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Exonic Mosaic Mutations Contribute Risk
for Autism Spectrum Disorder

Deidre R. Krupp,1,6 Rebecca A. Barnard,1,6 Yannis Duffourd,2 Sara A. Evans,1 Ryan M. Mulqueen,1

Raphael Bernier,3 Jean-Baptiste Rivière,4 Eric Fombonne,5 and Brian J. O’Roak1,7,*

Genetic risk factors for autism spectrum disorder (ASD) have yet to be fully elucidated. Postzygotic mosaic mutations (PMMs) have been

implicated in several neurodevelopmental disorders and overgrowth syndromes. By leveraging whole-exome sequencing data on a large

family-based ASD cohort, the Simons Simplex Collection, we systematically evaluated the potential role of PMMs in autism risk. Initial

re-evaluation of published single-nucleotide variant (SNV) de novo mutations showed evidence consistent with putative PMMs for 11%

of mutations. We developed a robust and sensitive SNV PMM calling approach integrating complementary callers, logistic regression

modeling, and additional heuristics. In our high-confidence call set, we identified 470 PMMs in children, increasing the proportion

of mosaic SNVs to 22%. Probands have a significant burden of synonymous PMMs and these mutations are enriched for computation-

ally predicted impacts on splicing. Evidence of increased missense PMM burden was not seen in the full cohort. However, missense

burden signal increased in subcohorts of families where probands lacked nonsynonymous germline mutations, especially in genes

intolerant to mutations. Parental mosaic mutations that were transmitted account for 6.8% of the presumed de novo mutations in

the children. PMMs were identified in previously implicated high-confidence neurodevelopmental disorder risk genes, such as CHD2,

CTNNB1, SCN2A, and SYNGAP1, as well as candidate risk genes with predicted functions in chromatin remodeling or neurodevelop-

ment, including ACTL6B, BAZ2B, COL5A3, SSRP1, and UNC79. We estimate that PMMs potentially contribute risk to 3%-4% of simplex

ASD case subjects and future studies of PMMs in ASD and related disorders are warranted.
Introduction

Autism spectrum disorder (ASD [MIM: 209850]) has a

strong genetic component and a complex genetic architec-

ture. Technological advances have allowed the discovery

of rare inherited and de novo mutations in ASD cohorts,

including copy-number variants (CNVs), structural vari-

ants, single-nucleotide variants (SNVs), and small inser-

tions and deletions (indels).1–13 These studies, especially

those focused on simplex cohorts (single affected individ-

ual within a family), have revealed a significant contribu-

tion of de novo mutations implicating hundreds of inde-

pendent loci in ASD risk. However, the full complement

of ASD risk factors and mechanisms have yet to be fully

elucidated.

Postzygotic mutations occur after fertilization of the

embryo. Depending on their timing and cell lineage, these

mutations may be found in the soma, resulting in somatic

mosaicism, or the germ cells, resulting in gonadal

mosaicism. Mutations occurring during early embryonic

development can result in both types of mosaicism.14 For

simplicity, we will refer to these mutations generally as

postzygotic mosaic mutations (PMMs), because in most

cases their contribution to the germline is unknown.

In addition to the well-known role of somatic mutations

in cancer, PMMs have been firmly implicated in several

neurodevelopmental/brain disorders including epilepsy,
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cortical malformations, RASopathies, and overgrowth

syndromes.15–21 Pathways underlying some of these syn-

dromes, e.g., PI3K/ATK/mTOR and RAS-MAPK, are also

implicated in syndromic and nonsyndromic ASD.

The mosaic nature of these mutations can make

them difficult to identify with current clinical testing,

even when targeting specific genes, leading to no diag-

nosis, misdiagnosis, or misinterpretation of recurrence

risk.16,22 It has also been hypothesized that sporadic condi-

tions may be caused by PMMs at loci where germline mu-

tations are embryonic lethal.23 Importantly, when and

where mutations occur in development can have a dra-

matic effect on the phenotypic presentation as exemplified

by PIK3CA-related overgrowth spectrum (PROS).15,24

Moreover, recent data have suggested that even low-level

mosaicism (�1% in affected tissue) can be clinically signif-

icant, as shown in the affected skin/brain of individuals

with Sturge-Weber syndrome (MIM: 185300).25

In previous work focusing on discovering germline de

novo mutations (GDMs) in simplex ASD families, we were

surprised to validate 4.2% of de novo mutations as likely

mosaic in origin, including nine PMMs and two gonadal

mosaic mutations (from a total 260 mutations), suggesting

that mosaic mutations might be a common and under-

recognized contributor to ASD risk.2 A similar observation

has beenmade from de novomutations identified in whole-

genome sequencing from simplex intellectual disability
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(ID) trios.26 However, the mutation calling approaches

used previously were tuned to detect GDMs.

Here, we systematically evaluate the role of PMMs in

ASD by leveraging a harmonized dataset12 of existing

whole-exome sequences (WES) from a well-characterized

cohort of �2,300 families—the Simons Simplex Collection

(SSC), including parents, probands, and unaffected sib-

lings. Our goal was to answer several fundamental ques-

tions. (1) What are the rates of PMMs (detectable in whole

bloodDNA) in children and do they play a role in ASD risk?

(2) What are the rates of PMMs in parents and how often

are these events transmitted to offspring? (3) Do the target

genes of GDMs and PMMs in individuals with ASD over-

lap? To answer these questions, we first re-evaluated all pre-

viously published de novo mutations using a binomial

approach and found evidence that 11% of SNVs and 26%

of indels called with methods intended for germline

mutation detection show allele skewing consistent with

mosaicism. We then developed a systematic method for

identifying, specifically, SNVs that are likely PMMs from

WES (or other next-generation sequencing [NGS] data),

which integrates calls from complementary approaches

and extensive validation data.

We recalled genotypes on the SSC cohort and estimate

that 22% of de novo SNVs are, in fact, PMMs arising in

children. Unexpectedly, the strongest signal for mutation

burden in probands was observed for synonymous

PMMs. Furthermore, synonymous PMMs occurring in pro-

bands are enriched for mutations predicted to impact

splicing. Evidence of missense PMM burden in the full

cohort was not observed; however, burden signal did

increase in subsets of the cohort without germline muta-

tions, which is strongest in genes that are intolerant to

mutations. Parental mosaic mutations occurred at a higher

rate and were frequently transmitted to children. Nonsy-

nonymous (NS) PMMs were identified in high-confidence

ASD/ID risk genes and candidate risk genes involved

with chromatin remodeling or neurodevelopment. Over-

all, these findings suggest that future studies of PMMs in

ASD and related disorders are warranted.
Material and Methods

Family Selection and Sequence Data
We obtained the initially published1,2,4,5,11 and harmonized re-

processed12 WES data from 2,506 families of the Simons Simplex

Collection (SSC).27 Harmonized data are available from NIMH

Data Archive (NDAR: 10.15154/1169193) or SFARI base. Informed

consents were obtained by each SSC recruitment site, in accor-

dance with their local institutional review board (IRB). Oregon

Health & Science University IRB approved our study as human

subjects exempt because only de-identified data was accessed.

Exome libraries were previously generated from whole-

blood (WB)-derived DNA and captured with NimbleGen EZ

Exome v.2.0 or similar custom reagents (Roche Nimblegen) and

sequenced using Illumina chemistry at one of three centers:

Cold Spring Harbor Laboratory (CSHL), University of Washington
370 The American Journal of Human Genetics 101, 369–390, Septem
(UW), or Yale University School of Medicine. Where individuals

had been sequenced bymultiple centers, the library with the high-

est mean coverage was included in the harmonized reprocessed

dataset (N. Krumm, personal communication).12

We selected 24 family quads (‘‘pilot 24’’) for initial methods

development that had WES independently performed by all three

centers.11 WES data were merged and then reprocessed to match

the harmonized dataset.12 We then expanded to a cohort of 400

additional independent quad families (‘‘pilot 400’’) with high

median WES coverage, also requiring proportionate distribution

across the three centers (Yale, 193; CSHL, 118; UW, 89). The full

SSC harmonized reprocessed dataset12 contained 2,366 families,

of which 1,781 are quads and 585 are trios (Table S1), after

removing samples with known Mendelian inconsistencies or

contamination issues (N. Krumm, personal communication).

One hundred and two families with individuals showing elevated

GDM or PMM calls were excluded post variant calling (Supple-

mental Material and Methods, Figure S1). The cohort used in

the downstream analyses included 2,264 families, of which

1,698 are quads and 566 are trios. Additional families with low

joint coverage values were removed depending on the minimum

coverage requirement for analyzing variants of differentminimum

allele fractions (AF) (see Supplemental Material and Methods).
Evaluating Potential Mosaic Mutations in Previously

Published De Novo Calls
Reported de novo mutations for the SSC were evaluated

(Table S2).1,2,4,5,11,12 Allele counts from prior analysis were used

where available (N. Krumm, personal communication) and other-

wise extracted on a quality-aware basis from mpileups of the cor-

responding WES using a custom script (samtools mpileup -B -d

1500 j mPUP -m -q 20 -a count). Reported mutation calls that had

no variant reads from the quality-aware mpileup data were

excluded. We focused our analysis on exonic and canonical in-

tronic splice site regions (52 base pairs [bp]). Mutations were

considered putative PMMs if significantly skewed from the hetero-

zygosity expectation of 0.5 AF for autosomal and X chromosome

sites of females (binomial p % 0.001). Sex chromosome sites of

males were evaluated under a hemizygous expectation. Robust-

ness of the data was evaluated using additional filters for observed

AF (5%–35%, 10%–35%, 10%–25%, or corresponding hemizygous

values) or at more strict deviations from the binomial expectation

(p % 0.0001). The observed rates of AF skewed de novo mutations

were compared with expected null distributions of randomly

sampled rare inherited variants by simulation (Supplemental

Material and Methods).
Raw Variant Calling and Annotation
SNVs were recalled on individual samples using VarScan 2.3.2,

LoFreq 2.1.1, and our in-house script mPUP (SupplementalMaterial

and Methods). All caller outputs were combined at the individual

level and used to generate family-level variant tables. Variants were

annotated with ANNOVAR (03/22/15 release, see Web Resources)28

against the following databases: RefSeq genes (obtained 2015-12-

11), segmental duplications (UCSC track genomicSuperDups, ob-

tained 2015-03-25), repetitive regions (UCSC track simpleRepeat,

obtained 2015-03-25), Exome Aggregation Consortium (ExAC)

release 0.3 (prepared 2015-11-29), Exome Sequencing Project (ESP)

6500 (prepared 2014-12-22), and 1000 Genomes Phase 3 version

5 (prepared 2014-12-16). Annotation tracks did not include added

flanking sequences. Population frequency databases were obtained
ber 7, 2017



fromtheANNOVARwebsite. Initially, variantswithAFs significantly

below 50% (binomial p % 0.001) were considered putative PMMs.

For putative transmitted parental PMMs, which also had skewed

AFs inchild(ren),werequireda significantdifferencebetweenparent

and child AF (Fisher’s exact p % 0.01), with child AF > parental AF.

Only PMM (child or parental) or GDM calls were considered for

validation.
smMIP Design, Capture, and Sequencing
Three to four independent smMIPs were designed against candi-

date variant sites using the 11-25-14 release of MIPGEN29 and a

custom in-house selection script (Supplemental Material and

Methods). The selected smMIPs were divided into pools with

roughly equal numbers (Table S3). Single strand capture probes

were prepared similarly to previous approacheswithmodifications

(Supplemental Material and Methods).29 DNA samples prepared

from WB (entire pilot 24; 78 families pilot 400) and lymphoblas-

toid cell lines (LCLs) (entire pilot 24) were obtained from the

SSC through Rutgers University Cell and DNA Repository (Piscat-

away, NJ). Probe captures and PCRs to append sequencing

adaptors and barcodes were performed as previously described

with minor modifications.30

Purified capture pools were then combined together for

sequencing with NextSeq500 v2 chemistry (Illumina). Overlap-

ping reads were merged and aligned using BWA 0.7.1. For each

unique smMIP tag, the read with the highest sum of quality scores

was selected to serve as the single read for the tag group. Valida-

tion outcomes were compared across WB and LCL data (where

available) (Table S4).
Establishing a Systematic PMM Calling Pipeline
We iteratively developed best practices and heuristics through

multiple rounds of validation and model development (Supple-

mental Note: Model Development and Material and Methods).

Initial evaluation and smMIP validation was performed on the

higher-depth pilot 24 dataset (Figures S2–S8, Supplemental Note:

Model Development andMaterial andMethods). An initial logistic

regression model was trained on the pilot 24 resolutions, using

only calls validated as true PMMs or false positives in the smMIP

data. Candidate model predictors were derived from WES data

(Supplemental Material and Methods).

We next evaluated pilot 400 quad families (Figures S9–S12).

Based on results from the initial validations, for all putative

parental transmitted PMMs, we required more significant skew

in parental AF (binomial p % 0.0001), significant difference be-

tween parent and child AF (Fisher’s exact p % 0.01), and child

AF > parental AF (Figure S8). All putative PMMs scoring < 0.2 in

the initial logistic regression model were excluded. Validations us-

ing smMIPs were conducted on calls from 78 of the pilot 400 fam-

ilies. All initial validation-positive calls, from both pilot sets, were

then subjected to an additional manual review of the WES and

smMIP alignments to flag potentially problematic sites prior to

modeling.

A refined logistic regression model was trained based on the pi-

lot 400 validation data (Supplemental Material and Methods,

Figure S9). We further evaluated this refined model, applying the

same filtering parameters as the training set, using the pilot 24

validation calls, which had been selected prior to any modeling

or validations.

A third set of calls was evaluated from both pilot sets that had

not previously been validated due to data missingness in popula-
The American
tion frequency datasets (Supplemental Note: Model Develop-

ment). To better separate germline from mosaic calls based on

our empirical validations, 90% binomial confidence intervals

(CI) (Agresti-Coull method) for the variant AFs derived from the

WES data were calculated using the R binom package. Based

upon the distribution of germline resolutions in these data, puta-

tive PMMs were re-classified as germline if the upper bound of

their observed AF was R0.4 (95% CI, one-tailed) (Figure S10).

Additionally, calls were excluded that annotated as segmental

duplication regions/tandem repeat finder (SD/TRF) sites or

mPUP-only calls as they had a significantly higher false positive

and smMIP probe failure rate (Figure S11). Putative PMMs passing

filters from this third set of calls were scored with the refined

logistic regression model and excluded from validations if they

scored < 0.26. We retroactively applied our refined filtering

scheme to all validation calls in order to develop a harmonized

set of high-confidence resolutions and evaluated sensitivity and

PPVof the refinedmodel (Figure S12). Variants with a refined logis-

tic model score R 0.518 were included for additional analyses.
Cohort Variant Calling and Burden Analysis
Variants were called from all WES data in the harmonized reproc-

essed dataset and filtered with our best practice filtering scheme

(Supplemental Material and Methods). To improve PPV for true

PMMs, we required all variants be supported by at least five variant

reads and present in no more than two families throughout the

cohort (Figure S11). Eight variants were removed that had skewed

AFs in both the child(ren) and parent. We defined our high-

confidence dataset as those variants with AF R 5% (based on the

AF upper 90% CI) and 453 minimum joint coverage in all family

members (Table S5).

For burden analysis, five minimum variant AFs thresholds were

evaluated (5%, 7.5%, 10%, 12.5%, 15%). For each AF threshold,

we determined the minimum total depth (1303, 853, 653,

503, 453) at which we had approximately 80% binomial proba-

bility to observe five or more variant reads (Figure S13). A variant

was included for each subanalysis if its AF upper 90% CI met the

minimum AF and if it met minimum coverage requirements in

all family members. For each AF burden analysis, the total number

of jointly sequenced bases at or above each depth threshold in

each family was determined. Based on these joint coverage values,

families in the 5th percentile or lower were excluded; in the 1303

analysis the bottom decile was excluded (Figure S14).

Mutation burden and in the unique autosomal sequence was

determined by first calculating the rate of mutation in each indi-

vidual by summing all SNVs within a given functional class or

gene set, e.g., for missense variants, and dividing by the total num-

ber of jointly sequenced bases (diploid, 2n) meeting theminimum

coverage thresholds. Rates of mutation were then compared be-

tween groups (probands versus siblings or fathers versus mothers)

using, as appropriate, paired or unpaired nonparametric rank

tests. To control for multiple comparisons, we used the Benja-

mini-Yekutieli approach,31 which allows for dependent data

structures, setting a false discovery rate (FDR) of 0.05. Families of

tests were defined based on the dataset and mutation functional

class (Supplemental Material and Methods).

To calculatemean population rates for each group of individuals

(e.g., probands) for plotting and extrapolating variant counts to

a full-coverage exome, all SNVs within a given functional class

or gene set were summed and divided by the total number of

jointly sequenced bases (diploid, 2n) for all families meeting the
Journal of Human Genetics 101, 369–390, September 7, 2017 371



minimum coverage thresholds. Poisson 95% confidence intervals

for mean rates were estimated using the Poisson exact method

based on the observed number of SNVs.

Subcohort burden analyses were performed by separating fam-

ilies based on whether or not probands had previously identified

GDMs in published call sets.1,2,4,5,11,12,32 Mutations with no read

support or flagged as potentially mosaic from our initial analysis

of published de novo calls were removed (binomial p % 0.001).

Two levels of disruption were considered: whether probands had

germline de novo likely gene disrupting (LGD) mutations, which

we define as SNVs, indels, or de novo CNVs that affect at least

one gene (germline LGD list); or alternatively, whether probands

had any germline de novo NS SNVs or indels (any germline NS

list). The probands with any germline NS list is inclusive of pro-

bands with germline LGDs.

Burden in genes that show evidence of selection against new

mutations was evaluated using the recently updated essential

gene set,33 which contains human orthologs of mouse genes asso-

ciated with lethality in the Mouse Genome Database;33,34 and the

ExAC intolerant dataset, which denotes the probability of a gene

being loss-of-function intolerant.35
Analysis of PMM Properties
The AF distributions between children and parents PMMs were

compared by Wilcoxon-rank sum test using the high-confidence

dataset. To determine the fraction of parental PMMs that may be

attributed to lack of grandparental data, variant calls were regener-

ated from the non-merged reprocessedWES data12 for the pilot 24/

400 families applying the same refined logistic model and final fil-

ters, but ignoring family data. The observed bimodal AF distribu-

tions were fit to normal mixed models using R package mixtools,

function normalmixEM(), which defined two Gaussian distribu-

tions. Calls were separated into two discrete sets. G1 was defined

by themean plus or minus two standard deviations of the leftmost

Gaussian model (lower AFs, m1 ¼ 0.09, s1 ¼ 0.046). G2 included

the remaining higher AF calls. The fraction of calling remaining

in each set after applying transmission filters was calculated and

used to estimate the number of variants expected to remain in

the parents if the grandparental generation was available.

