

Figure S1. Related to Figure 2A and Table S2: Performance of the initial protocol on $Set_GX_1KacX_2GC$. The set was separated into two parts to calibrate (A) and validate (B) the protocol (see Table S2). (A, B) Activity vs. peptide score plots. Activity is presented as the fraction of deacetylated substrate after 30 minutes. A 0.34 deacetylation threshold distinguishes optimally substrates from non-substrates (Kolmogorov-Smirnov *p*-values of 4.5e-10 and 1.3e-05, respectively). (C) ROC plot for distinction of binders/non-binders according to the 0.34 deacetylation threshold (AUC values=0.92 and 0.80 for training [solid line] and test sets [dotted line], respectively).

Figure S2. Related to Figure 2A: Performance of the optimized protocol (see Methods) on *Set_GX*₁*KacX*₂*GC* using different scoring measures. Plots of predicted binding (y-axis) vs. experimental activity (x-axis) are shown for the measures *Peptide score* (**A**), *Peptide score noref* (**B**), and *Reweighted score* (**C**).

Supplementary Tables

Comment	Type of constraint	Constraint	Atoms involved	Type of function	#
Enforce critical double	atom pair ^a	2.2 – 3.2Å	D101 O ⁸² : Kac N	BOUNDED ^b	1
backbone	atom pair	2.5 - 3.5Å	D101 $O^{\delta 1}$: Coumarin N	BOUNDED	2
	dihedral ^c	5.46 radians	Kac N : Kac C ^{α} : Kac C : Coumarine N	CIRCULAR HARMONIC ^d	3
Coordination of catalytic Zn	atom pair	2.8Å	$D267~O^{\delta 2}~/~D267~O^{\delta 2}:Kac~O^{\eta}$	HARMONIC ^e	4
1011	atom pair	3.7Å	D178 $O^{\delta 2}$: Kac O^{η}	HARMONIC	5
	atom pair	3.3Å	H180 $N^{\delta 1}$: Kac O^η	HARMONIC	6
Lock Kac side chain via	atom pair	3.0Å	G151 O : Kac N^{ζ}	HARMONIC	7
hydrogen bond	atom pair	3.8Å	F152 $C^{\epsilon 1}$ / F152 $C^{\epsilon 2}$: Kac C^{δ}	HARMONIC	8
	atom pair	3.7Å	F208 $C^{\delta 1}$ / F208 $C^{\delta 2}$: Kac C^{γ}	HARMONIC	9

Table S1. Related to Figure 1: Constraints used during structure optimization (derived from PDB id 2v5w)

