and red
(1.4 GQ < m). Third, the set of averaged values is compared with the predetermined values of the
sign language letters. Finally, all the results are displayed in graphic user interface (GUI) program
to effectively understand the translation process. GUI program is comprised of a) data selection
from the input, b) signal interpretation, ¢) color mapping and d) translated letter display window
as shown in fig. S12B. The representative images in fig. S12C are the screenshots of the executed
program after translating the electrical resistance response to sign language letters “YULAB”.
Simultaneously, our program also contains a script to automatically display all the translated
letters (fig. S12D).



Supplementary Figures

Completely embed
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fig. S1. Fabrication of AUNP-AGNW by using a galvanic replacement process. SEM images
with different magnification of AUNP-AgNWs (A) on a Si substrate and (B) embedded in PDMS.
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fig. S2. Fabrication and deformed states of the elastomeric composite semiconductor. (A)
Schematic illustration of the P3HT-NF growth by using the cooling process. (B) TEM image of
P3HT-NF. (C) AFM images of P3HT-NF and (D) Corresponding length distributions of P3HT-
NF. (E) Schematic illustration of how the P3HT-NFs behave in the composite upon stretching.
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fig. S3. Percolation behavior of the P3HT-NF/PDMS composite semiconductor. (A) AFM
scanning thickness profiles and (B) thickness plot of P3HT-NF/PDMS composites with different
P3HT weight compositions. (C) Sheet resistance (€/0) and (D) conductivity (S/m) of P3HT-
NF/PDMS with different P3HT weight compositions. ¢, indicates the percolation threshold.
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fig. S4. The composites with different weight compositions of P3HT and PDMS. Optical
microscope images (left) and TFT transfer curves (right) of P3HT-NF/PDMS composites on a
PDMS substrate before (upper) and after (lower) stretching to 50% with different weight
composition ratio (A) 2:8, (B) 5:5 and (C) 9:1. The arrows in the optical microscope images
indicate microcracks upon stretching. (D) Field-effect mobility, prg, of the TFTs with different
P3HT weight compositions under 0% and 50% of mechanical strain along the channel length

direction.
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fig. S5. Lifetime of the elastomeric composite conductor and semiconductor. Sheet resistance
(Q/o) of the (A) AuNP-AgNW/PDMS conductor and (B) P3HT-NF/PDMS semiconductor stored
in ambient conditions (27°C, 50 RH%) with respect to time.
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S6. Fabrication steps of the intrinsically stretchable TFTs and sensors.
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fig. S7. Thickness of the rubbery TFT and P3HT-NF/PDMS semiconductor composite. (A)
Optical microscope image of the cross section of the rubbery TFT. (B) AFM scanning thickness
profiles of the P3HT-NF/PDMS (2:8) composite.
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fig. S8. P3HT-NF/PDMS composite-based TFTs with different electrodes. (A) Schematic
illustration of TFTs. (B and C) Transfer curves of TFTs with (B) Au and (C) AuNP-AgNW
electrodes. (D and E) Transfer curves of TFTs with (D) Ag and (E) AQNW/PDMS electrodes.
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fig. S9. Performances of TFTs based on p-P3HT/PDMS and P3HT-NF/PDMS as
semiconducting channels. (A) Transfer and (B) output curves of the TFT based on p-

P3HT/PDMS. (C) Transfer and (D) output curves of TFT based on P3HT-NF/PDMS.
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fig. S10. TFT performances with respect to mechanical strain. Transfer curves of the
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intrinsically stretchable rubbery TFTs under different levels of mechanical strain (A) along and
(B) perpendicular to the channel length directions.
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fig. S11. (Continued)
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fig. S11. Electrical resistance response of the strain sensor under a given hand gesture. (A to
E) Electrical resistance response of the strain sensors under a given hand gesture for the

expression of the sign language letter of (A) Y, (B) U, (C) L, (D) A, and (E) B.
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fig. S12. The sign language translation program. (A) Flowchart and (B) corresponding graphic
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