Splice site distances for variants were annotated using Variant

Effect Predictor (see Web Resources). The absolute value of the

shorter of the two distances between donor or acceptor site was

chosen as the distance to nearest splice site. Potential impacts of

synonymous mutations on splicing were evaluated using Human

Splice Finder (HSF) v.3.0 and SPANR alpha version (see Web Re-

sources).36,37 For HSF, the multiple transcript analysis was used

with default settings and results were extracted fromHTML format

outputs with an in-house script (Table S6). Variants contained

within multiple overlapping transcripts with disparate calls were

manually filtered based on whether transcripts were coding or

had complete stop/start information in the UCSC genome browser

(Feb. 2009; GRCh37/hg19). SPANR analysis was performed with

default settings and splice altering variants defined as described

previously (5% > dPSI percentile or dPSI percentile > 95%).
Gene Set Enrichment
Five different gene set lists that have previously been evaluated us-

ing de novo mutations,11 including an updated version of the

essential gene list,34 were downloaded from GenPhenF (see Web

Resources) and thenmapped to gene symbols based on our RefSeq

ANNOVAR annotations. To determine enrichment, we took a
372 The American Journal of Human Genetics 101, 369–390, Septem
similar approach as previously described, using the null length

model.11 However, we calculated joint coverage for all genes

within a set as well as all the genes outside of that set (across the

cohort) and used this value to estimate the expected proportion

of mutations (p). Since more than one gene can overlap any

genomic position, all genes impacted were counted in this anal-

ysis. For example, if a mutation or genomic position overlapped

a gene within the set and outside of the set, it was counted

twice. Gene set enrichment was evaluated using a binomial test

in R binom.test(x, n, p), where x ¼ number of genes impact within

set, n ¼ total number of genes impacted, and p ¼ expected mean

based on joint coverage.

Genome-wide gene rankings generated from two previous

studies33,38 were used to determine whether genes targeted by

missense or synonymous mutations in probands showed enrich-

ment for ASD candidate gene rankings. The LGD intolerance

ranking is based on the load of LGD mutations observed per

gene.33 The LGD-RVIS is the average rank between LGD and

RVIS (another measure of constraint) scores.33,39 ASD association

rankings are the results of a machine learning approach that

uses the connections of ASD candidate genes within a brain-spe-

cific interaction network to predict the degree of ASD association

for every gene.38

Intersection of PMMs with Previously Published GDMs
Degree of overlap of GDMs and PMMs for different functional clas-

ses between probands and siblings was determined using Fisher’s

exact test. Both the high-confidence and burden (15%-453) data-

sets were evaluated. Our high-confidence risk gene set was curated

using the 27 ASD genes reported by Iossifov et al. and 65 ASD

genes reported by Sanders et al. (FDR% 0.1)11,32 as well as 94 genes

enriched for GDMs in developmental disorders from theDecipher-

ing Developmental Disorders study.40 Combined, the high-confi-

dence risk gene sets includes 139 unique genes.
Results

Reanalysis of Previously Reported De Novo Mutations

We began by analyzing the existing set of previously

reported exonic or canonical intronic splice site de novo

mutations in the SSC.1,2,4,5,11,12 We evaluated 5,076 SNVs

(probands, 2,996; siblings, 2,080) and416 small indels (pro-

bands, 273; siblings, 143) (Table S2). Variants had a mean

depth of 77.53. We found an excess of mutations with

observedAFs lower than expected for germline events using

a binomial threshold of 0.001 (Figures 1A–1D; Table S7).We

evaluated the likelihood of this excess specifically within

the autosomal sequence by simulating a null distribution

from rare inherited SNVs (Supplemental Materials and

Methods; Figure 1B; Table S7). For autosomal de novo

SNVs, we observed that 305/2,893 (11%) of affected pro-

band calls and 191/1,993 (10%) of unaffected sibling calls

show evidence of being PMMs. In contrast, we never

observed the same degree of skewing of calls with lower

AFs for rare inherited SNVs (simulation means: probands,

2.8%; siblings, 2.9%; p < 0.0001, by simulation). A higher

potential PMM rate is observed in sites that annotated

as SD/TRF loci, 55/231 (24%) in probands and 28/144

(20%) in siblings (p ¼ 0.0166 and 0.41, respectively, by
ber 7, 2017
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Figure 1. Re-Evaluation De Novo Mutations in the Simons Simplex Collection (SSC)
(A–D) Histograms showing the allele fraction distributions of previously published autosomal de novo or rare inherited variants in
the SSC.
(A) Published de novo SNVs (n ¼ 2,893) show an elevated number of low allele fraction calls that are potentially PMMs (left tail).
(B) Representative histogram from a random sampling of 2,893 published autosomal rare inherited SNVs. The number of low allele frac-
tion calls is substantially fewer compared to de novo SNVs (left tail).
(C) Published de novo indels (n ¼ 268) show an elevated number of low allele fraction calls (left tail) that are potentially PMMs as well as
an overall shifted distribution.
(D) Representative histogram from a random sampling of 268 published rare inherited indels. Similar to SNVs, the number of low allele
fraction calls is substantially fewer compared to de novo indels (left tail).
(E) Schematic showing an overview of our systematic approach to developing a robust PMM calling pipeline and applying it to the SSC.
Key analyses and display items are indicated. Abbreviations: Trans calls, calls showing evidence of transmission from parent to child;
SD/TRF, segmental duplications/tandem repeats; AF, allele fraction; CI, confidence interval; and DPALT, Q20 alternative allele depth.
(F) Venn diagram showing the intersection of previously published de novo mutations initially flagged as potentially PMMs (binomial
p% 0.001) and our PMM calls after applying final filters. Numbers in parentheses are calls remaining after applying an AF 5%-453 joint
coverage threshold. *Our pipeline identified an additional 37 calls (29 from Iossifov et al.11 and 8 from Krumm et al.12), which overlap-
ped the published calls flagged as potentially mosaic but were re-classified as likely germline based on their AF CIs. Note: Krumm et al.12

dataset only reported newly identified calls and therefore does not intersect the Iossifov et al.11 dataset.
simulation). These SD/TRF sites are knowntobemoreprone

to false PMM calls due to uncertain mapping of WES reads.

However, these SD/TRF loci represent only 9% of the called

mutations and thushave amodest effect on the overall rate.

We observed a similar rate of potential SNVPMMs (8%–9%)
The American
when applying a range of additional AF cutoffs (5%–35%,

10%–35%, 10%–25%), more strict binomial deviations

(p % 0.0001), or both, suggesting that these are robust

estimates. In sharp contrast, we did not observe an excess

of calls with higher than expected AFs (Table S7).
Journal of Human Genetics 101, 369–390, September 7, 2017 373



For indels, we also observed a large number of potential

PMMs exceeding the binomial expectation (Figures 1C and

1D; Table S7), with more variability overall between pro-

bands and siblings (57/268 [22%] versus 48/140 [35%],

respectively, p ¼ 0.005, two-sided Fisher’s exact). For rare

inherited indels, we never observed the same degree of

skewing of calls with lower AFs (simulation means: pro-

bands, 6%; siblings, 17%; p < 0.0001, by simulation)

(Figure 1D; Table S7). Similar to SNVs, we found an eleva-

tion in the rate for SD/TRF loci (probands, 7/18 [39%]; sib-

lings, 9/16 [56%]; p ¼ 0.0003 and < 0.0001, respectively,

by simulation). However, the percent PMM estimates

were less robust, compared with SNVs, when applying

additional AF cutoffs, more strict binomial deviations, or

both. For example, the overall PMM rates using the stricter

binomial threshold reduced to 40/268 (15%) for probands

and 33/140 (24%) for siblings (p ¼ 0.045, two-sided

Fisher’s exact), which nevertheless still exceeded the null

expectation (p < 0.0001, by simulation) (Table S7). We

observed no de novo indels with significantly deviated

higher AFs.

From validation data previously reported or available for

a subset (63/545) of the predicted mosaic calls, which

included Sanger and NGS data, we found that 39/63

(62%) calls showed strong evidence of allele skewing

(Table S2). These data argue that the majority of these calls

are bona fide PMMs but that systematic approaches tuned

to detecting PMMs are still needed.

Developing a Systematic Mutation Calling Framework

We sought to perform a systematic analysis of PMMs with

methods specifically geared toward SNVmosaicmutations,

which do not require a matched ‘‘normal’’ tissue data com-

parison (Figure 1E). Moreover, we expected a large number

of suspected PMM calls to be false because of random sam-

pling biases, mapping artifacts, or systematic sequencing

errors. Therefore, we worked to build a robust calling

framework that would integrate different approaches

and could be empirically tuned based on validation data.

We first evaluated several standalone (single sample) SNV

mosaic mutation callers, including Altas2,41 LoFreq,42

Varscan2,43 and a custom read parser (mPUP) using simu-

lated data containing artificial variants at 202 loci. Based

on their complementary performances at different depths

and AFs, we selected Varscan2, LoFreq, and mPUP for

further evaluation (Tables S8 and S9).

We took advantage of the fact that 24 quad families

(96 individuals) had WES independently generated by

three centers, providing an opportunity to empirically

evaluate these methods on a combined remapped and

merged high-depth WES dataset (merged pilot 24: average

mean coverage 2083) (Figures S2B and S14A). We obtained

high-confidence validation data from at least one DNA

source using smMIPs and Illumina sequencing for 645/

902 (72%) of the predicted PMM and 56/63 (84%) of the

GDM sites (Figure S3; Table S4). Not surprisingly, we found

that the majority of the PMMs predicted by a single variant
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caller were false positives (345/347, 99%), whereas those

called by at least two other approaches had a better PPV

(162/298, 54%) (Figure S7). In addition, a small number

of PMMs (13%) were in cis with existing heterozygous

polymorphisms. PMM alleles tracked with specific haplo-

types but were absent from a number of overlapping reads,

strongly suggesting that these are bona fide postzygotic

events (Figure S4). We further found that for transmitted

variants, we could eliminate most of the mischaracterized

calls that validated as parental germline by requiring a

more significant binomial deviation and performing a

Fisher’s exact test of the read counts from the parent-child

pair (Figure S8). Some of these transmitted variants showed

consistently skewed AFs that transmitted in a Mendelian

fashion, suggesting that they are systematically biased

(Figure S5).

Using these pilot 24 validation data, we constructed an

initial logistic regression model (Supplemental Material

and Methods). We then applied this initial logistic regres-

sion model and additional filters for ambiguous trans-

mitted sites to an independent set of 400 quad families

(Material and Methods, Figure S9). We performed smMIPs

validation onWBDNA samples from 78 of these quads and

obtained high-confidence validation data on 1,388/1,754

sites.

Based on manual inspection of the WES and smMIP

alignment data, we identified additional features associ-

ated with poor prediction outcomes or problematic

genomic regions, including multiple mismatches within

the variant reads and presence in multiple families (Figures

S6, S11A, and S11B). We added filters based on these fea-

tures to the pilot 400 validation set and built a refined lo-

gistic regression model (Figure S9). The model performed

well in 3-way cross validations with sensitivity estimated

at 92% and PPV at 80% (threshold 0.26) (Figure S12A).

To further evaluate this model, we rescored the pilot 24

validation sites with and without additional filters (Mate-

rial and Methods). Importantly, these calls were selected

and validated prior to model development, giving an inde-

pendent set of data to evaluate performance. These data

performed better than the training data (after removing

mPUP only calls), likely due to the increasedWES coverage

of the pilot 24 samples with sensitivity of 94% and PPV of

83% (threshold 0.26) (Figures S12C and S12D).

We identified additional heuristics that enabled further

distinction between true mosaic calls and calls that vali-

dated as germline. We observed that calls validating

germline tended to have higher observed WES AFs. We

calculated the 90% binomial CI (95% one-sided) for the

observed AF as a potential complement to the observed sig-

nificant binomial deviations. We found that the vast ma-

jority—112/113 (99%)—of validated PMM calls had upper

CI bounds that remained below 0.4, while bounds for the

majority of true germline calls—25/33 (76%)—fell above

this threshold (Figure S10). In addition, we observed that

a significant fraction of the false positive calls exceeding

our logistic score threshold (5/26 [19%]) were annotated
ber 7, 2017



Table 1. PMM Counts in Children across Different Allele Fraction
and Coverage Thresholds

syn mis nonþsplice Total

Best Practice Filters

Quads Pro 94 195 20 309

Sib 62 203 15 280

Trios Pro 26 63 6 95

Total Pro 120 258 26 404

AF 5%-453 High Confidence

Quads Pro 58 131 12 201

Sib 42 133 10 185

Trios Pro 22 53 6 81

Total Pro 80 184 18 282

Total germlinea Pro 246 704 73 1,023

Sib 186 431 26 643

AF 15%-453 Burdenb

Quads Pro 24 65 5 94

Sib 20 66 5 91

Jointly covered
bases: 24.5

Trios Pro 8 30 0 38

Total Pro 32 95 5 132

Jointly covered
bases: 9.7

AF 12.5%-503 Burdenb

Quads Pro 32 67 5 104

Sib 16 80 6 102

Jointly covered
bases: 22.3

Trios Pro 12 31 2 45

Total Pro 44 98 7 149

Jointly covered
bases: 8.9

AF 10%-653 Burdenb

Quads Pro 38 63 6 107

Sib 20 76 4 100

Jointly covered
bases: 16.7

Trios Pro 12 31 1 44

Total Pro 50 94 7 151

Jointly covered
bases: 6.8

AF 7.5%-853 Burdenb

Quads Pro 31 56 6 93

Sib 18 66 5 89

Jointly covered
bases: 11.4

Table 1. Continued

syn mis nonþsplice Total

Trios Pro 11 28 4 43

Total Pro 42 84 10 136

Jointly covered
bases: 4.7

AF 5%-1303 Burdenb

Quads Pro 20 35 4 59

Sib 12 35 2 49

Jointly covered
bases: 5.1

Trios Pro 10 18 5 33

Total Pro 30 53 9 92

Jointly covered
bases: 2.0

Abbreviations are as follows: AF, allele fraction; Pro, proband; Sib, sibling; syn,
synonymous; mis, missense; non þ splice, nonsense and canonical splicing.
Bases in billions. Mutations with other annotations not shown.
aGermline de novo mutations identified using our pipeline.
bPMMs in sex chromosomes were excluded in this set.

The American
as SD or TRF sites (Figures S11C and S11D). Moving for-

ward, we chose to remove these SD/TRF sites and re-classify

mosaic versus germline status based on the AF binomial CI.

We conducted a third set of validations on PMM and

GDM calls not previously evaluated (Supplemental Note:

Model Development) in the pilot cohorts using these

new filtering parameters and model scores (Figures S12E

and S12F). We observed that across all test sets (excluding

training data), both sensitivity and PPV converged at a

logistic score of 0.518 (sensitivity 0.83, PPV 0.85). At this

score threshold, 21/22 (95%) of mosaic predictions that

validated as true variants were confirmed as mosaic in

children (all test sets). We chose to use this more stringent

score threshold for our subsequent burden analysis. In

addition, we removed calls with less than five variant allele

reads as these disproportionately contributed to false calls

(Figure S11E).

Evaluation of Mutation Rates and Burden in Children

with ASD

Using this approach, we recalled SNVs in the SSC, in both

children and parents, from the existing harmonized re-

processed WES data (average mean coverage 893).12 We

identified 687 total PMMs originating in the children

from 1,699 quads and 567 trios passing SNV QC metrics

(Tables 1 and S5). We re-identified 3,445/4,198 previously

published SNV GDMs, which were not flagged as poten-

tially mosaic, and 1,064 novel calls, i.e., not included in

the published call set. Applying our high-confidence call

set criteria (5% minimum AF and 453 joint coverage) re-

sulted in 470 PMMs, of which 332 were not part of the

published de novo mutation calls (Figure 1F and Table 1).

Of the 452 previously published SNV GDMs that we

initially flagged as potentially mosaic, 233 were called by
Journal of Human Genetics 101, 369–390, September 7, 2017 375
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Figure 2. Rates and Burden of SNV PMMs in the Simons Simplex Collection (SSC)
(A–C) Rates and burden analyses of PMMs in quad families of the SSC. Mean rates with 95% Poisson CIs (exact method) are shown.
(A) Nonsense/splice PMM rates are similar and not evaluated further given their low frequency.
(B) Missense PMMs show no evidence of burden in probands from quad families.
(C) Synonymous PMMs show an unexpected burden in probands from quad families. Significance determined using a two-sided
Wilcoxon signed-rank test. *FDR < 0.05 using the Benjamini-Yekutieli approach.
(D) Analysis of synonymous PMMs at AF 12.5%-503 in the full SSC and subcohorts.Mean rates with 95% Poisson CIs (exactmethod) are
shown for combined probands (quadþ trio families) and unaffected siblings. Abbreviations are as follows: SSC subcohorts all, all families
within the cohort passing quality criteria; Has Germline LGD, denotes whether or not proband in family has a LGD GDM or gene
disrupting de novo CNV; Has Any Germline NS, denotes whether or not proband in family has any NS GDM (includes the LGD set).
Significance determined using a two-sided Wilcoxon rank sum test. *FDR < 0.05 using the Benjamini-Yekutieli approach.
our approach (196 as mosaic), of which 157 remained in

our high-confidence call set (138 as mosaic, 19 as re-classi-

fied germline) (Figure 1F). Likewise, applying the high-con-

fidence call set criteria reduced the GDM count to 1,677, of

which only 10 were novel. Compared to our analysis of

previously published de novo SNVs, we observed a higher

fraction of mosaic mutations among the de novo calls in

children, 470/2,147 (22%), consistent with increased

sensitivity of our mosaic targeted approach (Table 1).

The burden of PMMs in individuals affected with ASD

compared to their unaffected siblings may differ based

on embryonic timing, as an early embryonic mutation

would contribute more substantially to postembryonic tis-

sues. Therefore, we evaluated burden across the entire SSC

cohort at several defined minimum AFs, as a surrogate for

embryonic time, and corresponding joint family coverage

thresholds (AF-COV): 5%-1303, 7.5%-853, 10%-653,

12.5%-503, and 15%-453 (Figure S13 and Table 1).

We first examined the mutation burden of the unique

autosomal coding regions in quad families exclusively as

they provided a matched set of child samples (Material

andMethods). Within our 15%-453GDM calls, we recapit-

ulated the previously observed mutation burdens for

missense (p ¼ 0.003, one-sided Wilcoxon signed-rank test

[WSRT]) and nonsense/splice (p ¼ 0.00025, one-sided

WSRT)mutations and lackof burden for synonymousmuta-

tions, demonstrating that previous findings are robust to

removing potential PMM calls. Given the low number of

nonsense/splice mutations (Figure 2A), we restricted our

mosaic burden analyses to synonymous and missense
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PMMs. We did not observe burden signal for missense

PMMs within the cohort of quad families (Figure 2B).