^{*a*} Distance constraint between two atoms

 $f(x) = \begin{cases} \frac{\left(\frac{x-lb}{sd}\right)^2}{0 \text{ for } x < lb} \\ \frac{\left(\frac{x-ub}{sd}\right)^2}{s} \text{ for } ub < x \le ub \\ \frac{\left(\frac{x-ub}{sd}\right)^2}{s} \text{ for } ub < x \le ub + rswitch \cdot sd \\ \frac{1}{sd}\left(x - (ub + rswitch \cdot sd)\right) + \left(\frac{rswitch \cdot sd}{sd}\right)^2 \text{ for } x > ub + rswitch \cdot sd \\ \frac{1}{sd}\left(x - (ub + rswitch \cdot sd)\right) + \left(\frac{rswitch \cdot sd}{sd}\right)^2 \text{ for } x > ub + rswitch \cdot sd \\ \frac{1}{sd}\left(x - (ub + rswitch \cdot sd)\right) + \left(\frac{rswitch \cdot sd}{sd}\right)^2 \text{ for } x > ub + rswitch \cdot sd \\ \frac{1}{sd}\left(x - (ub + rswitch \cdot sd)\right) + \left(\frac{rswitch \cdot sd}{sd}\right)^2 \text{ for } x > ub + rswitch \cdot sd \\ \frac{1}{sd}\left(x - (ub + rswitch \cdot sd)\right) + \left(\frac{rswitch \cdot sd}{sd}\right)^2 \text{ for } x > ub + rswitch \cdot sd \\ \frac{1}{sd}\left(x - (ub + rswitch \cdot sd)\right) + \left(\frac{rswitch \cdot sd}{sd}\right)^2 \text{ for } x > ub + rswitch \cdot sd \\ \frac{1}{sd}\left(x - (ub + rswitch \cdot sd)\right) + \left(\frac{rswitch \cdot sd}{sd}\right)^2 \text{ for } x > ub + rswitch \cdot sd \\ \frac{1}{sd}\left(x - (ub + rswitch \cdot sd)\right) + \left(\frac{rswitch \cdot sd}{sd}\right)^2 \text{ for } x > ub + rswitch \cdot sd \\ \frac{1}{sd}\left(x - (ub + rswitch \cdot sd)\right) + \left(\frac{rswitch \cdot sd}{sd}\right)^2 \text{ for } x > ub + rswitch \cdot sd \\ \frac{1}{sd}\left(x - (ub + rswitch \cdot sd)\right) + \left(\frac{rswitch \cdot sd}{sd}\right)^2 \text{ for } x > ub + rswitch \cdot sd \\ \frac{1}{sd}\left(x - (ub + rswitch \cdot sd)\right) + \left(\frac{rswitch \cdot sd}{sd}\right)^2 \text{ for } x > ub + rswitch \cdot sd \\ \frac{1}{sd}\left(x - (ub + rswitch \cdot sd)\right) + \left(\frac{rswitch \cdot sd}{sd}\right)^2 \text{ for } x > ub + rswitch \cdot sd \\ \frac{1}{sd}\left(x - (ub + rswitch \cdot sd)\right) + \left(\frac{rswitch \cdot sd}{sd}\right)^2 \text{ for } x > ub + rswitch \cdot sd \\ \frac{1}{sd}\left(x - (ub + rswitch \cdot sd)\right) + \left(\frac{rswitch \cdot sd}{sd}\right)^2 \text{ for } x > ub + rswitch \cdot sd \\ \frac{1}{sd}\left(x - (ub + rswitch \cdot sd)\right) + \left(\frac{rswitch \cdot sd}{sd}\right)^2 \text{ for } x > ub + rswitch \cdot sd \\ \frac{1}{sd}\left(x - (ub + rswitch \cdot sd)\right) + \left(\frac{rswitch \cdot sd}{sd}\right)^2 \text{ for } x > ub + rswitch \cdot sd \\ \frac{1}{sd}\left(x - (ub + rswitch \cdot sd)\right) + \left(\frac{rswitch \cdot sd}{sd}\right)^2 \text{ for } x > ub + rswitch \cdot sd \\ \frac{1}{sd}\left(x - (ub + rswitch \cdot sd)\right) + \left(\frac{rswitch \cdot sd}{sd}\right)^2 \text{ for } x > ub + rswitch \cdot sd \\ \frac{1}{sd}\left(x - (ub + rswitch \cdot sd)\right) + \left(\frac{rswitch \cdot sd}{sd}\right)^2 \text{ for } x > ub + rswitch \cdot sd \\ \frac{1}{sd}\left(x - (ub + rswitch \cdot sd)\right) + \left(\frac$ upper bounds, respectively, within which zero scoring penalty is applied; rswitch is set to 0.5 ^{*c*} Dihedral constraint between four atoms

 $f(x) = \left(\frac{NearestAngleRadians(x, x0) - x0}{sd}\right)^2$, where x0 represents the radian in the starting

 $f(x) = \left(\frac{x - x0}{sd}\right)^2$

^{*e*} Harmonic function: A standard deviation of 0.2 was used in all constraint implementations.

structure.

Table S2. Related to Figure 2A: HDAC8 activity on peptides in $Set_GX_1KacX_2GC$. The fraction of substrate deacetylated after 30 minutes is given for each amino acid combination (except cysteine) at the residue preceding (X₁, rows) and following (X₂, columns) Kac (values >0.34 are in *italics*). The two subsets used for calibration/validation are colored in white/gray, and the peptide used for generating the starting template structure is highlighted in bold.