Unexpectedly, we observed an increased burden of synony-

mous PMMs in probands (Figure 2C). The signal was

strongest in the 12.5%-503 subanalysis with probands hav-

ing twice asmanymutations (32 inprobandsor 7.2310�10/

base pair versus 16 in siblings or 3.6 3 10�10/base pair, p ¼
0.0024, two-sidedWSRT, FDR< 0.05). This trend continued

for the three lower AFwindows, but these did not exceed an

FDR of 0.05. We extrapolated the observed mean per

base rates to the full unique autosomal RefSeq exome

(31,854,496 bases/haplotype, including canonical splice

sites) in order to calculate the average differential between

probands and siblings, similar to the analysis performedpre-

viously forGDMs.11Basedonthe12.5%-503data,we found

that probands had a rate of 0.046 synonymous PMMs per

exome and siblings 0.023, suggesting that 50% of proband

synonymous PMMs contribute to ASD risk. The differential

between probands and siblings was 0.023, which translates

to 2.3% of simplex case subjects in the overall cohort

harboring a synonymous PMM related to ASD risk.

We next combined the data from quad and trio-only (fa-

ther, mother, proband) families to increase the number of

mutations and conducted an exploratory analysis of muta-

tion rates in subsets of the full cohort. Since a large fraction

of the SSC has germline mutation events that are likely

contributory,8,11,44 we reasoned that grouping families by

presence or absence of proband GDMs of different severity

(LGD/disruptive CNV versus any NS) might improve our

ability to detect any PMM signal that might be present.
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Figure 3. Rates and Burden of Missense PMMs in Subcohorts and Gene Sets
For all plots, the 15%-453 burden call set was used andmean rates with 95% Poisson CIs (exact method) are shown. Abbreviations are as
follows: SSC subcohorts: All, all families within the cohort passing quality criteria; Has Germline LGD, denotes whether or not proband
in family has a LGD GDM or gene disrupting de novo CNV; Has Any Germline NS, denotes whether or not proband in family has any NS
GDM (includes the LGD set). Significance determined using a one-sided Wilcoxon rank sum test. No comparisons met a FDR < 0.05
using the Benjamini-Yekutieli approach.
(A) Splitting by subcohort shows trends for increased missense PMM burden in families where probands do not have reported germline
mutations.
(B) Evaluating mutations specific for the essential gene set shows stronger proband burden in the without any germline LGD subcohort.
(C) Similarly, evaluating mutations specific for the intolerant gene set shows stronger proband burden without any germline LGD or
without any germline NS subcohorts.
Basedon the12.5%-503data in familieswithout agermline

LGD,weobserved synonymous burden signal similar to the

full cohort. However, the full cohort data did not meet the

FDR threshold using the less powerful unpaired test data.

In contrast, for the families without any reported NS

GDMs, we observed a dramatic depletion of synonymous

PMM events in the unaffected siblings, with a proband to

sibling rate ratio of 10 (p ¼ 0.0038, two-sided Wilcoxon

rank-sum test [WRST], FDR < 0.05) (Figure 2D). In this

group without NS GDMs, this equates to 0.038 synony-

mous PMM events per proband exome and 0.004 per

sibling exome (differential of 0.034), suggesting that 89%

of this mutation class contributes to ASD risk.

Next, we examined missense PMMs using the two

cohort subgroupings at the 15%-453 threshold. We

observed a non-significant trend toward burden of

missense PMMs in probands for families either without

any LGD GDMs (rate ratio 1.28) or without any NS

GDMs (rate ratio 1.49) (p ¼ 0.085 and p ¼ 0.076, respec-

tively, one-sided WRST) (Figure 3A). It has now been

well documented using several approaches that LGD

GDMs in probands show enrichments for genes that are

highly conserved/intolerant to LGD mutations.11,44,45

We reasoned that missense PMMs relating to ASD risk

could also show similar enrichments. We selected two

intolerant gene sets, an updated set of essential genes
The American
(n ¼ 2,455)34 and the recently published ExAC intolerant

set (n ¼ 3,232).35 These subanalyses showed increased

effect sizes, but none of these results exceeded a FDR

of 0.05. For both essential and ExAC intolerant sets,

we observed similar trends for enrichments of missense

PMMs in probands (rate ratios 1.4, p ¼ 0.093 and

p ¼ 0.13, respectively, one-sided WRST).

When combining these two approaches, which subdi-

vide the cohort and gene targets, we saw the strongest

effects. In the subset of families without LGD GDMs, we

saw a stronger effect for both essential and ExAC intolerant

genes (rate ratios 2.1 and 2, p¼ 0.034 andp¼ 0.025, respec-

tively, one-sided WRST). We observed similar results when

restricting to quad only families. Missense PMMs in essen-

tial genes occur at a rate of 0.022 events per exome in pro-

bands who do not have a LGD GDM and at a rate of 0.031

for intolerant genes (0.011 and 0.015 for siblings, respec-

tively, differentials 0.011 and 0.016). The families without

any NS GDMs showed the largest effect in the ExAC intol-

erant set (ratio 2.6, p ¼ 0.047, one-sided WRST) but similar

rates to the full cohort in the essential gene set (ExAC:

0.033 events per proband, 0.013 per sibling, 0.02 differen-

tial). Based on these differentials, we estimate that 1%–2%

of probands without LGD or NS GDMs have a missense

PMM in an essential/intolerant gene potentially contrib-

uting to risk. Adjusted to the full cohort, this gives a range
Journal of Human Genetics 101, 369–390, September 7, 2017 377



Table 2. PMM Counts in Parents across Different Allele Fraction
Coverage Thresholds

syn mis nonþsplice Total

Best Practice Filters

Nontrans Fa 259 543 54 856

Mo 266 570 41 877

Trans Fa 21 41 1 63

Mo 12 37 0 49

AF 5%-453 High Confidence

Nontrans Fa 196 418 40 654

Mo 199 405 35 639

Trans Fa 19 32 1 52

Mo 7 33 0 40

AF 15%-453 Burdena

Nontrans Fa 114 261 19 394

Mo 130 267 15 412

Trans Fa 19 32 1 52

Mo 6 31 0 37

Jointly Covered Bases: 34.2

AF 12.5%-503 Burdena

Nontrans Fa 126 276 22 424

Mo 130 281 18 429

Trans Fa 16 30 1 47

Mo 6 30 0 36

Jointly Covered Bases: 31.2

AF 10%-653 Burdena

Nontrans Fa 121 229 18 368

Mo 110 229 19 358

Trans Fa 11 23 1 35

Mo 4 20 0 24

Jointly Covered Bases: 16.7

AF 7.5%-853 Burdena

Nontrans Fa 90 177 19 286

Mo 92 180 19 291

Trans Fa 5 15 1 21

Mo 2 13 0 15

Jointly Covered Bases: 16.1

AF 5%-1303 Burdena

Nontrans Fa 53 110 15 178

Mo 49 101 9 159

Trans Fa 3 4 0 7

Mo 1 5 0 6

Abbreviations are as follows: AF, allele fraction; Fa, father; Mo, mother; syn,
synonymous; mis, missense; non þ splice, nonsense and canonical splicing.
Bases in billions. Mutations with other annotations not shown.
aPMMs in sex chromosomes were excluded in this set.
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of 0.8%-1.3% of probands harboring amissense PMM in an

essential/intolerant gene potentially related to ASD risk.

Parental PMM Rates and Transmission

Wealso identified PMMs arising in the SSCparents (Table 2;

Figure S4). We identified 1,293 nontransmitted (654 in

fathers and 639 in mothers) and 92 transmitted (52 in

fathers and 40 in mothers) total PMMs in our high-confi-

dence call set. For transmitted mutations, which by defini-

tion require the postzygotic mutation contribution to both

soma and germline, we required a stricter deviation from

the binomial expectation based on empirical validation

data (p % 0.0001). The overall PMM rates were similar

between fathers and mothers (Figure S15). Comparing

children and parents in the high-confidence call set, we

found the PMM rate to be 2.6-fold greater in the SSC

parents relative to their children. However, we suspect

that some fraction of this elevated ratemay be due to biases

in filtering out transmitted sites that show false mosaic

signal, as we do not have the previous generation, i.e.,

grandparents, to compare to as we do for the children.

Therefore, we looked at variants in a subset of the cohort

and determined the fraction of variants remaining in

children before and after applying transmission filters.

Using this rate, we estimated the number of PMMs

expected to be filtered from the parental calls based on

transmission. We estimate that 40% of our parental PMM

calls are in excess of what is expected and likely attributed

to incomplete filtering (Figure S16). Applying this correc-

tion reduces the parental excess PMM rate to only 1.6-

fold greater. Based on the children, two-thirds of filtered

calls appear to be systematically biased as they are skewed

in both generations. The remaining one-third of calls

are skewed in only a single generation with AFs > 20%,

suggesting that they are likely stochastic events.

The increased rate of PMMs in parents compared to

children is in line with previous observations that PMMs

accumulate with age.46,47 We also observed an overall

trend toward an increase in the rate of PMMs with parental

age for both sexes (Figure S17A). The rate of PMMs mark-

edly increases after age 45 and there is a significant differ-

ence in rate between parents younger than 45 as compared

to those 45 and older (mothers-rate ratio 1.2, p ¼ 0.04;

fathers-rate ratio 1.3, p ¼ 0.01, one-sided WRST)

(Figure S17B). We also saw that the number of individuals

with multiple PMMs (adjusted for coverage differences)

within a given age range increased as well (Figure S17C).

Recent studies have also demonstrated a rise in PMMs in

particular genes that result in aberrant clonal expansions

(ACEs) that are specific to blood cells.47–50 We did not

find strong evidence for enrichment of PMMs in 42

genes with recurrent ACE-associated mutations from three

studies of hematopoietic clonal expansion (parents-obs: 9,

exp: 6.6, p ¼ 0.17; children-obs: 5, exp: 2.3, p ¼ 0.07;

two-sided binomial).48–50 However, among the parents

we did find recurrent nontransmitted PMMs in two of

the most frequently mutated ACE-related genes, DNMT3A
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(four nonsense and one missense) and TET2 (two

missense). These PMMs did occur in relatively older indi-

viduals for our cohort, 45–50 years old. Two missense

PMMs in TET2 were also observed in the children.

Within the 453 joint coverage data, we found that 7%–

10% of parental PMMs were transmitted to one or more

children depending on the minimum AF threshold (high

confidence 5% versus burden 15%) (Table 2). Moreover,

in our high-depth validation data with final filters applied,

we found that 1/164 GDM predictions showed evidence of

low AF in parental DNA, which was not detected by WES

(Table S4). We also identified six obligate mosaics given

their de novo presence in two offspring, i.e., gonadal mosaic

mutations (Table S5).Within the quad families of our high-

confidence call set, we did observe skewing of transmission

to siblings (18 to both, 39 siblings, 22 probands), suggest-

ing that as a class, transmitted mosaic mutations are not

associated with ASD within this cohort. However, individ-

ual mutations at ASD risk loci may still be relevant to the

disorder.

Properties of PMMs

Using the high-confidence call set (Table S5), we examined

whether general properties of PMMs differed between

parents and children and how mutational mechanisms

compare with GDMs. We found that AF distributions of

PMMs between parents (fathers andmothers), and likewise

between children (probands and siblings), were similar;

therefore, we combined parental calls and child calls,

respectively (Figure 4). Nontransmitted parental PMMs

have a distinct AF distribution, which is bimodal, and

significantly different from both transmitted parental

PMM and child PMM distributions (nontransmitted

parental versus transmitted, p¼7.07310�14,nontransmit-

ted parental versus children, p ¼ 2.99 3 10�14, two-sided

WRST, FDR < 0.05). Similar to how we empirically

separated germline and mosaic calls in children, we calcu-

lated the confidence intervals of the parental PMM AFs

(Figure S18).We found that the vastmajority of transmitted

PMMs had AF CIs in excess of 10% (92/94 [98%]), suggest-

ing early embryonic origin for PMMs within this AF range

and consequently the largest risk for transmission.

The mutational spectra and signatures of GDMs and

PMMs were similar (Figure S19). For both GDMs and

PMMs, the relative frequency of mutations within trinu-

cleotides showed strongest correlation with previously

described51 cancer signature 1, followed by 6 (Figures

S19B and S19C). Signature 1, which is characterized by

spontaneous deamination of 5-methylcytosine, is indica-

tive of endogenous mutational processes and associated

with all cancer types.51 Signature 6 is associated with

defective DNA mismatch repair.51

Potential Impact of Synonymous PMMs on Splicing

A possible mechanism for synonymous variants contrib-

uting to ASD risk would be by disrupting splicing. Exonic

splice-affecting variants are preferentially localized near
The American
existing canonical splicing sites, i.e., the starts or ends

of exons.52,53 Therefore, we calculated the absolute mini-

mum distances of all synonymous PMMs and GDMs to

their closest splicing site (Figure 5). We found the proband

synonymous PMM distribution to be shifted toward

splicing sites compared to both sibling and parental synon-

ymous PMM distributions (p ¼ 0.017 and p ¼ 0.008,

respectively, two-sided WRST, FDR < 0.05), while the

sibling distribution was similar to the parental (p ¼
0.601, two-sided WRST). We observed a similar shift to-

ward splice sites for GDMs in probands as compared to sib-

lings (p ¼ 0.005, two-sided WRST, FDR < 0.05).

We further evaluated potential effects of synonymous

mutations on splicing computationally using HSF, which

utilizes a collection of different splicing prediction ap-

proaches.36 HSF reported significantly more instances of

putative splice altering mutations for proband synony-

mous PMMs (70/78) when compared to siblings (25/41)

(p ¼ 0.0005, odds ratio, 5.506, 95% CI 1.946–16.836,

two-sided Fisher’s exact) (Table S6). Synonymous GDMs

showed no enrichment (proband 188/235 versus sibling

137/177, p ¼ 0.544, odds ratio, 1.168, 95% CI 0.726–

1.879, two-sided Fisher’s exact). When restricting to

synonymous PMMs that occur within 50 bp of the start

or end of an exon, where splicing regulatory elements are

enriched,54 we observed a stronger enrichment (proband

45/53 versus sibling 5/12, p ¼ 0.00378, odds ratio, 7.53,

95% CI 1.618–38.861, two-sided Fisher’s exact). We did

not observe a similar enrichment for proband synonymous

GDMs near splice junctions. To assess the robustness of

HSF findings, given the high call rate of splice-altering var-

iants, we removed the two most frequently called matrices

and reclassified variants. We still observed an enrichment

of proband synonymous PMMs predicted to alter splicing

(all variants: proband 53/79, sibling 18/41, p ¼ 0.019,

odds ratio, 2.60, 95%CI 1.20–5.66; within 50 bp: probands

34/50, sibling 5/15, p ¼ 0.033, odds ratio, 4.25, 95% CI

1.24–14.5, two-sided Fisher’s exact).

To independently assess splice altering variant enrich-

ment, we applied a recently reported machine-learning-

based approach, SPANR.37 SPANR requires a variant to be

within 100 bp from an exon start or end site and be located

within an exon flanked by an exon on either side, which

limited our analysis to 68 proband and 29 sibling PMMs.

SPANR reported a significant enrichment of splice-altering

synonymous PMMs in probands (proband 15/68 versus

sibling 1/29, p ¼ 0.03, odds ratio, 7.81, 95% CI 1.09–

344.8, two-sided Fisher’s exact). Similarly, proband PMMs

remained enriched for splice-altering variants (though

not significantly) when restricting to mutations within

50 bp of a canonical splice site (proband 14/46, sibling

1/13, p ¼ 0.15, odds ratio 5.13, CI 95% 0.64–239.9,

two-sided Fisher’s exact).

Gene Set Enrichment

We applied a similar approach as Iossifov and colleagues to

look for enrichments of PMMs within different gene sets
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Figure 4. Mosaic Variant Allele Fraction Distributions
For all plots, all PMMs from the 5%-453 high-confidence call set were used.
(A) Distribution of allele fractions for variants in probands combined (quad þ trio families).
(B) Distribution of allele fractions for variants in siblings.
(C) Distribution of allele fractions for germline variants in children that were transmitted from mosaic parents.
(D and E) Distribution of allele fractions for variants in mothers that were not (D) and were (E) transmitted to children.
(F and G) Distribution of allele fractions for variants in fathers that were not (F) and were (G) transmitted to children.
(H) Combined data plotted as kernel density curves. Parental transmitted are significantly shifted toward a higher allele fraction than
nontransmitted or child mosaic variants. Children have a significantly different distribution than parental nontransmitted. Significance
determined using a two-sided Wilcoxon rank sum test. *FDR < 0.05 using the Benjamini-Yekutieli approach.
using our high-confidence dataset.11 Using expected values

generated from joint coverage for the cohort, we examined

whether our PMMs/GDMs showedmore or fewermutations
380 The American Journal of Human Genetics 101, 369–390, Septem
than expected independently for probands and siblings.

Our GDM dataset showed similar enrichments or lack

thereof to previous reports (Table 3). In probands, we found
ber 7, 2017



A B C D 

Figure 5. Distance to Nearest Splice Site for Synonymous PMMs
For all plots, all synonymous PMMs from the 5%-453 high-confidence call set were used. Splice site distances were calculated as absolute
minimum distance to nearest canonical splice site.
(A) Distribution of distance to nearest splice site in probands combined (quad þ trio families).
(B) Distribution of distance to nearest splice site in siblings.
(C) Distribution of distance to nearest splice site in combined parents (quad þ trio families).
(D) Combined data plotted as kernel density curves. Proband distribution is significantly shifted toward the canonical splice sites
compared to both parents and siblings. Significance was determined using a two-sided Wilcoxon rank sum test. *FDR < 0.05 using
the Benjamini-Yekutieli approach.
enrichment (1.8-fold) for missense PMMs intersecting

chromatin modifiers (p ¼ 0.043, two-sided binomial) and

depletion of missense PMMs in embryonically expressed

genes (p ¼ 0.024, two-sided binomial). Interestingly,

missense GDMs showed no evidence of enrichment or

depletion for these gene sets, while LGD GDMs have previ-

ously been shown to be enriched.11

Recently, several groups have taken different approaches

to generate genome-wide ASD candidate risk gene rankings

and predict novel gene targets.33,38 These approaches

have largely been validated on LGD GDMs. We explored

whether our high-confidence PMM calls showed any shift

in ASD candidate gene rankings for probands compared

with their unaffected siblings (Table S10). We evaluated

rankings based on gene mutation intolerance (LGD

rank, LGD-RVIS average rank)33 or based on a human

brain-specific gene functional interaction network (ASD as-

sociation).38 At the population level, we found only non-

significant increases inLGD-RVIS rankings forproband syn-

onymous and essential missense PMMs in the subcohort

of families without any proband NS GDMs (p ¼ 0.029 and

p ¼ 0.073, one-sided WRST). We also observed no signifi-

cant shifts in rankings for missense GDMs.

Intersecting Proband Mosaic and Germline Mutation

Gene Targets

To determine whether germline and mosaic mutations

in probands share common target genes, we intersected

missense PMMs from the high-confidence call set and

the burden subset (15%-453) with the re-classified pub-

lished GDM calls. We observed no enrichment of proband

missense PMMs with genes that are targets of sibling

GDMs of any type. However, we did find an apparent
The American
enrichment of genes that are targets of proband missense

GDMs within proband missense PMMs from the burden

call set (proband: 25/100; sibling: 9/69, p ¼ 0.042, OR,

2.222, 95% CI 0.904–5.582, one-sided Fisher’s exact), sug-

gesting that some common ASD risk targets for mosaic and

germline mutations.

In addition, we intersected all predicted NS PMMs

(our high-confidence call set plus re-classified published

[unique CDS]) with 139 genes that have reached high-

confidence levels for their risk contribution for ASD and/

or developmental disorders.11,32,40 In probands, 12/496

PMMs intersect (8 missense, 4 LGD) while only 4/354

PMMs intersect in siblings (3 missense and 1 LGD). The

novel, i.e., not published in the GDM call set,11,12 proband

events included missense PMMs in CHD2 (MIM: 602119,

GenBank: NM_001042572.2; c.272A>G [p.Glu91Gly]),

CTNNB1 (MIM: 116806, GenBank: NM_001098209.1;

c.1127G>A [p.Arg376His]), KIF1A (MIM: 601255,

GenBank: NM_001244008.1; c.655G>A [p.Ala219Thr]),

and KMT2C (MIM: 606833, GenBank: NM_170606.2;

c.14416C>G [p.Arg4806Gly]) (Table 4). We also identified

a novel missense mutation in SCN2A (MIM: 182390,

GenBank: NM_001040142.1; c.3370A>T [p.Ser1124Cys])

that was transmitted to the proband from the mother. Our

SNV PMM pipeline re-identified published de novo calls

that we re-classified as likely mosaic events, including

KANSL1 (MIM: 612452, GenBank: NM_001193465.1;

c.729A>C [p.Gln243His]),KAT2B (MIM: 602303,GenBank:

NM_003884.4; c.1151�1G>A [splicing]), INTS6 (MIM:

604331, GenBank: NM_001039937.1; c.1789C>T

[p.Arg596Ter]), SYNGAP1 (MIM: 612621, GenBank:

NM_006772.2; c.3055C>T [p.Arg1019Cys]), and TBL1XR1

(MIM: 608628, GenBank: NM_024665.4; c.845T>C
Journal of Human Genetics 101, 369–390, September 7, 2017 381



Table 3. Enrichment of Missense Germline and Postzygotic Mutations in Gene Sets

Total No. of Genes

Mis GDM (Pro) Mis GDM (Sib) Mis PMM (Pro) Mis PMM (Sib)

701 426 177 129

Set p Genes in Seta Obs Exp p Obs Exp p Obs Exp p Obs Exp p

Chromatin 0.0372 388 32 26.1 0.230 20 15.8 0.303 12 6.6 0.043 2 4.8 0.247

Embryonic 0.1433 1,797 114 100.5 0.178 60 61.1 0.835 16 25.4 0.024 25 18.5 0.103

Essential 0.1967 2,402 160 137.8 0.036 83 83.7 0.903 41 34.8 0.256 24 25.4 0.825

PSD 0.0701 879 58 49.1 0.183 35 29.9 0.346 17 12.4 0.183 14 9.0 0.167

FMRP 0.1005 775 100 70.3 4 3 10�4 57 42.7 0.036 20 17.8 0.53 13 12.9 1.000

453 joint coverage, 5% AF call set. Variants in sex chromosomes excluded. Expected (Exp) and p values obtained from two-sided binomial test, based on gene
length model (p). Abbreviations are as follows: Obs, observed; Mis GDM, missense germline de novo mutation; Mis PMM, missense postzygotic mutation;
Pro, proband; Sib, sibling; PSD, post synaptic density associated genes; FMRP, fragile X mental retardation protein-associated genes.
aTotal number of genes differs from full lists as we used only genes that we were able to map to our gene symbol annotations and genes on sex chromosomes were
excluded.
[p.Leu282Pro]) (Table 4). Only the KANSL1 and INTS6

PMMs met the high confidence 453 joint coverage

criteria. Mosaic re-classified indels included DIP2A

(MIM: 607711, GenBank: NM_001146114.1; c.1646_

1652dup7 [p.Leu552ValfsTer34]) and GIGYF1 (MIM:

612064, GenBank: NM_022574.4; c.1140_1156del17

[p.Thr381ArgfsTer13]) (Table 4). With the exception of

probands with the CHD2 and DIP2A PMMs, none of these

other probands have NS GDMs in other strong risk genes.

Among the remaining NS PMMs, we found seven muta-

tions in genes overlapping proband LGDGDMs (sibling NS

GDM count % 1) (Table 4). Of particular interest are novel

nonsense PMMs in BAZ2B (MIM: 605633, GenBank:

NM_013450.2; c.3868C>T [p.Arg1290Ter]), UNC79

(MIM: 616884, GenBank: NM_020818.3; c.6208C>T

[p.Arg2070Ter]), and USP15 (MIM: 604731, GenBank:

NM_001252078.1; c.813T>G [p.Tyr217Ter]). BAZ2B is

part of the bromodomain gene family involved in chro-

matin remodeling.55 UNC79 works in concert with

UNC80 to regulate the excitability of hippocampal neu-

rons through activation of sodium channel NALCN.56

USP15 is a deubiquitinase that plays many roles across

the cell including modulating immune response through

TGF-b and NF-kB pathways.57

Ten of the remaining NS PMMs intersect gene targets of

missense GDMs (sibling NS GDM count % 2) (Table 4). Of

note are novel nonsense PMMs in the chromatin remodel-

ing factor SSRP1 (MIM: 604328, GenBank: NM_003146.2;

c.159G>A, [p.Trp53Ter]) and the membrane trafficking

protein VSP13D (MIM: 608877, GenBank: NM_015378.2;

c.10552C>T [p.Arg3518Ter]). Novel missense PMMs

included were DMXL2 (MIM: 612186, GenBank:

NM_001174116.1; c.3455A>G [p.Asp1152Gly]), SYNE1

(MIM: 608441, GenBank: NM_033071.3; c.2330C>T

[p.Ala777Val]), and CFAP74 (GenBank: NM_001080484.1;

c.1127G>A [p.Arg376Lys]).

Among the synonymous PMMs, we identified four

candidate genes based on known roles in neurodevelop-

ment, predicted creation of a new exonic silencing site,
382 The American Journal of Human Genetics 101, 369–390, Septem
and no other NS GDM events in ASD risk genes in the pro-

band: ACTL6B (MIM: 612458, GenBank: NM_016188.4;

c.360C>T [p.Ser120 ¼ ]), CCT6B (MIM: 610730,

GenBank: NM_001193529.1; c.885C>T [p.Ala295 ¼ ]),

FYN (MIM: 137025, GenBank: NM_002037.5; c.1051C>T

[p.Leu351 ¼ ]), and STMN1 (MIM: 151442, GenBank:

NM_001145454.1; c.219T>C [p.Ala73 ¼ ]). Notably,

ACTL6B is a neuron-specific component of the SWI/SNF

chromatin remodeling complex.58We also highlight a syn-

onymous PMM in COL5A3 (GenBank: NM_015719.3;

c.2460G>A [p.Ser820 ¼ ]) because it has a high likelihood

of impacting splicing by altering the wild-type 30 exonic
donor site, a missense PMM (GenBank: NM_015719.3;

c.3338C>T [p.Pro1113Leu]), and a LGD GDM are present

at this locus, and we found no other NS GDMs associated

with ASD risk in the proband. Taken together, these new

mosaic calls provide additional support for high-confi-

dence ASD risk genes and highlight candidates as potential

contributors to ASD risk.
Discussion

The aim of our study was to systematically evaluate exonic

PMMs in a large family-based SSC cohort and their poten-

tial role in ASD. Historically, PMMs, much like GDMs,

have been intractable to systematical genome-wide study.

However, NGS technologies have now made this class

of genomic variation accessible, genome-wide, at single-

base resolution. A number of recent reports have demon-

strated that PMMs are relatively common in both healthy

and neurodevelopmental disorder cohorts, including

intellectual disability, ASD, or general developmental

delays.2,26,46,59,60 However, how frequent and widespread

these events might be in early and/or late development

and how much risk they contribute to complex disorders

has yet to be fully elucidated.

We found evidence for 11% of SNVs and 26% of indels

previously reported as de novo mutations from the SSC
ber 7, 2017



WES data having AFs consistent with a PMM arising in the

child. This is in excess of our original observation of 3.5%

(9/260) of mutation events consistent with child PMMs,

using only 209 families.2 A similar analysis of de novo

mutations identified from whole-genome sequencing of

simplex ID trios validated 6.5% (7/107) as PMMs.26 We

reasoned that re-analyzing the WES data systematically

with approaches tuned to detect PMMs would reveal novel

mutations, especially those with lower AFs (<20%). We

developed a SNV calling approach to detect PMMs without

matched normal data but in the context of nuclear families

(Figure 1E). Using this approach, the rate of de novo SNVs

that are PMMs arising in children increased to 22%. Given

that the depth of sequence directly affects the observable

minimum mutation AF, we used varying AF-COV thresh-

olds (e.g., 15%-453, 5%-1303) to evaluate mosaic muta-

tion burden. Surprisingly, in the full cohort, we found

the strongest signal for PMM burden with synonymous

SNVs (Figure 2C). The distribution of proband PMMs

showed a significant shift in distance to nearest splice

site (Figure 5D). Moreover, proband synonymous PMMs

showed enrichments for splice altering predictions using

two independent approaches.

It has recently been shown that in some cancers, synon-

ymous mutations may have a modest enrichment in

oncogenes.52 Within 16 oncogenes, the signal was specific

to the mutations within 30 base pairs (‘‘near-splice’’) of the

exon boundary and showed gains of exonic splicing

enhancer (ESE) motifs and loss of exonic splicing silencer

(ESS) motif sequences. Conducting an analysis of the

intersection of ASD and schizophrenia WES GDMs and

regulatory elements, Takata and colleagues recently re-

ported an enrichment of near-splice synonymous GDMs

in ASD probands (odds ratio �2) and to a lesser extent

schizophrenia probands, relative to control subjects.53

Stronger signal in their initial ASD cohort was seen for sites

predicted to cause ESE/ESS changes, but reduced in a repli-

cation dataset (odds ratios 2.52 and 1.55, respectively). In

their analysis they compared the fraction of near-splice

or those also disrupting ESE/ESS sites mutations in case

versus control subjects (Fisher’s exact test), which does

not take into account coverage differences across individ-

uals/cohorts. We repeated our analysis of the distance to

splice site distributions for the high-confidence 453-joint

coverage SSC synonymous GDMs, finding them to be

significantly closer to splice sites in probands as compared

to siblings (p ¼ 0.005), similar to the PMM calls. However,

we observed no corresponding enrichment of splice-

altering variant predictions. Taken together, these data

are consistent with a possible role of synonymous postzy-

gotic mutations that functionally disrupt splicing regula-

tion in ASD.

While computational splice regulation predictions can

provide useful information at the population level, we

advise interpreting the effect of individual variants with

caution given the uncertainty of splice regulatory mecha-

nisms, cell-type-specific splicing patterns, limited training
The American
sets, and high reported false positive rates. For example,

HSF has a reported false positive rate of 43%.36 This is

due in part to the wide breadth of splicing signals it

attempts to capture. Additional functional validation of

these mutations using in vitro approaches, e.g., minigene

assays, or in vivo approaches, e.g., genome editing of cell

lines, is warranted.

From the synonymous PMMs predicted to impact

splicing, we identified a number of genes that have roles

in neurodevelopment and are associated with other ASD

risk genes. In particular, we highlight genes ACTL6B, a

member of the chromatin remodeler complex SWI/

SNF;58 CCT6B, a postsynaptic density gene recently impli-

cated in recessive intellectual disability;61 FYN, which en-

codes a non-receptor tyrosine kinase that is involved in

axon outgrowth;62 and STMN1, which encodes a microtu-

bule destabilizing protein that is involved in the regulation

of axon outgrowth.63 Also notable is COL5A3, which

encodes a scaffolding protein that is directly regulated

by ASD and Pitt-Hopkins (MIM: 610954)-associated gene

TCF4 (MIM: 602272).64 Individuals with duplications

that span COL5A3 have phenotypic characteristics similar

to those of TCF4-related syndromes including seizures,

facial dysmorphia, and developmental delay.64

We did not observe evidence of missense PMM burden

in the full cohort of ASD probands. This is perhaps not sur-

prising given the strong contribution of GDMs to ASD in

the SSC and that most de novo events will be missense

changes by chance, i.e., form most of the background

non-disorder-related mutations. Our sample size is too

small given their rate of mutations to fully evaluate

nonsense/splice PMMs as a separate class. Based on the dif-

ferential between probands and siblings, it has been re-

ported that LGD GDMs have a 40% likelihood of contrib-

uting to ASD (90% of loci with recurrent LGD), while the

likelihood for missense variants is �35%.11 We reasoned

that restricting our analysis to families without proband

germline mutations would increase our power to detect

any effect of missense PMMs, even though we would be

removing a significant fraction of families with germline

events unrelated to ASD. Indeed, if we subdivide the SSC

cohort into families that have or do not have a proband

LGD GDM/de novo CNVs, or, alternatively, any NS germ-

line mutation, we observed a difference emerging. This dif-

ference is strongest in the subset of genes predicted to be

essential/intolerant to mutation (Figures 3B and 3C).

Similarly, we also saw a further increase in synonymous

PMM burden in the subcohort without any reported NS

GDMs (Figure 2).

Freed and Pevsner recently reported on PMM burden in

probands and siblings in the SSC.59 While our two studies

used the same SSC datasets, we each used different compu-

tational and validation approaches. Restricting our com-

parison to SNVs at exonic/canonical splice sites, our 453

high-confidence call set contains 470 PMMs in children,

384 that are unique to our study. Their 203 final call set

contained 167 PMMs, 81 of which are absent from our
Journal of Human Genetics 101, 369–390, September 7, 2017 383



Table 4. Highlighted Mosaic Mutations in Candidate ASD Risk Genes

Person:Sex
NVIQ/
VIQ Gene Func

Gene
Lista

SSC Pro
GDM Counta

SSC Sib
GDM Counta

AF HGVSc HGVSp Pub Other Pub NS GDMLGD Mis LGD Mis

13073.p1:M 60/25 CHD2 mis HC11,32,40 3 0 0 0 14/125 (11%) NM_001042572.2; c.272A>G p.Glu91Gly N SYNGAP1:fs del

12139.p1:M 106/86 CTNNB1 mis HC40 1 1 0 0 8/103 (8%) NM_001098209.1; c.1127G>A p.Arg376His N GPBP1:mis

14687.p1:M 38/62 INTS6 ns HC40 0 0 0 0 13/54 (24%) NM_001039937.1; c.1789C>T p.Arg597Ter Y ATP2A1:mis

12028.p1:M 93/80 KIF1A mis HC40 0 1 0 1 29/250 (12%) NM_001244008.1; c.655G>A p.Ala219Thr N NA

11305.p1:M 35/60 KANSL1 mis HC40 0 0 0 0 40/126 (32%) NM_001193465.1; c.729A>C p.Gln243His Yb OR1S1:misc

11592.p1:M 109/122 KAT2B sp HC32 0 0 0 0 20/80 (25%) NM_003884.4; c.1151�1G>A – Yb NA

13897.p1:M 91/78 KMT2C mis HC32,40 1 1 0 0 8/115 (7%) NM_170606.2; c.14416C>G p.Arg4806Gly N CGGBP1:mis

13522.mo:Md 87/70 SCN2A mis HC11,32,40 2 4 0 0 11/50 (22%) NM_001040142.1; c.3370A>T p.Ser1124Cys N NA

14001.p1:M 63/38 SYNGAP1 mis HC11,32,40 1 1 0 0 18/74 (24%) NM_006772.2; c.3055C>T p.Arg1019Cys Yb NA

12335.p1:F 47/66 TBL1XR1 mis HC40 1 0 0 0 9/40 (22%) NM_024665.4; c.845T>C p.Leu282Pro Yb STK36:mis; SPATA32:mis

13012.p1:M 60/21 DIP2A fs ins HC11,32,40 1 0 0 0 34/164 (21%) NM_001146114.1; c.1646_1652dup7 p.Leu552ValfsTer34 Ye RELN:mis

11232.p1:M 68/91 GIGYF1 fs del HC32 2 0 0 0 15/65 (23%) NM_022574.4; c.1140_1156del17 p.Thr381ArgfsTer13 Ye NA

13694.p1:M 26/17 BAZ2B ns GLGD 1 0 0 1 9/163 (6%) NM_013450.2; c.3868C>T p.Arg1290Ter N NA

11411.fa:Md 67/51 COL5A3 mis GLGD 1 0 0 0 16/68 (24%) NM_015719.3; c.3338C>T p.Pro1113Leu N SNRK:mis; TSNARE1:mis

14051.p1:M 115/107 CTNNA3 mis GLGD 1 0 0 0 9/295 (3%) NM_001127384.1; c.152G>C p.Arg51Pro N SEC16B:mis; RFC5:mis

12120.p1:M 115/85 SPEN mis GLGD 1 1 0 0 15/58 (26%) NM_015001.2; c.4651G>A p.Glu1551Lys Y OR5J2:mis

14420.p1:M 101/80 SSPO mis GLGD 1 1 0 0 29/98 (30%) NM_198455.2; c.14150C>G p.Ala4717Gly Y SH3BP5L:mis; ZMIZ2:mis

14547.p1:M 95/60 UNC79 ns GLGD 1 0 0 0 9/106 (8%) NM_020818.3; c.6208C>T p.Arg2070Ter N UQCRC2:mis

12025.p1:M 96/69 USP15 ns GLGD 1 0 0 0 8/164 (5%) NM_001252078.1; c.813T>G p.Tyr271Ter N NA

12837.p1:M 92/89 BIRC6 mis GMIS 0 1 0 2 23/123 (19%) NM_016252.3; c.9578G>C p.Arg3193Pro Y SH3RF3:mis

13215.p1:M 69/87 CFAP74 mis GMIS 0 1 0 0 8/157 (5%) NM_001080484.1; c.1127G>A p.Arg376Lys N JUP:mis

11942.p1:M 44/62 DMXL2 mis GMIS 0 2 0 0 19/256 (7%) NM_001174116.1; c.3455A>G p.Asp1152Gly N NA

14248.p1:F 83/94 DNAH10 mis GMIS 0 2 0 0 13/125 (10%) NM_207437.3; c.3599G>A p.Arg1200His Y MYO1E:mis; ELAVL2:fs del;
ITGA2B:mis

11627.p1:M 100/83 DNAH17 mis GMIS 0 2 0 1 11/77 (14%) NM_173628.3; c.7979C>T p.Ser2660Phe Y RGMA:mis

11521.p1:M 101/128 MTUS1 ns GMIS 0 1 0 0 17/111 (15%) NM_001001924.2; c.707C>G p.Ser236Ter Y HERC2:misc

14168.p1:M 140/123 OBSCN mis GMIS 0 2 0 0 14/61 (23%) NM_001098623.2; c.18344G>A p.Arg6115Gln Y FCGBP:misc

11947.p1:M 33/28 SSRP1 ns GMIS 0 1 0 0 13/143 (9%) NM_003146.2; c.159G>A p.Trp53Ter N MDM2:mis; CCR7:mis

13793.p1:M 56/48 SYNE1 mis GMIS 0 2 0 1 13/225 (6%) NM_033071.3; c.2330C>T p.Ala777Val N PCDHB4:misc; SBF1:mis

(Continued on next page)
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The American
high-confidence calls. The majority of these absent calls

failed to meet our 453 threshold (67%) or was present in

families we excluded as outliers (30%). Our two criteria

for including variants for mutation burden analyses were

similar, but with several key differences. Most importantly,

they restricted their burden analysis to their PMM calls

that overlapped the previously published de novo datasets,

met 403 joint-coverage, and also included indel calls. Un-

like our study, they did not restrict their analysis to

different minimum AF-COV thresholds. They report the

burden of all classes of variants combined (e.g., synony-

mous, missense, LGD, and other) as significant. After cor-

recting for germline misclassification, they estimate that

5.1% of probands have PMMs related to ASD risk. More-

over, they found nominal contributions across all classes

of mutations.