	G	A	V	L	Μ	Ι	F	Y	W	S	Т	Р	N	Q	K	R	Н	D	E
G	0.0	0.0	0.1	0.4	0.0	0.1	0.7	0.1	0.2	0.2	0.2	0.2	0.0	0.2	0.0	0.0	0.0	0.0	0.2
A	0.0	0.0	0.2	0.3	0.0	0.1	0.6	0.4	0.0	0.1	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.2	0.1
V	0.2	0.0	0.0	0.2	0.1	0.0	0.6	0.4	0.5	0.2	0.2	0.0	0.0	0.1	0.0	0.1	0.0	0.0	0.0
L	0.0	0.0	0.1	0.2	0.0	0.1	0.7	0.2	0.4	0.3	0.2	0.0	0.0	0.2	0.0	0.1	0.0	0.0	0.0
M	0.0	0.1	0.0	0.0	0.1	0.0	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
I	0.1	0.0	0.0	0.2	0.0	0.0	0.7	0.1	0.5	0.3	0.2	0.1	0.0	0.2	0.0	0.0	0.0	0.0	0.1
F	0.2	0.0	0.1	0.1	0.2	0.2	0.7	0.4	0.4	0.3	0.3	0.1	0.0	0.3	0.0	0.0	0.0	0.0	0.0
Y	0.3	0.0	0.2	0.4	0.3	0.0	0.9	0.7	0.8	0.2	0.3	0.1	0.1	0.1	0.0	0.2	0.0	0.1	0.0
W	0.0	0.0	0.2	0.0	0.0	0.0	0.4	0.7	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
S	0.4	0.0	0.1	0.3	0.0	0.1	0.6	0.5	0.5	0.2	0.3	0.1	0.0	0.0	0.0	0.1	0.0	0.0	0.0
Т	0.2	0.0	0.1	0.3	0.0	0.0	0.5	0.1	0.5	0.2	0.3	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0
Р	0.0	0.0	0.0	0.1	0.0	0.1	0.4	0.1	0.1	0.3	0.2	0.1	0.0	0.1	0.0	0.0	0.0	0.0	0.0
N	0.1	0.0	0.3	0.2	0.0	0.1	0.5	0.3	0.0	0.2	0.0	0.2	0.0	0.2	0.0	0.0	0.0	0.0	0.2
Q	0.0	0.0	0.3	0.2	0.0	0.0	0.5	0.0	0.2	0.3	0.2	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.2
K	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
R	0.0	0.1	0.1	0.1	0.0	0.1	0.8	0.6	0.3	0.1	0.1	0.0	0.1	0.1	0.1	0.0	0.0	0.1	0.0
Н	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.1	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
D	0.0	0.0	0.3	0.3	0.0	0.0	0.4	0.0	0.2	0.2	0.1	0.2	0.0	0.2	0.0	0.0	0.0	0.0	0.2
E	0.0	0.0	0.3	0.3	0.0	0.0	0.2	0.0	0.0	0.2	0.2	0.1	0.0	0.1	0.0	0.0	0.0	0.0	0.2

Table S3. Related to Figure 2B: HDAC8 activity on peptides in $Set_GRKacX_2X_3C$. The percentage of substrate deacetylated is given for each amino acid combination (except cysteine) at the two residues following Kac (X₂, rows; X₃, columns).