Comparing our 453 PMM burden analysis to their data,

we similarly observed differences in synonymous muta-

tion rates. However, we did not observe higher missense

mutation rates among probands in the full cohort. These

differences are likely driven by our different computa-

tional approaches and our use of a larger number of

PMM calls unique to our pipeline (164/231). Freed and

Pevsner included 122 exonic/splice SNV calls in their

burden analysis, 55 of which were absent from our call

set. Again, the majority of these absent calls failed to

meet our 453 threshold (62%) or was present in families

we excluded as outliers (33%). With our approach, we es-

timate that PMMs as a group contribute to 3%-4% of sim-

plex ASD, with an �2% contribution from synonymous

mutations. Combined, our two analyses suggest that

exonic PMMs as a whole are likely contributing to ASD

risk in the SSC at rates similar to other classes of de novo

mutations.11,32

We found that probandmissense PMMsweremore likely

than sibling missense PMMs to intersect with genes that

are targets of proband missense GDMs (odds ratio �2). A

number of our novel nonsense PMMs in probands overlap-

ped genes with GDMs including BAZ2B, SSRP1, UNC79,

USP15, andVPS13D (Table 4). Consistent with our observa-

tion of enrichment of chromatin modifiers in proband

missense PMMs, we found that many of our PMMs over-

lapping genes with NS GDMs are also involved in chro-

matin regulation: e.g., BAZ2B, CHD2, COL5A3, KAT2B,

KMT2C, and SSRP1. Recent studies have found that ASD

risk genes are highly co-expressed during the mid-fetal

period of cortical development.65,66 Several PMMs inter-

sect genes that occupy the same co-expression modules,

which are significantly enriched for ASD risk genes. For

example, BIRC6 (MIM: 605638), DMXL2, OBSCN (MIM:

60861), SPEN (MIM: 613484), SSRP1, and UNC79 all

occupymodules 2 and 3, which peak between post concep-

tion weeks 10 and 22 and are enriched for chromatin mod-

ifiers/transcriptional regulators.65 COL5A3, KIF1A, SCN2A,

and SYNE1 are found in modules 13/16/17, which are

turned on later in development, after post conception

weeks 10, and are enriched for synaptic genes.65
Journal of Human Genetics 101, 369–390, September 7, 2017 385



Moreover, we found missense PMMs in some of the

highest-confidence ASD risk genes identified in the SSC

or other combined studies, for example: CHD2, CTNNB1,

KMT2C, SCN2A, and SYNGAP1 (Table 4).30,32,33,67 Interest-

ingly, small de novo deletions targeting CHD2, SYNGAP1,

CTNNB1, and KMT2C have been reported in the SSC as

well,32 demonstrating that new mutations of multiple

types and origins at these sites contribute to ASD risk.

Taken together, our data argue that proband PMMs and

GDMs target many common risk genes. Finally, mutations

in some of these genes are not restricted to ASD as these

genes have also been found to be disrupted in cohorts pri-

marily defined on diagnoses of epileptic encephalopathy,

ID, and congenital heart defects with additional fea-

tures.68–71 Understanding how mutations impact these

important genes that blur our diagnostic constructs will

be an important area of future research. These and other

data suggest that the creation of more broadly defined co-

horts and better integration of genetic studies of develop-

mental disorders are warranted.

We also performed our PMM analyses in the parental

data, identifying both nontransmitted and transmitted

PMMs. Transmitted PMMs are obligated to be present in

both the soma and the germline. Given the low number

of offspring of each parent, we cannot rule out the possibil-

ity that a fraction of the nontransmitted parental events

are also present in the parental germ cells. Our observed

postzygotic mutation rate is much higher in the SSC par-

ents compared to the SSC children. Moreover, the non-

transmitted PMM AFs have a bimodal distribution that is

distinct from both the child PMMs and parental trans-

mitted PMMs. There are several potential explanations

for the increased rate of mutation and AF differences. As

parents in this cohort were several decades older at time

of DNA collection, this increase could be explained by

the accumulation of PMMs in the blood, some of which

might drift to or be selected for higher AF. We found very

little evidence for enrichment of PMMs in genes related

to blood ACEs, except DNMT3A. The number of parents

with PMMs in ACE-related genes is < 1%, which is consis-

tent with estimates that ACE-associatedmutations occur in

fewer than 1% of individuals under 50 and do not begin

to rise until after 65.48–50 Our analysis on a subset of the

cohort suggests that�40% of the excess in nontransmitted

parental PMM calls could be explained by incomplete

filtering of recurrently biased and randomly skewed sites,

while the remainder are likely true events (Figure S16).

The parental transmitted PMM distribution closely resem-

bles the rightmost Gaussian of the nontransmitted distri-

bution, suggesting that this subset is still representative

of likely early embryonic events, a fraction of which are

also found in the germ cells. Recurrently biased sites are

likely to have higher AFs (>20%). Parental (or non-family

based) PMMs with AF that fall in this upper range that

are not clearly transmitted should be interpreted with

caution. However, importantly, Xie and colleagues report

this same bimodal distribution in a case-control study
386 The American Journal of Human Genetics 101, 369–390, Septem
of ACE, which did not benefit from transmission-based

filtering.49

Rahbari and colleagues recently performed whole-

genome sequencing on moderately sized pedigrees fol-

lowed by the identification and characterization of de

novo mutations in multiple children, spanning approxi-

mately a decade.46 In validating their de novo calls using

target capture and deep sequencing, they identified a num-

ber of mutations that were at low levels in the parental

blood-derived DNA. Importantly in contrast to our study,

PMMs were not directly identified in the parents and calls

with greater than 5% of reads showing the alternative

allele in a parent were excluded from the de novo call set.

Nevertheless, they found that 4.2% of apparent germline

mutations are present in the blood of parents at >1% AF.

However, the rate we observed in our high-confidence

smMIP validation data, of similar calls (without parental

WES signal), is 0.6% (1 out of 164). In our 453 WES data-

set, we found 0.66% of GDMs in children are also obligate

gonadal mosaic. Overall, our data support that at least

7%–11% (depending on the AF) of parental PMM events

are also present in the parental germ cells and can be trans-

mitted to the next generation. Together these two sets of

parental postzygotic mutations account for 6.8% of the

presumed de novo mutations in the children from our

high-confidence call set (Table S5). Importantly, many of

these events would be missed by de novo calling pipelines

that eliminate any sites with variant reads present in a

parent. This rate is higher than what has been recently re-

ported for de novo CNVs (4%).22 These findings have

important implications for recurrence risk and clinical

testing, which are still not widely appreciated.14,22,46,72,73

While the recurrence risk for de novomutations is generally

thought to be low (�1%), finding the presence of a muta-

tion, even at low levels, in a parent dramatically increases

this risk to a previously estimated >5%.46,72,73 The risk

may be dramatically higher for specificmutations, depend-

ing on their embryonic timing and distribution within the

germ cells.

We were limited by the availability of DNA from a single

peripheral blood source and WES data that is non-uni-

form. Future studies in this area would greatly benefit

from deep uniform whole-genome sequencing, access to

multiple peripheral and other tissue types of different

embryonic origin, and improved indel variant calling ap-

proaches. This could include brain tissue in cases of surgi-

cal resection to control intractable epilepsy. Moreover, we

strongly suggest that new efforts to establish autism brain

banks obtain peripheral DNA samples from the donor and

their parents. These DNA would greatly aid in the classifi-

cation of variant types, i.e., PMMs, GDMs, or inherited var-

iants, identified in bulk brain and single-cell sequencing

studies as well as help determine their likely embryonic

timing.

In summary, our data support the conclusion that

exonic postzygotic mosaicism contributes to the overall

genetic architecture of ASD, in potentially 3%-4% of all
ber 7, 2017



ASD simplex cases, and that future studies of mosaicism in

ASD and related disorders are warranted. We present a gen-

eral approach for identifying PMMs that overcomes many

of the inherent detection and validation challenges for

these events in family-based and unmatched samples.

The methods developed will allow continued discovery

of PMMs in future datasets, including unsolved genetic

disorders, and our findings have potential translational

implications for clinical detection, case management, in-

terventions, and genetic counseling.
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Supplemental Material and Methods 
 
Rare Inherited Variant Simulation 

Variants were required to have an exonic or splicing annotation, population frequency <0.5%, at least 8 reads 
in all family members, and either 4+ variant reads or 3+ variant reads and allele fraction (AF) >=5% in at least 
one parent and one child. Variants were excluded if on sex chromosomes, if identified solely by mPUP, or if 
they had putative mosaic status with AF confidence interval < 40% (in the parental data only). This produced a 
final set of 1,554,918 rare inherited germline SNVs. Indels were treated similarly, then intersected with 
published calls to produce a final set of 13,479 rare inherited indels.1 Counts per child are: SNVs-1,103,102 in 
probands, 825,098 in siblings; Indels-9,782 in probands, 7,197 in siblings. 
 
Variants were divided on their presence in probands or siblings and sampled separately using the R function 
sample() with the Knuth-TAOCP-2002 random number generator. Sampled variants were tested for significant 
difference from heterozygosity (binomial p <= 0.001 or p <= 0.0001), with lower and higher AF tails evaluated 
separately, and a count of skewed variants determined for each trial. A total of 10,000 trials were performed for 
each child. Subsequently, the counts per child were added across trials to obtain distributions of total skewed 
variants that could be compared to the observed skewing in previously published de novo mutations. 
 
Evaluating Callers with Simulated Data 
 
These data consisted of 202 synthetic variants in 101 nucleotide single-end Illumina reads generated by 
simNGS, with variant frequencies ranging from 1-50% and coverage depths (DP) of 30-500 reads.2 Reads 
were aligned to the GRCh37-hg19 Broad variant human reference using BWA (0.5.6, 0.7.12)3 and BWA-mem 
(0.7.12), and mpileups generated using samtools (1.1).4 Given that read coverage peaked at variant sites and 
tapered off over surrounding bases, we only counted bases having at least 90% of the target depth. Callers 
included: VarScan (2.3.2, 2.3.7)5, LoFreq (0.4.0, 2.1.1)6, Atlas2 (1.4.1, 1.4.3)7, and an in-house mpileup 
parsing script, referred to as mPUP. For all callers, we required a minimum mapping quality (MAPQ) of 29 and 
DP >= 8, and disabled samtools base adjusted quality (BAQ). Additional parameters per caller were: VarScan, 
--min-var-freq 1x10-15 --p-value 0.1; LoFreq, --no-default-filter; mPUP, -m -c 8 -v 2. For mPUP calls, a 
significant difference from the empirical error rate (in simulated data) of 0.005 (binomial p <= 0.005) was 
required. All caller versions were run on all combinations of variant frequency, coverage depth, and aligner 
version. Caller performance was evaluated on sensitivity, positive predictive value (PPV), and F-score (beta = 
0.5) for each condition. 
 
Raw Variant Calling  
For all pilot and full cohort analyses, variants were called on individual samples using VarScan 2.3.2, LoFreq 
2.1.1, and our in-house script mPUP. Variant calling was performed as described above, with the exception 
that no error rate test was utilized for mPUP calls in order to maximize sensitivity. Reference and variant allele 
counts were extracted from mpileups for all family members at all family variant sites using a custom script 
(samtools mpileup -B -d 1500 | mPUP -m -q 20 -a count). 
 
Initial Variant Filtering: Pilot 24 
 
To build a systematic PMM calling pipeline, detailed evaluation of the high depth pilot 24 dataset was 
performed first (Figures S2-S8). The combined annotated raw calls were classified for germline versus mosaic 
status. Variants with AFs significantly below 50% (binomial p <= 0.001) were considered putative PMMs. For 
putative transmitted parental PMMs, which also had skewed AFs in child(ren), a significant difference between 
parent and child AF (Fisher’s exact p <= 0.01), with child AF > parental AF was required. Only PMM (child or 
parental) or GDM calls were considered for validation. For validation sites, we required at least four variant 
reads with total AF >= 3% or at least three variant reads with AF >= 5% and DP >= 8 in all family members. 
We removed variants that were: present in the raw calls of more than one of the pilot 24 families, noncoding or 
non-canonical splicing annotations, or having population frequency >= 0.5% in any reference (Supplemental 
Note: Model Development). Previously published GDMs1; 8 were added to the validation set if not identified by 
our pipeline (19/259 SNVs, 13 of which were called as raw variants but removed by pipeline filters).  
 



smMIP Design 
 
Single molecule molecular inversion probes (smMIPs) were designed against candidate variant sites similarly 
to the method described in O’Roak et al. 20129 using MIPGEN10 (11-25-14 release) with the following 
parameters: 1) human reference genome GRCh37-hg19 Broad variant, 2) arm length sums 40-44, 3) arm copy 
product <= 10, 4) min and max capture size 91, 5) three bases degenerate tags on either side of the MIP 
backbone (total 6Ns), 6) at least five bases flanking target (feature) site, 7) logistic priority score of 0, 8) 60 
base maximum overlap between smMIPs, 9) repetitive motifs flagged using Tandem Repeat Finder 4.07b, and 
9) smMIPs flagged if arms overlapped a SNP with minor allele frequency >= 0.1% in dbSNP141. A custom 
picking script was used to select the highest-scoring smMIPs from all designed candidates, with up to four 
mips covering each validation target and at least one smMIP on each strand where possible. We also required 
picked smMIPs have at least two base flanking the target site and that smMIP arms be free of recognition 
motifs for the restriction enzymes StyD41 (CCNGG) and NlaIII (CATG). Probes containing SNPs in targeting 
arms were accepted only if no others could be designed for the target and provided exome data from the 
associated family did not contain the problematic SNP; otherwise, SNP MIPs were excluded. If fewer than two 
smMIPs could be designed for a given site using these parameters, MIPGEN was re-run with the arm copy 
count first increased to 75. Finally, if probes were still lacking the arm copy count increased to 200 with tandem 
repeat finder disabled.  
 Picked smMIPs were divided into pools according to the families they targeted, with roughly equal 
probe counts in each pool (between 200-1100 probes/pool, Table S3). Pool-specific 20 base PCR adapters 
were appended to each smMIP arm, with NlaIII and StyD41 recognition sites on the 5’ and 3’ adapters, 
respectively. These precursor oligos (total lengths 118-122 nucleotides) were synthesized in bulk by 
CustomArray, Inc. (Bothell, WA). Probes with logistic scores >= 0.9 were synthesized in a single location. To 
account for poorer predicted performance and depending on the available synthesis space, probes with logistic 
scores between 0.7 and 0.9 were replicated 0-5 times and probes with logistic scores <0.7 were replicated 
between 5-10 times several times (Table S3).  
 
smMIP Preparation 
 
Array-synthesized precursor oligos were amplified by pool in a bulk reaction similarly to Boyle et al. 201410 with 
some modifications. Forward PCR primers were biotinylated on the 5’ end to permit subsequent strand 
selection on streptavidin beads (see Table S11 for primer sequences). First, precursor oligos were 
resuspended at 100 nM in Tris-EDTA and 0.1% Tween (pH 8.0). A 400 µL bulk PCR mix was then prepared 
using a final concentration of 500 nM for each PCR primer, 1x iProof HF PCR master mix (Biorad, Hercules, 
CA), 0.2x SYBRGreen (Invitrogen, Carlsbad, CA), and 2.5 nM precursor oligos. This mix was split into eight x 
50 µL reactions and amplified with the cycling conditions described in (Table S3). One bulk PCR reaction can 
be expected to yield ~70 ng of MIP product. Amplified products were combined per pool and purified using the 
QIAquick PCR purification kit (Qiagen, Hilden, Germany) following the manufacturer’s instructions, using 1-2 
columns per 400 µL PCR product. Product sizes were verified on a 2% agarose gel and yield quantified with 
the Qubit High Sensitivity dsDNA Assay Kit (Invitrogen).  
 Amplified DNA was digested at 37°C overnight in 50 µL of enzyme mix containing 1x CutSmart Buffer 
and 2 µL (5 U / µL) StyD4I (NEB, Ipswich, MA) to cleave off the 3’ PCR adapter. Digested product was verified 
on a 2% agarose gel, then bound to MyOne Streptavidin C1 beads (Invitrogen) following the manufacturer’s 
protocol, with 10 µL of beads per µg DNA. The bead-bound dsDNA was denatured with 50 µL of 0.125 N 
NaOH for two minutes (min) at room temperature, followed by supernatant removal, twice. The unbiotinylated 
antisense strand was washed away using 100 µL of 1x bead wash buffer followed by 100 µL of 1x CutSmart 
Buffer (NEB), leaving behind only the bead-bound sense smMIP strand.  
 To remove the remaining forward adapter, pool-specific guide oligos were annealed to the bead-bound 
5’ adapter sequence to create a double stranded DNA digest substrate. Each guide oligo was designed with 
two overhanging bases to extend the double-stranded template into the arm sequence of the MIPs. Nucleotide 
proportions of overhanging bases were proportional to arm composition (a 52/26/22 mixture of NN, GC and 
GD, respectively - see Table S11). After washing the denatured DNA, beads were resuspended in 50 µL of 
annealing master mix containing 1x CutSmart Buffer (NEB) and 15uM final concentration of appropriate guide 
oligo. Annealing was performed in a thermocycler, beginning with a slow ramp (0.1 degree/sec) to 65°C for 4 
min and followed by a slow ramp (-0.1 degree/sec) to 37°C. To wash away excess guide oligo, beads were 
washed with 100 µL of bead wash buffer followed by 100µL of 1x CutSmart Buffer (NEB). Bead-bound DNA 



was then resuspended in 50 µL of enzyme mix containing 1x CutSmart Buffer and 1 µL (10 U / µL) of NlaIII 
(NEB) and incubated for 2 hours (hrs) at 37°C in an Eppendorf ThermoMixerC (Hamburg, Germany) with a 
speed setting of 800 RPM. To further prevent beads from settling and ensure complete digestion, reactions 
were lightly vortexed every 30 min throughout the digestion period. Digest product was immobilized on a 
magnet and the released smMIPs aspirated. smMIPs were purified using the QIAquick column purification kit 
(Qiagen) following manufacturer’s instructions. smMIP size verification was determined by PAGE gel, using a 
pre-cast 10% TBE-Urea PAGE gel (Invitrogen) and Gel Doc EZ Imager (BioRad). To quantify the amount of 
probe recovered, a standard curve (5 ng-20 ng) of an 80 bp oligo of known concentration, synthesized by IDT, 
was also loaded onto the same gel. Probe concentration was determined by relation of band density to DNA 
concentration derived from our standard curve using ImageLab 4.1’s Image Tool (BioRad). 
 
smMIP Capture and Illumina Sequencing 
 
DNA prepared from whole blood (WB) and lymphoblastoid cell lines (LCLs) was obtained from the Simons 
Foundation Autism Research Initiative through the Rutgers University Cell and DNA Repository (Piscataway, 
NJ). Captures were performed as previously described with some modifications.11 Hybridization of smMIPs to 
genomic DNA, gap filling, and ligation were performed in one 25 µL reaction of 1x Ampligase buffer (Epicentre, 
Madison, WI), with 200 ng of genomic DNA, smMIPs at a ratio of 800-1600 copies to one haploid genome copy 
[1600:1 for pilot 24, and 800:1 for all others], 0.25 mM dNTPs, 0.32 µL of 5X Hemo KlenTaq DNA polymerase 
(NEB), and one unit of Ampligase (Epicentre). Reactions were incubated at 95°C for 10 min and at 60°C for 
18-42 hrs [18 hrs for pilot 24, 42 hrs for all others]. To degrade un-circularized probe and genomic DNA, 2 µL 
of exonuclease mix containing 10 units of exonuclease I (Enzymatics, Beverly, MA) and 50 units of 
exonuclease III (Enzymatics) in 1x Ampligase buffer were added and the reaction was incubated at 37°C for 45 
min followed by 95°C for 2 min to inactivate the exonucleases. Subsequently, samples were cooled on ice and 
stored at 4°C until the time of amplification.  
 For each capture reaction, 25 µL PCR reactions were prepared [one PCR for pilot 24, two PCRs for 
other validations] using 5 µL of capture reaction, 0.5 µM forward and reverse barcoded primers (different for 
each sample), and 1x iProof HF Master Mix (Bio-Rad) at 98°C for 30 seconds (sec); varying cycles of 98°C for 
10 sec, 60°C for 30 sec, 72°C for 30 sec; and finally 72°C for 2 min (see Table S3 for cycle number). The 
optimal number of cycles was determined independently for each pool by observing at what cycle amplification 
plateaued in a real-time PCR test reaction. Following amplification, a 5 µL aliquot of each sample was run on a 
2% agarose gel to confirm correctly sized capture product (~208bp) and to assess relative concentrations of 
successful captures vs. empty smMIPs and other artifacts.  
 PCR products were pooled in equal volumes and purified using 0.8x AMPure XP beads (Agencourt-
Beckman Coulter, Brea, CA) according to the manufacturer’s instructions. Size selection was performed by 
extraction of correctly sized bands from a 2% agarose gel with the QIAquick Gel Extraction Kit (Qiagen). Pool 
concentrations were assessed using the Qubit HS dsDNA kit (Invitrogen). The purified PCR pools were then 
combined into one “megapool” for sequencing. The megapool library (1.8 pmol) was sequenced 2 x 75bp on 
the NextSeq 500 (Illumina, San Diego, CA) platform, using version 2 chemistry, according to the 
manufacturer’s instructions. We used custom sequencing primers (Table S11) at a final concentration of 0.5 
µM.  
 
PMM Validation Determinations 
 
Raw paired-end reads were merged using PEAR 0.9.612 and mapped to the GRCh37-hg19 Broad variant 
human reference genome using BWA 0.7.12. Reads which were unmapped (or MAPQ = 0), off-target, soft-
clipped, or had insert sizes differing from expected gap-fill size were excluded from analysis. The remainder 
were collapsed on unique smMIP tags and uniformity of coverage evaluated both per smMIP and per target 
variant (Figure S3).9; 11 All validations sets showed similar performance. Variant calls with less than 20-fold 
Q20 read depth in the family members required to validate a site were excluded from analysis.  
 Calls without smMIP captured variant reads were classified as false positives if the absence of variant 
reads was significant given total smMIP depth and expected (exome) AF (i.e. binomial P(X > 0), for p = AF, 
threshold p <= 0.01); otherwise, they were considered indeterminate due to insufficient coverage. For calls with 
observed variant reads, the empirical error rate for that site was determined from all non-target families in the 
same pool. If smMIP variant AF was not significantly different from the pool error rate (binomial p <= 0.01), the 
variant was considered a sequencing error and thus a false positive.  



  Calls not excluded as false positives were independently assigned mosaic or germline validation status 
based on their smMIP data, following the same rubric as exome calling but with less stringent mosaic threshold 
(binomial p <= 0.01) due to the smaller number of variants being evaluated. Calls were additionally annotated 
as having either “same” or “different” AF in the target person compared to their exome data (Fisher’s exact p 
<= 0.01). When data from both WB and LCLs was available, the WB validation was given priority. After initial 
validation assignments were made, two people manually reviewed these data and screenshots of smMIP 
alignments generated with Integrated Genome Viewer13 for all validated calls. Variants with adjacent indels, 
with private SNPs in MIP targeting arms, with highly inconsistent AFs between different MIP probes, located in 
presumed multicopy regions characterized by multiple segregating mismatches, or having other evidence of 
problematic alignment were excluded from further analysis.  
 Resolutions were considered low-confidence if variants had AF <= 10% with only one supporting MIP, if 
individual MIP AFs differed between mosaic and germline status, or if AF 95% confidence intervals for mosaic 
validations approached or surpassed 0.5 in either tissue type. High confidence validations were defined based 
on the reviewers’ consensus. Screenshots of exome alignments were generated for all high-confidence mosaic 
validations and manually reviewed as above, additionally checking for consistent segregation with any nearby 
SNP haplotypes. Putative mosaic variants were considered confirmed upon passing all review. 
 
Initial Logistic Regression Model Development 
 
An initial logistic regression model was trained using the pilot 24 initial resolutions (i.e. prior to analyzing the 
pilot 400 or full cohort data), using only calls validated as true PMMs or false positives in the smMIP data. 
Candidate predictors were derived from WES data, e.g. quality-aware total read depth (DP), quality-aware 
alternative allele read depth (DPALT), sequence context, and which callers identified the variant. Models were 
built for each candidate predictor using the R function glm. Univariate predictors with p <= 0.2 were considered 
for inclusion in a multivariate model. These terms were ranked in order of most to least significant univariate p-
values and successively added into the multivariate model. Any predictor that became nonsignificant (p > 0.05) 
during this process was excluded. Pairwise interactions were evaluated using the R function step(). Finally, any 
predictors that had become nonsignificant as a result of model adjustments were also excluded, unless the 
predictor was also present in a significant interacting term. Fit was evaluated for each candidate multivariate 
model using the Hosmer-Lemeshow test across a range of five group sizes beginning at one greater than the 
number of model terms, with models rejected at p <= 0.05. Models not rejected were then compared based 
upon the Akaike information criterion (AIC) and sensitivity (within the dataset) and PPV as determined by 3-fold 
cross-validation. We selected an initial model that maximized sensitivity and minimized AIC while also 
maintaining reasonable PPV (Figure S7). 
  
Initial PMM Filtering and Validation: Pilot 400 
 
Based on results from the initial pilot 24 dataset, 400 additional pilot quad families were evaluated next 
(Figures S9-S12). Variant filtering was performed similarly as for the pilot 24 cohort, but calls were could not 
occur more than five times throughout the entire pilot 400 filtered variant set. For all putative parental 
transmitted PMMs, more significant skew in parental AF (binomial p <= 0.0001), significant difference between 
parent and child AF (Fisher’s exact p <= 0.01), and child AF > parental AF, having observed that pilot 24 
transmitted variants not meeting these criteria largely validated as germline (Figure S8) were required. All 
putative PMMs were scored using the initial logistic model, and excluded from validations if they scored < 0.2. 
This threshold was selected to eliminate the majority of false positives but retain high sensitivity and allow 
further evaluation of model performance. Family 14208 was excluded due to excessive SNV calls. Validation 
smMIP design, sequencing, analysis, and resolution were performed similarly as for the pilot 24 group, using 
WB DNA from 78 quad families. All initial validation positive calls, from both pilot sets, were then subjected to 
an additional manual review of the WES and smMIP alignments to flag potentially problematic calls prior to 
modeling, e.g. calls with evidence of mismapping, to produce a set of high-confidence validation resolutions. 
 
Refined Logistic Regression Model Development and Evaluation 
 
Based on manual review, we used only the predictions that were not observed repeatedly in the pilot 400 quad 
families and removed calls with a median number of mismatches greater than or equal to three in reads with 
variants. A second improved logistic regression model was trained using all predicted PMMs from this filtered 



subset of pilot 400 high-confidence resolutions, including those resolved as germline variants (Table S4). 
Candidate predictors were as described in initial model development, with the addition of 1) median 
mismatches in variant reads and 2) variant error rate in a cohort of 400 families not included in either pilot 
group. Continuous predictors were coded as categorical terms with two or three bins based upon empirical 
odds ratios from univariate models (Figures S9B-E). A series of bicategorical models was built using 
successive threshold breakpoints spanning the predictor range, e.g. quartiles or deciles. Values across a range 
were assigned to the same bin if their odds ratios were similar, with additional thresholds evaluated as needed 
to identify the most appropriate bin boundaries. After coding continuous variables, univariate and multivariate 
models were built as previously described. In addition to exclusions already specified, interacting terms were 
dropped from models if they affected deviance by <10. Model fit and performance were evaluated and the best 
model selected as previously described. 
 This model was evaluated using pilot 24 resolutions as a test set and using additional validation data 
generated after model development (Supplemental Note: Model Development). The refined filtering scheme 
was retroactively applied to all validations in order to develop a harmonized set of high-confidence resolutions 
for final model evaluations. Retraining the model on harmonized pilot 400 resolutions did not substantially alter 
its performance (data not shown). All harmonized resolutions were then scored using the refined model and 
evaluated sensitivity (defined as the proportion of true variants scoring at or above the filter threshold; at cutoff 
0.26) and PPV across those data to select a more stringent score threshold for cohort burden analysis (Figure 
S12). For cohort burden analysis, the reprocessed pilot 24 WES data was used over the merged pilot 24 WES 
data used for initial model training.  
 
Outlier Family Removal 
 
The 45x joint coverage calls with 5% minimum AFs at refined logistic regression score of >= 0.26 were used to 
determine if families had an excess of predicted SNVs. To account for coverage differences across families, 
mutation counts were normalized to reflect the number of calls that would be observed in the full exome (based 
on 45x joint coverage). Families with individuals that had total coverage adjusted variants above these 
thresholds were removed: GDMs >= 12, child PMMs >= 10, parental nontransmitted PMMs >= 12, parental 
transmitted PMMs >= 3, Thresholds were selected based on the distribution of counts in each category across 
the cohort. 

To remove families that did not meet the coverage thresholds stipulated for each variant minimum AF, 
the total number of jointly sequenced bases within unique autosomal coding regions was calculated for each 
family at or above the coverage requirement: 45x, 50x, 65x, 85x, and 130x. Families with joint coverage falling 
below the 5th percentile (45x-85x) or bottom decile (130x) were excluded (Figure S14). Percentile ranking were 
defined using the whole cohort (quads + trios).  

 
Significance Determination for Burden and Variant Properties Analysis 

To control for type I errors resulting from multiple comparisons, a false discovery rate (FDR) approach utilizing 
the Benjamini-Yekutieli (BY) procedure was applied.14 While, less powerful than the Benjamini-Hochberg 
procedure, BY allows for any dependency structure among the test statistics. We used the R package Mutoss 
implementation, BY(), with FDR set to 0.05. For quad data, the paired nonparametric Wilcoxon sign rank test 
(WSRT) was used. For synonymous variants we used a two-sided test. We used a one-sided test for missense 
PMMs with the a priori assumption that probands would have a higher rate. For full cohort (quad + trio) 
comparisons the unpaired Wilcoxon rank sum test (WRST) was used. 
 
Families of tests were defined based on the dataset and test statistic used, as follows: 
 
 PMM burden, Probands v. Siblings 

i. Synonymous PMM burden quads two-sided WSRT (5 tests): 1. 15%-45x, 2. 12.5%-50x, 3. 10%-
65x, 4. 7.5%-85x, 5. 5%-130x. 

ii. 12.5%-50x synonymous PMM burden full/subcohorts, two-sided WRST (5 tests): 1. Full cohort, 
2. Has LGD GDM, 3. No LGD GDM, 4. Has NS GDM, 5. No NS GDM. 

iii. 15%-45x missense PMM burden full/subcohorts/gene sets, one-sided WRST (15 tests):  
a. subcohorts: 1. All missense full cohort, 2. All missense has LGD GDM, 3. All missense 

no LGD GDM, 4. All missense has NS GDM, 5. All missense no NS GDM;  



b. subcohorts and in essential genes: 6. Full cohort, 7. Has LGD GDM, 8. No LGD GDM, 9. 
Has NS GDM, 10. No NS GDM; 

c. subcohorts and in intolerant genes: 11. Full cohort, 12. Has LGD GDM, 13. No LGD 
GDM 14. Has NS GDM, 15. No NS GDM . 

Mutation Properties  
iv. AF distribution comparisons, two-sided WRST (7 tests): 1. Probands v. Siblings, 2. Fathers 

Trans v. Nontrans, 3. Mothers Trans v. Nontrans, 5. Fathers Trans v. Mothers Trans, 6. Fathers 
Nontrans v. Mothers Nontrans, 7. Children v. Parents Nontrans.  

v. Distance to splice site distribution, two-sided WRST (4 tests): 1. Probands v. Siblings, 2. 
Fathers v. Mothers, 3. Siblings v. Parents, 4. Probands v. Parents. 

 
Phenotype Information 

We compared 12 subjects LGD PMMs and 45 subjects with missense PMMs whose mutations overlapped 
genes with GDMs in the SSC. We evaluated developmental history data including: delay in first word use, age 
of use of first phrases, age at walking, birth weight, gestational age, history of seizures, current body mass 
index, and head circumference. Standardized head circumference scores (Z-scores) were calculated using 
norms established by Roche et al. to account for age and gender.15 We examined measures of autistic 
symptomatology, including: the Autism Diagnostic Interview-Revised (ADI-R) three domain scores (verbal and 
non-verbal communication, social interaction and reciprocity, repetitive behaviors), the Autism Diagnostic 
Observation Schedule (ADOS) calibrated severity scale, the Social Responsiveness Scale (SRS), and total 
Repetitive Behavior Scale scores. Non-autistic behavioral and emotional problems were examined using the 
Child behavior Checklist (CBCL). Level of functioning was examined using the Vineland Adaptive Behavior 
Scales and intellectual quotient (IQ).  
 When available, the age of parents at blood draw (in years) was retrieved from repository records. If 
this information was not available, the parental age at blood draw was estimated by adding the proband age at 
ADOS (months) to the parental age at birth (months) and then rounding to the nearest year. The ADOS was 
performed near the time of draw. Using these sources, the age of parents at blood draw was estimated for all 
but two families that passed QC.  
 
Supplemental Note: Model Development  
 
Based on the preliminary findings of variants identified using germline variant calling pipelines, we sought to 
perform a systematic analysis of PMMs with methods specifically geared toward mosaic SNV mutations. 
Several standalone PMM single nucleotide variant (SNV) callers were evaluated and a custom read parser 
(mPUP) using simulated data containing artificial variants at 202 loci. These loci were simulated at varying AF 
and depths ranging from 1 to 50% and 30 to 500-fold respectively, allowing a wide evaluation of the possible 
detection search space (Tables S8 and S9). We found that within the simulated data, caller sensitivity greatly 
varied at different depths and AFs, but many had high PPV (Table S8). Based on their complementary 
performances at different depths and AFs, we selected Varscan2, LoFreq, and mPUP for further evaluation.  

These three variant callers were applied to the high depth 24 quad families (96 individuals) WES data. 
This call set included predicted PMM calls from a wide range of AFs (3-50%), at different depths (8x-500x) and 
support levels (5% at 60x versus 500x). LoFreq showed the best performance as a single caller in terms of 
correctly validated calls (125/138 LoFreq calls validated true); however, it failed to predict 13/51 validated PMM 
(Figure S7A). The majority of the PMM calls were validated in both WB and LCL DNA (42/49 with high-
confidence dual data).  
 Using these pilot 24 validation data, an initial logistic regression model was constructed and trained on 
the validated predicted true/false PMMs, which took into account depth, caller, reference base, and transition 
vs. transversion changes. A logistic score threshold of >= 0.2, was selected as it performed well in three-way 
cross validations, but was nevertheless conservative given the limited number of training calls (Figure S7D). 
Importantly, the initial logistic regression model reduced the raw number of raw PMM calls by 93%. 

This initial logistic regression model was then applied as well as additional filters for ambiguous 
transmitted calls (i.e. binomial p <= 0.0001 and Fisher’s exact p <= 0.01) to an independent set of 400 quad 
families. Validations were then performed. For both pilot 24 and 400 validations, manual inspection of WES 
and smMIP alignment data was performed for all initially positive validations (based on read count data) and a 
subset of false positive calls. In doing so, a number of common features associated with poor prediction 



outcomes or problematic genomic regions were observed. First, we found that a large number of false positive 
validations had an excess of multiple mismatches within the variant reads (Figures S6 and S11A). This feature 
was not present in the vast majority of true germline or mosaic calls. Based on the median number of 
mismatches we identified <= 3 as a filter threshold that would remove a large number of false positive calls, 
without dramatically altering sensitivity (Figure S11A). Similarly a number of the pilot 24 calls were detected 
multiple times in the pilot 400 call set, which had not been processed at the time of selecting pilot 24 validation 
calls (Figure S11B). Variant calls present in multiple families typically validated as false positives or parental 
germline. Therefore, all calls with these two features were removed prior to building a refined logistic 
regression model.  
 Using the filtered pilot 400 high-confidence validation set, a refined logistic regression model was built 
on all predicted PMMs (Figure S9). In evaluating the model, calls generally fell within three groups (Figure 
S12B). First, low scoring and largely false positive calls had low AFs, low read counts, and medium-high 
empirical error rates. The middle grouping had either low-medium AF, low error rate, and lower variant read 
counts or low-medium AF, medium-high error rate, and high variant read count. The highest scoring group was 
largely driven by higher AFs and variant read counts. This group includes the bulk of the true (mosaic and 
germline) validated calls 87/109 (80%); whereas, the middle grouping contained 15/109 (14%) true validated 
calls and the low grouping had only 7/109 (6%). Additionally calls validating germline tended to have higher 
WES AFs and found that the vast majority (99%) of validated PMM calls had upper CI bounds that remained 
below 0.4, while the majority of true germline calls (76%) fell above this threshold (Figure S10). This threshold 
was chosen to maximize sensitivity. In addition, a significant fraction of the false positive calls were annotated 
as SD/TRF calls (Figure S11D). Moving forward SD/TRF calls were removed and re-classified as mosaic 
versus germline status based on the AF binomial CI.  