	G	Α	V	L	Μ	Ι	F	Y	W	S	Т	Р	Ν	Q	K	R	Н	D	Е
G	3	11	3	12	3	0	3	3	3	1	0	0	0	0	3	3	0	0	0
Α	3	3	3	0	21	0	3	3	3	0	2	0	0	0	11	4	0	0	3
V	3	3	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	3	3
L	11	22	0	11	0	0	3	3	3	0	0	0	0	0	3	0	0	0	0
Μ	3	0	0	0	0	1	11	3	1	0	0	0	0	0	0	0	0	0	0
Ι	3	11	0	11	0	0	3	0	3	0	0	0	0	0	4	0	0	0	0
F	97	95	80	69	69	69	69	80	80	68	32	80	80	11	50	80	32	11	3
Y	69	11	11	11	11	11	21	11	11	12	2	21	11	3	11	11	3	4	3
W	32	11	11	11	3	32	21	11	11	3	11	21	21	0	22	21	3	11	3
S	3	12	3	11	0	32	3	3	11	0	0	0	0	0	11	0	0	0	0
Т	3	0	3	0	0	1	3	3	1	0	0	0	0	0	0	0	0	3	3
Р	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

4		Ν	11	3	0	3	0	1
5		0	0	3	0	2	0	1
0 7		K	11	3	0	0	0	0
, 8		P	11	2	0	2	2	2
9		N	11	3	0	2	3	3
0		Н	2	12	3	11	0	0
1		D	3	11	3	0	0	0
2		Е	0	0	3	3	0	1
3								
4								
5	Table S4. R	elate	d to '	Table	e 2 an	d Fig	Jure	4 C: I
б	vs. peptide	se no	oref					
7	· · · · · · · · · · · · · · · · · · ·							
8								
9								
0	Peptic	le			Prote	ein ()	Unip	rot II
1								
2	LS K-	. FL	2			CAD	(P27	708)
3	SF K		1		EF1	alnh	a 1 (1	,00) P681(
4	FG K	M		7n	f 318	(05)	VIIA	
5		75 L D 1			211		(D14)	$\frac{1}{216}$

Table S4. Related to	Fable 2 and Figure 4C:	Determination of Novel	_candidate_	set2 to define	optimal scor	ing measure: I	_sc
vs. peptide_sc_noref							

Peptide	Protein (Uniprot ID)	Min. I_sc	Min. Pep_sc_ noref	Binding strength ^a I_sc/Pep_sc_ noref	k _{cat} /K _M
LS K ₇₄₇ FLR	CAD (P27708)	-21.6	-7.3	++/+	630
SF K ₅₅ YAW	EF1 alpha 1 (P68104)	-20.8	-10.2	++/++	1176
FG K ₁₂₇₅ FSW	Znf 318 (Q5VUA4)	-20	-9.5	++/++	4826
TW K ₇₈ ANF	IRF2 (P14316)	-19.6	-7.9	++/++	77
IS K ₅₀₄ YDR	Msh6 (P52701)	-18.6	-8.2	++/++	83.5
SL K ₂₆₉ EFY	ALDHIII (P30838)	-18	-7.9	++/++	78
RL K ₇₁₃ YSQ	SMC1A (Q14683)	-16.8	-7.2	+/+	79.5
SG K ₁₄₉ YYY	CBX4 (O00257)	-16.8	-9.8	+/++	21
LG K ₁₀₁₇ FRR	LARP1 (Q6PKG0)	-19.1	-6.1	++/-	349
KI K ₃₁ RLR	60S L7 (P18124)	-18.5	-5.1	++/	38
SG K ₅₁₆ YFA	AMPD2 (Q01433)	-16.2	-9.2	_/++	20
FV K ₃₅₈ AFA	ALDH5A1 (P51649)	-14.7	-8.9	/++	3
TF K ₈ GVD	HN1 (Q9UK76)	-15.4	-8.2	/++	14
GG K ₁₁ AFG	AIF1 (P55008)	-14.5	-7.4	/+	21
GI K ₃₇₁ PFL	anillin (Q9NQW6)	-7	-7.1	/+	0
SQ K ₃₅₉ EED	SMARCC1 (Q92922)	-14.6	-6.3	/-	NA
KG K ₈₇₈ DAE	N-CoR2 (Q9Y618)	-14.5	-5	/	36
RK K ₂₉₂ GEP	p53 (P04637)	-11.9	-4.9	/	10
SE K ₁₉₇₀ PEK	DNA-PKcs (P78527)	-8	-2.8	/	5

^{*a*} Strength measure: ++ = very strong binder (I_sc <= -18.0; Pep_sc_noref <= -7.5); + = moderate binder (I_sc <= -16.5; Pep sc noref $\langle = -7.0 \rangle$; - = poor substrate (I sc \geq -16.5; Pep sc noref \geq -7.0); -- =very poor substrate (I sc \geq -16.0; $Pep_sc_noref > -6.0$)

Table S5. Related to Tables 1-3: Local structure of the substrate peptide within the context of the full protein (predicted, or derived from structure if crystallographic coordinates are available). For proteins without solved structures, probability for disorder was calculated using IUPred (Dosztanyi et al., 2005) and secondary structure was predicted using PSIPred (Jones, 1999).

Novel candidate set1

Peptide	Protein (Uniprot ID)	Disorder (IUPred ^a)	Pdb Id-Chain	Secondary structure (PSIPred ^b)
VS K ₃₅₀ GPF	KAT6A (Q92794)	0.7	-	CCCCC-CCCCC-CCCCC
SF K ₇₆₉ SDQ	TRIM33 (Q9UPN9)	0.5	-	CCCCC-EECCCC-CEECC
VS K ₉₃ GTL	Histone H1.5 (P16401)	0.2	-	HHHHH-HHCCCE-CEEEC
DI K ₄₂ YPL	B5R (P00387)	Exposed in loop	1umk-A	TTTTT-TTCEEE-EEEEE
DH K ₆₀₄ TLY	KAT6A (Q92794)	Loop region; points inwards	2rc4-A	HHHCT-TTTCTT-TTTTT

SG K ₂₅₆ YDL	Alpha-enolase (P06733)	Exposed in loop	3b97-C	GGCEE-TTEETT-TTTTC
DS K ₁₅₈₃ NAK	CBP (Q92793)	0.7	-	ccccc-ccccc-ccccc
KP K ₂₀₉ AAK	Histone H1.5 (P16401)	0.8	-	ccccc-ccccc-ccccc
PG K ₁₁₇ GVK	E2F1 (Q01094)	0.8	-	ccccc-ccccc-ccccc
FT K ₂₅₂ DHL	TRIM33 (Q9UPN9)	0.3	-	HCCCC-CCCCE-CEEEE
KG K ₉₅₃ TAQ	TRIM33 (Q9UPN9)	Missing coordinates - high flexibility	3u5o-C	TTTTT-TTCTTT-TCCHH*
KK K ₁₅₈₈ NNK	CBP (Q92793)	0.8	-	ccccc-ccccc-ccccc
II K ₅₉₃ DGE	AIFM1 (095831)	Exposed at end of helix	4lii-A	ННННН-ННННСС-ВТТТН
TQ K ₇₅₅ QEQ	Nucleoprotein TPR (P12270)	0.5	-	ННННН-НННННН-ННННН
GV K ₁₆₈ KVA	Histone H1.5 (P16401)	0.7	-	ccccc-ccccc-ccccc
DD K ₁₆₉ YTL	SPC25 (Q15005)	0.1	-	CCCCC-CCEEEE-EEEEE
SG K ₃₄₅ KGQ	SMARCC1 (Q92922)	0.8	-	ccccc-ccccc-ccccc
SF K ₁₀₉ LNK	Histone H1.5 (P16401)	0.5	-	CCCCE-EEEECC-CCCCC
NQ K ₇₄₈ LTA	Nucleoprotein TPR (P12270)	0.5	-	ннннн-нннннн-ннннн
VG K ₈₁₅ SVS	KAT6A (Q92794)	0.7	-	000000000000000000000000000000000000000

^{*a*} Disorder prediction using IUPRED (Dosztanyi et al., 2005): disordered ($p \ge 0.5$), structured (p < 0.5) ^{*b*} Secondary structure: previous 5 residues-peptide fragment- following 5 residues. Based on solved structure, or secondary structure prediction using PSIPRED (Jones, 1999) * Missing coordinates within solved structure