Pilot 400 family counts for called calls were derived prior to removing outlier families. Re-deriving these 
counts post outlier removal did not substantially change the call set. Initially, variants that had any population 
frequency in at least one but not all three databases were erroneously omitted from the variant validation sets. 
Having identified this error, we used this opportunity to generate a third round of validations with which to 
evaluate our refined model. All pilot 24 and pilot 400 families except 14208 were included in this analysis. 
Variant filtering was performed similarly to previous iterations, with correction of the population frequency filter 
and updated filtering rules. Putative PMMs were scored with our refined logistic model and excluded from 
validations if they scored < 0.26. Validation smMIP design, sequencing, analysis, and resolution were 
performed similarly as for the pilot groups. Across the test sets (under harmonized filters), both sensitivity and 
PPV converged at a logistic score of 0.518 (sensitivity 0.83, PPV 0.85) and chose to use this more stringent 
score threshold (Figures S12E-F). In addition, calls with less than five variant allele reads were removed as 
these disproportionately contributed to false calls (Figure S11E).  

In summation, we identified these parameters as our “best practice calling” and applied this approach to 
the full cohort to generate our high confidence call set: 1) variant must have at least five reads, 2) AF upper CI 
must intersect 5%, 3) mismatch <= 3 in variant reads, 4) called by at least two callers, 5) cohort count <= 2, 6) 
have an AF upper CI < 40%, 7) not be within a known SDTRF loci, 8) refined logistic model score of 0.518. 
Specifically for transmitted calls to be considered a putative PMM, the binomial deviation is more stringent (p 
<= 0.0001) and the AF between child and parent must be significantly different by Fisher’s exact test (p <= 
0.01).  
 
Supplemental Note: Case Reports 
 
Reports were generated for a subset of probands with nonsynonymous mutations (both GDMs and PMMs) 
intersecting the 65 genes meeting an FDR of 0.1 from Sanders et al. (2015)16 and genes with mosaic and 
germline LGD mutations. Summaries of patient characteristics—including cognitive ability, presence of 
comorbid medical and psychiatric disorders, presence of frank dysmorphology, and raw physical 
measurements (e.g., head circumference)—were culled from the SSC phenotype data distributions 
(https://sfari.org/resources/sfari-base) and presented in narrative form. Note: MFRP was not included because 
of the presence of a LGD GDM in an unaffected sibling. Individuals with mutations intersecting more than one 
gene are listed twice.  
 
 
  



BAZ2B (LGD PMM and GDM) 
 
ID: 13694.p1 
Event: Predicted Mosaic Nonsense 
Patient is a 104 month old non-Hispanic, bi-racial male diagnosed with ASD and Intellectual Disability. Patient 
is minimally verbal, has a full scale IQ (FSIQ) in the extremely low range (21), and overall adaptive skills in the 
low range (Vineland ABC = 62). Adaptive skills are uniformly low. Patient does not have a history of seizures, 
but has a possible history of language regression and has attention difficulties (CBCL Attentional Difficulties T-
Score = 74). Patient walked at 12 months of age, but has not yet attained single word use or phrase speech. At 
time of visit patient’s body mass index (BMI) Z-score was -0.80, height Z-score was 0.71, and head 
circumference Z-score was -0.62.  
 
ID: 14581.p1 
Event: Predicted Germline Frameshift Insertion 
Patient is a 64 month old non-Hispanic, white male diagnosed with ASD. Patient is verbally fluent, has a FSIQ 
in the high average range (113), and overall adaptive skills in moderately low range (Vineland ABC = 80). 
Adaptive communication falls in the average range (Communication Standard Score = 91), adaptive social 
skills falls in the average range (Social Standard Score = 86), and daily living skills fall in the moderately low 
range (DLS Standard Score = 75). Patient does not have a history of seizures, but has a history of word loss. 
Patient has internalizing (CBCL Internalizing T-score= 76) and externalizing symptoms (CBCL Externalizing T-
score= 86) in the clinical range. Patient walked at 12 months of age, used single words at 12 months of age, 
and used first phrases at 18 months old. At time of visit, patient’s BMI Z-score was 1.09, height Z-score was 
1.06, and head circumference Z-score was -0.19.  
 
ID: 11441.p1 
Event: Predicted Germline Missense 
Patient is a 93 month old non-Hispanic, bi-racial male diagnosed with ASD. Patient is verbally fluent, has a 
FSIQ in the very high range (125), and overall adaptive skills in the average range (Vineland ABC = 89). 
However, while adaptive communication and daily living skills fall in average range, social adaptive skills fall in 
low range (Social Standard Score = 64). Patient does not have a history of seizures or regression. Patient has 
internalizing symptoms in the borderline clinical range (CBCL Internalizing T-score= 67). Patient walked at 11 
months of age, used single words at 11 months of age, and used first phrases at 14 months old.  
 
 
UNC79 (LGD PMM and GDM) 
 
ID: 14547.p1 
Event: Predicted Mosaic Nonsense 
Patient is a 99 month old non-Hispanic, Native Hawaiian male diagnosed with ASD. Patient is verbally fluent, 
has a FSIQ in the very low range (71), with a significant nonverbal (NVIQ = 95) and verbal (VIQ = 60) split. 
Patient’s overall adaptive skills fall in moderately low range (Vineland ABC = 74). Adaptive communication falls 
in the moderately low range (Communication = 81), adaptive social skills falls in the moderately low range 
(Social = 76), and daily living skills fall in the low range (DLS = 68). Patient does not have a history of seizures, 
but had a possible regression. Patient has no elevations in externalizing or externalizing symptoms. Patient 
walked at 14 months of age and used single words at 15 months of age and first phrases at 26 months old. At 
time of visit, patient’s BMI Z-score was 2.26, height Z-score was 1.72, and head circumference Z-score was 
2.26.  
 
ID: 14530.p1 
Event: Predicted Germline UNC79 Frameshift Deletion and Predicted Germline GIGYF1 Frameshift Insertion 
 
Patient is a 49 month old Hispanic male diagnosed with ASD. Patient uses simple phrase speech, has a FSIQ 
in the low average range (82), and overall adaptive skills in moderately low range (Vineland ABC = 73). 
Adaptive skills are uniformly in the moderately low range. Patient does not have a history of seizures or 
regression. Patient has externalizing symptoms in the clinical range (CBCL Externalizing T-score= 74). Patient 
walked at 12 months of age and had language delays, using single words at 30 months of age and first 



phrases at 46 months old. At time of visit, patient’s BMI Z-score was 0.45, height Z-score was 0.25, and head 
circumference Z-score was 1.26.  
 
 
USP15 (LGD PMM and GDM) 
 
ID: 12025.p1 
Event: Predicted Mosaic Nonsense 
Patient is an 80 month old non-Hispanic, White male diagnosed with ASD. Patient is minimally verbal, has a 
FSIQ in the very low range (72), with a significant nonverbal (NVIQ = 96) and verbal (VIQ = 69) split. Patient’s 
overall adaptive skills fall in low range (Vineland ABC = 70). Adaptive communication falls in the moderately 
low range (Communication = 76), adaptive social skills falls in the low range (Social = 63), and daily living skills 
fall in the moderately low range (DLS = 77). Patient does not have a history of seizures, but had word loss. 
Patient has internalizing symptoms in the borderline clinical range (CBCL Internalizing T-score= 65). Patient 
walked at 10 months of age and used single words at 12 months of age, but had a delay in using phrase 
speech (first phrases at 48 months old). At time of visit, patient’s BMI Z-score was 0.06, height Z-score was -
1.42, and head circumference Z-score was -0.22.  
 
ID: 12521.p1 
Event: Predicted Germline Frameshift Deletion 
Patient is an 86 month old non-Hispanic, White female diagnosed with ASD. Patient is verbally fluent and has 
a FSIQ in the very low range (78). Patient’s overall adaptive skills fall in moderately low range (Vineland ABC = 
78). Adaptive communication falls in the moderately low range (Communication = 84), adaptive social skills 
falls in the low range (Social = 69), and daily living skills fall in the average range (DLS = 87). Patient does not 
have a history of seizures, but has a possible regression. Patient has externalizing (CBCL Internalizing T-
score= 65) and externalizing (CBCL Externalizing T-score= 66) symptoms in the borderline clinical range. 
Patient walked at 19 months of age and had language delays, using single words at 36 months of age and first 
phrases at 48 months old. At time of visit, patient’s BMI Z-score was -0.89, height Z-score was -1.22, and head 
circumference Z-score was 0.65.  
 
 
DIP2A (ASD 65)  
 
ID: 13012.p1 
Event: Predicted Mosaic Frameshift Insertion 
Patient is a 70-month-old Hispanic male diagnosed with ASD and Intellectual Disability. He uses single words, 
has a FSIQ in the extremely low range (54) with a significant split between nonverbal (NVIQ = 60) and verbal 
(VIQ = 21) abilities. Patient’s overall adaptive skills fall in the low range (Vineland ABC = 54) with uniform 
deficits across adaptive domains. He has no history of seizures. He has a history of regression. He walked at 
10 months, used single words at 11 months of age, and has not developed phrase speech. At time of visit, 
patient’s BMI Z-score was 0.72, height Z-score was -0.13, and head circumference Z-score was 0.63.  
 
ID: 13106.p1 
Event: Predicted Germline Nonsense 
Patient is a 198-month-old non-Hispanic White male diagnosed with ASD. He is verbally fluent and has a FSIQ 
in the average range (100) with a significant split between nonverbal (NVIQ = 79) and verbal (VIQ = 140) 
abilities. Patient’s overall adaptive skills fall in the low range (Vineland ABC = 56) with uniform significant 
deficits across adaptive domains. Patient has clinically significant internalizing symptoms (CBCL Internalizing 
T-score = 71) and borderline clinically significant externalizing (CBCL Externalizing T-score = 69) symptoms. 
He has no history of regression and no history of seizures. He walked at 16 months, used single words at 13 
months of age, and used first phrases at 18 months of age. At time of visit, patient’s BMI Z-score was 1.59, 
height Z-score was -1.65, and head circumference Z-score was 0.64.  
 
 
  



GIGYF1 (ASD 65)  
 
ID: 11232.p1 
Event: Predicted Mosaic Frameshift Deletion 
Patient is a 104-month-old non-Hispanic, White male diagnosed with ASD. He is verbally fluent and has a 
FSIQ in the very low range (74) with a significant split between nonverbal (NVIQ = 68) and verbal (VIQ = 91) 
abilities. Patient’s overall adaptive skills fall in the average range (Vineland ABC = 97) with uniform adaptive 
functioning across communication, daily living, and social domains. He has no history of seizures. He has no 
history of regression. He has no elevated clinical symptomatology across internalizing and externalizing 
disorders. He walked at 12 months, used single words at 11 months of age, and developed phrase speech at 
30 months of age. At time of visit, patient’s BMI Z-score was 1.43, height Z-score was -0.05, and head 
circumference Z-score was 0.11.  
 
ID: 11860.p1 
Event: Predicted Germline Splicing 
Patient is a 72-month-old Hispanic male diagnosed with ASD. He uses phrase speech and has a FSIQ in the 
low average range (86) with a significant split between nonverbal (NVIQ = 95) and verbal (VIQ = 75) abilities. 
Patient’s overall adaptive skills fall in the moderately low range (Vineland ABC = 77) with uniform significant 
deficits across adaptive domains. He has no elevated clinical symptomatology across internalizing and 
externalizing disorders. He has no history of regression and no history of seizures. He walked at 13 months, 
used single words at 42 months of age, and used first phrases at 48 months of age. At time of visit, patient’s 
BMI Z-score was 1.94, height Z-score was 0.62, and head circumference Z-score was 0.88.  
 
ID: 14530.p1 
Event: Predicted Germline UNC79 Frameshift Deletion and Predicted Germline GIGYF1 Frameshift Insertion 
 
Patient is a 49 month old Hispanic male diagnosed with ASD. Patient uses simple phrase speech and has a 
FSIQ in the low average range (82), and overall adaptive skills in moderately low range (Vineland ABC = 73). 
Adaptive skills are uniformly in the moderately low range. Patient does not have a history of seizures or 
regression. Patient has externalizing symptoms in the clinical range (CBCL Externalizing T-score= 74). Patient 
walked at 12 months of age and had language delays, using single words at 30 months of age and first 
phrases at 46 months old. At time of visit, patient’s BMI Z-score was 0.45, height Z-score was 0.25, and head 
circumference Z-score was 1.26.  
 
 
CHD2 (ASD 65) 
 
ID: 13073.p1 
Event: Predicted Mosaic CHD2 Missense and Predicted Germline SYNGAP1 Frameshift Deletion 
Patient is a 58-month-old non-Hispanic, White male diagnosed with ASD. He is minimally verbal and has a 
FSIQ in the extremely low range (43) with a significant split between nonverbal (NVIQ = 60) and verbal (VIQ = 
25) abilities. Patient’s overall adaptive skills fall in the low range (Vineland ABC = 57) with uniformly significant 
deficits across adaptive domains. He has no elevated clinical symptomatology across internalizing and 
externalizing disorders. He has no history of seizures, but history of a possible regression. In terms of 
milestones, he walked at 25 months and has not developed single word or phrase speech. At time of visit, 
patient’s BMI Z-score was 1.86 and height Z-score was -1.92. 
 
ID: 13618.p1 
Event: Predicted Germline Frameshift Deletion 
Patient is a 159-month-old non-Hispanic White female diagnosed with ASD and Intellectual Disability. She is 
verbally fluent and has a FSIQ in the extremely low range (44). Patient’s overall adaptive skills fall in the low 
range (Vineland ABC = 57) with uniform deficits across adaptive domains. Patient has clinically significant 
scores of internalizing (CBCL Internalizing T-score = 75) and borderline externalizing (CBCL Externalizing T-
score = 69) symptoms. She has a history of seizures (first grand mal seizure at 11 years of age, with weekly 
seizures, and reported febrile seizure at 12 years of age), and abnormal EEG (diagnosed at 4 years old). She 
has no history of regression. She walked at 14 months, used single words at 12 months of age, and used first 



phrases at 30 months of age. At time of visit, patient’s BMI Z-score was -2.32, height Z-score was -0.34, and 
head circumference Z-score was -1.65. 
 
ID: 13614.p1 
Event: Predicted Germline Nonsense 
Patient is a 113 month non-Hispanic White male diagnosed with ASD. He is verbally fluent and has a FSIQ in 
the very low range (79). He has moderately low adaptive scores (Vineland ABC = 74) with uniformly low scores 
in the adaptive subdomains. Patient has clinically significant externalizing symptoms (CBCL Externalizing T-
score = 72). Patient has also been diagnosed with Oppositional Defiant Disorder, Attention Deficit Hyperactivity 
Disorder, and Generalized Anxiety Disorder. He has no history of regression. Patient has had two complex 
partial seizures. He walked at 13 months, used single words at 30 months or age and phrases at 36 months of 
age. At time of visit, patient’s BMI Z-score was 1.20, height Z-score was 0.20, and head circumference Z-score 
was -0.22. 
 
ID: 13818.p1 
Event: Predicted Germline Frameshift Insertion  
The patient is a 179 Non-Hispanic, White male. Patient has a diagnosis of ASD as well as Developmental 
Coordination Disorder, Unspecified Anxiety Disorder, Specific Learning Disorder with impairment in 
Mathematics, Mild Intellectual Disability, Unspecified Depressive Disorder and Disruptive Mood Dysregulation 
Disorder. He is verbally fluent and speaks in complex sentences. Patient’s cognitive abilities fall in the 
extremely low range (66) and his adaptive abilities fall in the low range (Vineland ABC = 66). Patient used his 
first single words at 18 months of age. His first phrases were at 21 months. Patient is color blind, and has a 
significant visual impairment (“legally blind” without glasses) but wears glasses to correct to normal. Patient 
has a significant history of chronic constipation, and underwent a testicular hernia repair secondary to 
constipation. Patient also has a significant history of seizures (grand mal and petit mal reported with age of 
onset at 2 years of age). Patient has a multidysplastic right kidney. Facial features include horizontal eyebrows, 
synophrys, horizontal palpebral fissures and a high nasal root. Patient has single palmar crease on right hand, 
mild 2-3 cutaneous syndactyly of toes, a curved 2nd toe and flat feet. Physical examination reveals one café au 
lait spot. Patient has a BMI Z-score of -0.92, height Z of 0.6, and head circumference Z of -0.65. 
 
 
KMT2C (ASD 65) 
 
ID: 11148.p1 
Event: Predicted Germline KMT2C Nonsense 
Patient is a 68-month-old non-Hispanic, White male diagnosed with ASD. He uses phrase speech to 
communicate and has a FSIQ in the low average range (86) with a significant split between nonverbal (NVIQ = 
82) and verbal (VIQ = 99) abilities. Patient’s overall adaptive skills fall in the moderately low range (Vineland 
ABC = 81) with adaptive communicative and daily living skills in the average range, but social skills falling in 
the moderately low range. He has no elevated clinical symptomatology across internalizing and externalizing 
disorders. He has no history of seizures and no history of regression. He walked at 17 months, used single 
words at 12 months, and phrase speech at 24 months.  
 
ID: 11241.p1 
Event: Predicted Germline KMT2C Missense 
Patient is a 144-month-old non-Hispanic, White male diagnosed with ASD. He is verbally fluent and has a 
FSIQ in the very low range (76) with similar performance across nonverbal (NVIQ = 77) and verbal (VIQ = 80) 
domains. Patient’s overall adaptive skills fall in the low range (Vineland ABC = 64) with daily living skills in the 
moderately low range, but social and communication skills falling in the low range. He has no elevated 
externalizing symptomatology, but clinically elevated internalizing symptoms (CBCL T-score= 70). He has a 
history of febrile seizures and a possible history of regression. In terms of milestones, he walked at 12 months 
old, used single words at 9 months and phrase speech at 15 months. Patient has a BMI Z-score of 1.94, height 
Z of -1.7, and head circumference Z of -0.07.  
 
ID: 12742.p1 
Event: Predicted KMT2C Missense 



Patient is a 58-month-old non-Hispanic, White male diagnosed with ASD. He is verbally fluent and has a FSIQ 
in the average range (105) with similar performance across nonverbal (NVIQ = 103) and verbal (VIQ = 106) 
domains. Patient’s overall adaptive skills fall in the average range (Vineland ABC = 94) with similar functioning 
across all adaptive subdomains. He has no elevated clinical symptomatology across internalizing and 
externalizing disorders. He has neither history of seizures nor history of regression. In terms of milestones, he 
walked at 13 months old, used single words at 24 months and phrase speech at 33 months. Patient has a BMI 
Z-score of 3.7, height Z-score of -3.88, and head circumference Z of -0.70. 
 