Novel_candidate_set2

Peptides	Protein (Uniprot ID)	Disorder (IUPred)	Pdb Id-Chain	Secondary structure (PSIPred)
FG $K_{1275}FSW$	Znf 318 (Q5VUA4)	0.5	-	00000-00000-00000
SF K ₅₅ YAW	EF1 alpha 1 (P68104)	0.1	-	ННССС-СЕЕННН-ННННН
$LS K_{747} FLR$	CAD (P27708)	0.1	-	ЕСССС-ННННСС-ССССС
LG K ₁₀₁₇ FRR	LARP1 (Q6PKG0)	Exposed near end of flexible helix	4zc4-A	ннннн-ннннсс-ссссн
IS K ₅₀₄ YDR	Msh6 (P52701)	Exposed at end of short helix; Close to protein-DNA interface	208f-B	HHTTT-TCGGGC-CCCEE
RL K ₇₁₃ YSQ	SMC1A (Q14683)	0.5	-	ННННН-НННННН-ННННН
TW K ₇₈ ANF	IRF2 (P14316)	0.5	-	СССНН-НННННН-ННННН
SL K_{269} EFY	ALDHIII (P30838)	Exposed near end of helix	412o-G	ННННН-НННННН-TTTGG
KI K ₃₁ RLR	60S L7 (P18124)	0.4		ННННН-НННННН-ННННН
KG K ₈₇₈ DAE	N-CoR2 (Q9Y618)	0.7	-	00000-00000-00000
SG K_{149} YYY	CBX4 (O00257)	0.7	-	CCCCC-CCCCCE-CEECC
GG K ₁₁ AFG	AIF1 (P55008)	Flexible region in NMR model	2g2b-A	TTTCC-CCCCGG-GHHHH
SG K_{516} YFA	AMPD2 (Q01433)	0.1	-	ССССС-СННННН-ННННН
TF K ₈ GVD	HN1 (Q9UK76)	0.8	-	CCEEE-ECCCCC-CCCCC
RK K ₂₉₂ GEP	p53 (P04637)	0.7	-	ННННС-СССССС-ССССС
SE K ₁₉₇₀ PEK	DNA-PKcs (P78527)	0.0	-	EEEEE-CCCCCC-CCCEE
FV K358 AFA	ALDH5A1 (P51649)	Exposed in middle of helix	2w8r-A	GGHHH-НННННН-ННННН
GI K ₃₇₁ PFL	anillin (Q9NQW6)	0.7	-	22222-222222

Proteometargets set3

Peptides ^a	Protein (Uniprot ID)	Disorder (IUPred)	Secondary structure (PSIPred*)
KL is k₁₈₀₈ fdk l	ARID1A (O14497)	0.4	CCCCC-CCCCC-CCEEE
STPV K ₂₉₂ FISR	CSRP2BP (Q9H8E8)	0.5	CCCCC-CCCCC-CCCCC
RVIG AK K₁₀₆ dqy	SMC3 (Q9UQE7)	0.1	EEEEE-CCCEEE-EECCE
KRI LH K₆₈₇ LLQ N	NCOA3 (Q9Y6Q9)	0.5	ННННН-НННННС-ССССС
SKIQ K ₃₅₇₉ QLDQ	MLL2 (O14686)	0.6	ННННН-НННННН-ННННН
KL gg k₁₀₈₇ Qra A	RAI1 (Q7Z5J4)	0.9	CHHHC-CCCCCC-CCCCC
KL SG K₁₆₇ EIN G	SRSF5 (Q13243)	0.5	HHHHH-CCCCCC-CEEEE
LG DG K₃₈₇ MKS	THRAP3 (Q9Y2W1)	0.6	00000-00000-00000
TE IG K₅₄ TLA EK	ZRANB2 (095218)	0.5	ССССС-НННННС-ССССС

^a hexamer stretch of interest in shown in bold
* no solved structures were available for any of these targets in the regions of interest

Supplemental Experimental Procedures

25		
26	•	Rosetta Run-line commands. Related to Methods: In all runs, we used Rosetta version 3.4., with minor changes. All files
27		are included as Appendix).
28		1. Thread peptide sequences onto template, using the <i>Rosetta fixbb</i> protocol:
29		<pre>\$ROSETTA_BIN/fixbb.linuxgccrelease -database \$ROSETTA_DB -s template.pdb -resfile</pre>
30		threading_resfile -ex1 -ex2aro -use_input_sc -nstruct 1 >design.log
31		where the Rosetta executable (\$ROSETTA_BIN/fixbb.linuxgccrelease) and the Rosetta database (\$ROSETTA_DB) paths
32		are provided. The input is provided using the '-s template.pdb' flag; threading instructions are defined in the resfile and
33		provided using the '-resfile threading_resfile' flag. Increased rotamer sampling is enforced for $\chi 1$ and aromatic $\chi 2$ angles,
34		using the '-ex1 -ex2aro' flags. One output structure is generated as instructed by the '-nstruct 1' flag. The output is written
35		to the log file <i>design.log</i> .
36		Given below is an example resfile to thread hexamer GYKFGC onto the chain B residues numbered 364 - 369.
37		
38		NATRO
39		start
40		364 B PIKAA G EX 1 EX 2 USE_INPUT_SC
41		365 B PIKAA Y EX 1 EX 2 USE_INPUT_SC
42		366 B PIKAA K EX 1 EX 2 USE_INPUT_SC
43		367 B PIKAA F EX 1 EX 2 USE_INPUT_SC
44		368 B PIKAA G EX 1 EX 2 USE_INPUT_SC
45		369 B PIKAA C EX 1 EX 2 USE_INPUT_SC
46		
47		2. Optimize receptor structure before peptide docking: prepack threaded template using Rosetta FlexPepDock:
48		\$ROSETTA_BIN/FlexPepDocking.linuxgccrelease -database \$ROSETTA_DB -s
49		threaded_template.pdb -ex1 -ex2aro -use_input_sc -unboundrot unbound.pdb -
50		flexpep_prepack -nstruct 1
51		The flag '-flexpep_prepack' performs prepacking on the input provided using the '-s threaded_template.pdb' flag and
52		generates one prepacked output as instructed by '-nstruct l' flag. Input side-chain and unbound receptor side-chain
53		coordinates are included in the rotamer library using the ' <i>-use_input_sc</i> ' and ' <i>-unboundrot</i> ' flags, respectively.
54		
55		3. Minimize structure using Rosetta FlexPepDock:
56		<pre>\$ROSETTA_BIN/FlexPepDocking.linuxgccrelease -database \$ROSETTA_DB -s</pre>
57		threaded_template_prepacked.pdb -flexPepDockingMinimizeOnly -cst_fa_file cons.cst
58		-cst_fa_weight 1.0 -nstruct 1
59		
60		
61 60		
62		
63		
64		
65		

input threaded template prepacked.pdb is performed using the Minimization of the prepacked flexPepDockingMinimizeOnly' flag. The constraint file and corresponding weight addition to the scoring function are provided by '-cst fa file' and 'cst fa weight' flags, respectively.

Refine structure using Rosetta FlexPepDock: 4.

\$ROSETTA BIN/FlexPepDocking.linuxqccrelease -database \$ROSETTA DB -s

threaded template prepacked.pdb -ex1 -ex2aro -use input sc -unboundrot unbound.pdb -pep refine -cst fa file cons.cst -cst fa weight 1.0 -nstruct 200

Refinement of the prepacked input threaded template prepacked.pdb is performed (200 models are generated) using the '-pep refine' flag. The constraint file and corresponding weight addition to the scoring function is provided by '-cst fa file' and 'cst fa weight' flags, respectively.

Given below is the constraint file used to keep critical interations during the simulation (each constraint is numbered as in Table S1)

18	AtomPair OD1 101 N 367 BOUNDED 2.5 3.5 0.2 0.5 TAG	#1
19	AtomPair OD2 101 N 366 BOUNDED 2.2 3.2 0.2 0.5 TAG	#2
20	Dihedral N 366 CA 366 C 366 N 367 CIRCULARHARMONIC 5.463 0.2	#3
21	AmbiguousConstraint	
22	AtomPair OD2 267 OH 366 HARMONIC 2.9 0.2	#4
23	AtomPair OD1 267 OH 366 HARMONIC 2.9 0.2	
24	END AMBIGUOUS	
25	AmbiguousConstraint	
26	AtomPair OD2 164 OH 366 HARMONIC 3.7 0.2	#5
27	AtomPair OD1 164 OH 366 HARMONIC 3.7 0.2	
28	END_AMBIGUOUS	
29		
30	AtomPair ND1 166 OH 366 HARMONIC 3.3 0.2	#6
31	AtomPair O 137 NZ 366 HARMONIC 3.0 0.2	#7
32	AmbiguousConstraint	
33	AtomPair CE1 138 CD 366 HARMONIC 3.8 0.2	#8
34	AtomPair CE2 138 CD 366 HARMONIC 3.8 0.2	
35	END_AMBIGUOUS	
36	AmbiguousConstraint	
37	AtomPair CD1 194 CG 366 HARMONIC 3.7 0.2	#9
38	AtomPair CD2 194 CG 366 HARMONIC 3.7 0.2	
39	END_AMBIGUOUS	

HDAC8 expression and assay. Recombinant HDAC8 was expressed, purified and reconstituted with stoichiometric zinc, as 42 previously described (Wolfson et al., 2014). Peptides were purchased from Sigma-Aldrich with acetylated N-termini as 43 unpurified peptides and were solubilized in 50% acetonitrile or water and treated with Chelex resin before use. 44 45 Novel candidate set1 peptides contain a C-terminal carboxylate while Novel candidate set2 peptides contain a C-terminal 46 carboxamide. The initial rate for deacetylation of peptides (two concentrations $\geq 100 \ \mu$ M) catalyzed by 1 μ M HDAC8 was 47 determined by enzymatically coupling the formation of acetate to the production of NADH in a stopped assay format and 48 quantified by fluorescence (ex. = 340 nm, em. = 460 nm). The values of k_{cat}/K_{M} were calculated from fitting a line to the 49 substrate-dependence of the initial rate.

51 Prediction of local structural features. Related to Table S5. In order to assess the ability of the identified substrates to 52 undergo deacetylation by HDAC8 within the context of the full protein, we further investigated the accessibility of the target 53 lysine by HDAC8: (1) Local accessibility: For proteins with solved structures, we calculated the accessibility of the target 54 lysine. For the rest, we calculated the probability for being intrinsically disordered (using IUPred (Dosztanyi et al., 2005)): 55 such regions within a protein are generally accessible. (2) Local secondary structure can play an important role in the ability of 56 the substrate peptide to bind to HDAC8 in a catalysis-competent conformation. In particular, the cis peptide backbone 57 geometry necessary to allow hydrogen bonding of the acetylated lysine residue of the substrate to HDAC8 residue D101 (see 58 Figure 1) indicates that a helical peptide might not be a good candidate for deacetylation. The secondary structure was 59 extracted from the solved structure, or predicted using PSIPred secondary structure prediction (Jones, 1999).

50 60 61

40 41

5

б

7 8

9

10

11

12

13

14

15

16

17

62

63 64

References

DOSZTANYI, Z., CSIZMOK, V., TOMPA, P. & SIMON, I. 2005. The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins. *J Mol Biol*, 347, 827-39.

JONES, D. T. 1999. Protein secondary structure prediction based on position-specific scoring matrices. *J Mol Biol*, 292, 195-202.