ID: 13897.p1 
Event: Predicted Mosaic KMT2C Missense 
Patient is a 127-month-old non-Hispanic, White male diagnosed with ASD. He is verbally fluent and has a 
FSIQ in the low average range (85) with split performance across nonverbal (NVIQ = 91) and verbal (VIQ = 78) 
domains. Patient’s overall adaptive skills fall in the moderately low range (Vineland ABC = 80) with daily living 
skills in the average range, but social and communication skills falling in the moderately low range. He has no 
elevated clinical symptomatology across internalizing and externalizing disorders. He has no history of 
seizures and no history of regression. In terms of milestones, he walked at 12 months old, used single words at 
24 months and phrase speech at 30 months. Patient has a BMI Z-score of 2.0, height Z-score of 3.29, and 
head circumference Z of 2.95. 
 
 
SCN2A (ASD 65) 
 
ID: 13522.p1 
Event: Predicted Transmitted Mosaic (Germline) Missense 
Patient is a 138-month-old Hispanic male diagnosed with ASD. He is verbally fluent and has a FSIQ in the very 
low range (79) with split performance across nonverbal (NVIQ = 87) and verbal (VIQ = 70) domains. Patient’s 
overall adaptive skills fall in the moderately low range (Vineland ABC = 72) with similar functioning across 
adaptive subdomains. He has no elevated clinical symptomatology across internalizing and externalizing 
disorders. He has no history of seizures and no history of regression. In terms of milestones, he walked at 14 
months old, used single words at 12 months and phrase speech at 66 months. Patient has a BMI Z-score of 
1.72, height Z-score of -1.2, and head circumference Z-score of 0.04. 
 
ID: 11892.p1 
Event: Predicted Germline Nonsense 
Patient is a 12 year old non-Hispanic, White male. Patient has a diagnosis of ASD, Speech Sound Disorder, 
Mild Intellectual Disability and Developmental Coordination Disorder. Patient is verbally fluent with a FSIQ in 
the extremely low range (56) and significant nonverbal (NVIQ = 42) and verbal (VIQ = 81) split. His adaptive 
abilities fall in the low range (Vineland ABC = 62). He first used single words at 16 months and phrase speech 
at 30 months. He has no history of regression or seizures. Parent report does not indicate any significant 
internalizing or externalizing behaviors. He has been diagnosed with scoliosis and received corrective surgery 
for tibeal torsion on both legs at 4 years. Facial features include a broad forehead, a slightly heavy brow that is 
prominent laterally, slightly high nasal bridge and a thin nose with upturned tip, palpebral fissures at 3.2 cm (+2 
SD). Other notable dysmorphology includes scoliosis with a right-to-left curve, multiple nevi scattered on back 
and chest and hyperreflexia observed in biceps, patellae and Achilles. Patient has a BMI Z-score of -0.35, 
height Z-score of -0.52, and head circumference Z-score of 0.05.  
 
ID: 14525.p1  
Event: Predicted Germline Missense 
Patient is a 142 month old non-Hispanic, White male. Patient has a diagnosis of ASD, Intellectual Disability, 
and speech delay. He is minimally verbal, uses sign language to communicate and has an estimated verbal 
mental age of 10 months and a nonverbal mental age of 18 months. His adaptive skills across all domains are 
in the low range (Vineland ABC = 37). He has clinically significant internalizing symptoms (CBCL Internalizing 
T-score = 65). In terms of milestones, he walked at 18 months, but never developed language. He has a 
significant seizure history, starting at 2.5 years of age, with approximately 30 seizures each day, lasting 
approximately 3-4 months. Seizures were categorized as grand mal, generalized tonic clonic, and atonic and 



drop attacks. Patient has a BMI Z-score of -0.94, height Z-score of 0.14, and head circumference Z-score of 
0.04. 
 
ID: 13642.p1  
Event: Predicted Germline Missense 
Patient is an 111 month old non-Hispanic, White male diagnosed with ASD. He is verbally fluent, with a high 
average IQ (114) and consistently moderately low adaptive skills (Vineland ABC = 73). Patient has clinically 
significant internalizing (CBCL Internalizing T-score = 70) and externalizing (CBCL Externalizing T-score = 77) 
symptoms. He walked at 17 months, used single words at 18 months, and combined words into short 
sentences at 36 months. Possible loss and regression was reported, but no seizure history. He has a possible 
hearing problem and corrected vision problems. Patient had chronic diarrhea and suffered severe abdominal 
pain in early childhood. Patient has recent suspected heart problems (tachycardia). Patient has a BMI Z-score 
of 0.1, height Z-score of 1.82, and head circumference Z-score of -0.48. 
 
ID: 11114.p1 
Event: Predicted Germline Nonsense 
Patient is a 105 month old non-Hispanic, White female diagnosed with ASD and Intellectual Disability. She has 
several additional diagnoses including: pragmatic language disorder, mixed expressive-receptive language 
disorder, speech delay, written expression disorder, math disorder, and nonverbal learning disability, attention 
deficit hyperactivity disorder, and anxiety disorder. She was diagnosed with excessive clumsiness at 2 years, 
excessive gas at 4 years, and intermittent constipation at 4 months of age. She uses phrase speech and has 
an IQ in the extremely low range (40). Her adaptive skills are in the low range (Vineland ABC = 67). She has 
internalizing symptoms in the borderline clinical range (CBCL Internalizing T-score= 65). She has a history of 
word loss. No history of seizures. Patient has a BMI Z-score of 1.25, height Z-score of 1.56, and head 
circumference Z-score of 2.91. 
 
ID: 13544.p1 
Event: Predicted Germline Missense 
Patient is a 84-month-old non-Hispanic, White male diagnosed with ASD. He is minimally verbal using 
occasional phrase speech to communicate. He has a FSIQ in the extremely low range (63) with split 
performance across nonverbal (NVIQ = 77) and verbal (VIQ = 46) domains. Patient’s overall adaptive skills fall 
in the low range (Vineland ABC = 69) with daily living skills in the moderately low range, but social and 
communication skills falling in the low range. He has no elevated clinical symptomatology across internalizing 
and externalizing disorders. He has a history of seizures and a possible history of regression. In terms of 
milestones, he walked at 17 months old, used single words at 12 months and phrase speech at 45 months. 
Patient has a BMI Z-score of 0.01, height Z-score of 0.14, and head circumference Z-score of -0.73. 
 
ID: 14280.p1 
Event: Predicted Germline Missense 
Patient is a 113-month-old non-Hispanic, White male diagnosed with ASD. He is minimally verbal and has a 
FSIQ in the extremely low range (25). Patient’s overall adaptive skills similarly fall in the low range (Vineland 
ABC = 56) with similar deficits across all subdomains of adaptive functioning. He has no elevated clinical 
symptomatology across internalizing and externalizing disorders. He has no history of seizures but a possible 
history of regression. In terms of milestones, he walked at 16 months old but has not developed single word 
use or phrase speech. Patient has a BMI Z-score of -1.35, height Z-score of -1.74, and head circumference Z-
score of -0.13. 
 
 
SYNGAP1 (ASD 65) 
 
ID: 14001.p1 
Event: Predicted Mosaic Missense 
Patient is a 91-month-old non-Hispanic, Black male diagnosed with ASD. He is minimally verbal and has a 
FSIQ in the extremely low range (52) with split performance across nonverbal (NVIQ = 63) and verbal (VIQ = 
38) domains. Patient’s overall adaptive skills fall in the low range (Vineland ABC = 64) with consistent deficits 
in the low range across adaptive subdomains. He has no elevated clinical symptomatology across internalizing 



and externalizing disorders. He has no history of seizures, but a history of regression with word loss. In terms 
of milestones, he walked at 12 months old, used single words at 11 months and phrase speech at 54 months. 
Patient has a BMI Z-score of 0.43 and a height Z-score of 2.16. 
 
ID: 12804.p1 
Event: Predicted Germline Missense 
Patient is a 118-month-old non-Hispanic, White male diagnosed with ASD. He is verbally fluent and has a 
FSIQ in the very low range (77) with split performance across nonverbal (NVIQ = 85) and verbal (VIQ = 69) 
domains. Patient’s overall adaptive skills fall in the moderately low range (Vineland ABC = 77) with similar 
performance in the moderately low range across adaptive subdomains. He has no elevated clinical 
symptomatology across internalizing and externalizing disorders. He has no history of seizures and no history 
of regression. In terms of milestones, he walked at 11 months old, used single words at 18 months and phrase 
speech at 84 months. Patient has a BMI Z-score of -0.16, height Z-score of 0.49, and head circumference Z-
score of 1.26. 
 
ID: 13073.p1 
Event: Predicted Mosaic CHD2 Missense and Predicted Germline SYNGAP1 Frameshift Deletion 
Patient is a 58-month-old non-Hispanic, White male diagnosed with ASD. He is minimally verbal and has a 
FSIQ in the extremely low range (43) with a significant split between nonverbal (NVIQ = 60) and verbal (VIQ = 
25) abilities. Patient’s overall adaptive skills fall in the low range (Vineland ABC = 57) with uniformly significant 
deficits across adaptive domains. He has no elevated clinical symptomatology across internalizing and 
externalizing disorders. He has no history of seizures, but history of a possible regression. In terms of 
milestones, he walked at 25 months and has not developed single word or phrase speech. At time of visit, 
patient’s BMI Z-score was 1.86, and height Z-score was -1.92. 
 
 
KAT2B (ASD 65) 
 
ID: 11592.p1 
Event: Predicted Mosaic Splicing 
Patient is a 121-month-old non-Hispanic, White male diagnosed with ASD. He is verbally fluent and has a 
FSIQ in the above average range (115) with split performance across nonverbal (NVIQ = 109) and verbal (VIQ 
= 122) domains. Patient’s overall adaptive skills fall in the average range (Vineland ABC = 92) with 
communication and daily living skills in the average range, but adaptive social skills falling in the moderately 
low range. He has symptomatology in the internalizing domain in the borderline clinical range (CBCL 
Internalizing T-score= 68). He has no history of seizures and no history of regression. In terms of milestones, 
he walked at 12 months old, used single words at 14 months and phrase speech at 24 months. Patient has a 
BMI Z-score of -1.96, height Z-score of 1.45, and head circumference Z-score of -0.11. 
  



 
 
Figure S1. Representative AF Histograms for Members of Pilot 400 Families Excluded from Model 
Training Set 
(A) and (B) show individuals identified as having excess SNVs, but no obvious identity or family relationship 
issues. Secondary peaks suggest sample contamination, indicated by arrows. 
(C) and (D) show other members of the same families with typical AF distributions. 
Both families were excluded from training of the refined logistic model. Family 11352 was additionally excluded 
from burden analyses. Family 13992 was included in the burden analyses as more stringent filters ameliorated 
that family’s excess SNVs. Plots use previously published GDMs (Krumm et al. 2015) and exclude calls called 
homozygous by GATK. 
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Figure S2. Analysis Workflow for Pilot 24 PMM Predictions and Validations 
(A) For our first pilot study, we selected 24 families from the SSC collection that had WES performed in parallel 
by three different sequencing centers (Iossifov et al. 2014). Sequencing data were first merged per sample and 
then realigned using the method described in Krumm et al. 2015. Variants were called with two established, 
complementary variant callers (VarScan, LoFreq) and our script mPUP, a read count based method designed 
to maximize sensitivity. Variants were filtered and annotated as described in methods, then assigned predicted 
mosaic status and transmission. Candidate variants were validated by targeted resequencing. Results from 
validation were used as training data to develop a preliminary logistic model for scoring further predictions.  
(B) Boxplots of mean coverages of merged WES data from pilot 24 families split by person type.  
(C) Binomial probability distribution for a theoretical germline variant with 100x sequencing depth. This variant 
would be considered a putative PMM if fewer than 35 variant reads were observed (binomial p <= 0.001). 
(D) Representative pedigrees illustrating variant transmission classifications, with germline variants in blue and 
PMMs in red. I. transmitted parental mosaic, II. nontransmitted parental mosaic, III. Child mosaic, IV. Possible 
transmitted parental mosaic (likely false mosaic signal), V. Germline de novo. VI. Gonadal mosaic. 
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Figure S3. Coverage Per-Site and Per-MIP Uniformity Plots fro m Pilot 24 Validation Sequencing 
(A) Schematic of targeted resequencing using smMIPs.  
(B-E) Per-site plots show the summed coverage for all MIPs covering each target variant (left) and per-MIP 
plots show coverage for each MIP (right). Horizontal lines indicate reference thresholds of 10x and 50x 
coverage; in most pools, approximately 80% of calls achieved at least 50x total read depth. X-axes are scaled 
to the total number of MIPs or calls per pool for ease of comparison. 
(B) Pool 2. 
(C) Pool 3. 
(D) Pool 4. 
(E) Pool 5. 
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Figure S4. Representative Read Alignments for Parental Transmitted Mosaic Variants  
(A) Parental PMM and associated germline SNP transmitted to both children. 
(B) Example of a putative germline de novo call that is actually a cryptic parental mosaic 
(C) Transmitted parental mosaic variant supported by exome and validation data. For this particular site 
(chr10:g.69909825G>A), a second validation was performed with independent probes. In the second 
validation, the allele counts were consistent in the child, WB: 214/456 (47%) and LCL: 46/98 (47%). 
Abbreviations: fa-father, mo-mother, s-sibling, p-proband, WB-whole blood, LCL-lymphoblastoid cell line 
DPALT-Q20 alternative allele depth, DP-Q20 total site depth, AF-allele fraction. 
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Figure S5. Representative Read Alignments for Variants Transmitted with Skewed Allele Fractions 
(A) Maternal putative mosaic transmitted to proband with similarly skewed fraction. 
(B) Second example of putative mosaic variant also skewed in both proband and sibling. 
Abbreviations: fa-father, mo-mother, s-sibling, p-proband, WB-whole blood, LCL-lymphoblastoid cell line, 
DPALT-Q20 alternative allele depth, DP-Q20 total site depth, AF-allele fraction. 
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Figure S6. Representative Read Alignments for Apparently Validated PMMs in Problematic Regions 
Predicted maternal PMM with multiple nearby variants in a segmental duplication. 
Abbreviations: fa-father, mo-mother, s-sibling, p-proband, WB-whole blood, LCL-lymphoblastoid cell line 
DPALT-Q20 alternative allele depth, DP-Q20 total site depth, AF-allele fraction. 
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Figure S7. Evaluation of the Initial Logistic Regression Model 
(A) Performance and Intersection of Variant Callers on Pilot 24 Predicted Mosaic High-Confidence Validation 
Outcomes 
(B) Candidate predictor table with predictors and associated univariate model p-values. Abbreviations: cont-
continuous variable, T/F-Boolean variable. 
(C) Final model terms and performance metrics. Hoslem-Lemeshow p-value reported for groups = 10. 
(D) Sensitivity (sens) and PPV curves from 3-fold cross-validation of model. Briefly, the training data was 
randomly divided into three groups, with two groups used for training and to score the reserved third. Each 
group was withheld in turn, with sensitivity and PPV averaged across all three iterations. Sensitivity is defined 
as the proportion of validated true variants scoring at or above the given value. For score >= 0.2, sensitivity = 
0.85 and PPV = 0.67.  

Term Coefficient OR P-value 

LOFREQ 0.823 2.28 0.312 

TV -3.414 0.03 3.00x10-7 

DP 0.027 1.03 0.023 

VARSCAN 2.760 15.80 0.008 

REF_CG -0.116 0.89 0.841 

TV : DP 0.010 1.01 0.001 

LOFREQ : REF_CG 2.966 19.42 0.002 

DP : VARSCAN -0.028 0.97 0.021 

Term (Type) Univariate  
p-value Definition 

LOFREQ (T/F) 7.34x10-31 LoFreq call 

TV (T/F) 2.65x10-22 transversion 

DP (cont.) 2.43x10-17 variant depth 

AF (cont.) 1.76x10-12 variant fraction 

VARSCAN (T/F) 2.05x10-12 VarScan call 

DPALT (cont.) 2.23x10-11 variant depth 

SEGDUP (T/F) 2.39x10-7 segmental dup. annotation 

TRANSMITTED (T/F) 4.21x10-4 transmitted to child(ren) 

mPUP (T/F) 1.99x10-3 mPUP call 

GC_7MER (cont.) 6.56x10-3 %GC content of variant and 
3 bases either side 

REF_CG (T/F) 0.054 reference allele 

TRF (T/F) 0.075 tandem repeat finder annotation 

REPEAT (T/F) 0.178 RMSK or TRF annotation 

RMSK (T/F) 0.342 repeat masker annotation 

PHET (cont.) 0.767 binomial probability of counts, 
given 50% expected fraction 

AIC: 188.69 

Hoslem-Lemeshow  
p-value: 0.37  
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Figure S8. Filters Applied to Putative Transmitted Variants Subsequent to Pilot 24 Validations 
(A) Binomial probabilities for observed exome read counts of all pilot 24 predicted transmitted PMMs variants 
with high-confidence resolutions, with original threshold at p <= 0.001 and more stringent cutoff at p <= 0.0001. 
Nearly all validated PMMs fall well below the stricter threshold. Jitter applied for visibility. 
(B) Fisher’s exact test probabilities of difference between child and adult allele read counts for the same 
dataset. All validated PMMs fall well below the threshold of p <= 0.01. Jitter applied for visibility. 
Abbreviations: PGV-parental germline transmitted variant, PMT-parental mosaic transmitted. 
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Figure S9. Construction Process for the Refined Logistic Model 
(A) For our expanded pilot study, we used existing WES (Krumm et al. 2015) for 400 families from the SSC 
collection that had WES performed across three sequencing centers. Variants were called with two 
established, complementary variant callers (VarScan, LoFreq) and our script mPUP, a read count based 
method designed to maximize sensitivity. Variants were then filtered and annotated as described in methods. 
Predicted mosaic status and transmission were determined for filtered variants, and predicted PMMs scored 
using a preliminary logistic regression model trained on the earlier pilot validations. Variants in 78 families with 
were validated by targeted resequencing using smMIPs. Validation results were then used to develop our 
refined logistic model. *5 families were excluded as outliers.  
(B) Candidate predictor table with predictors and associated univariate model p-values. Abbreviations: bin- 
binned continuous variable, T/F-Boolean variable, Coef.-term coefficient in model. 
(C) Example of binning process showing error rate distribution and associated odds ratio distribution; colors 
indicate ranges collapsed into categories for final model. 
(D) Variant AF distribution and associated odds ratio distribution, similar to (B). 
(E) Final model terms and performance metrics. Hoslem-Lemeshow p-value reported for groups = 10.  
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Term (Type) Univariate  

p-value Definition 

DPALT (bin) <2.0x10-16 variant depth 

ERROR (bin) 1.54x10-12  site error rate 

LOFREQ (T/F) 1.77x10-9 LoFreq call 

AF (bin) 9.48x10-8 variant fraction 

XM_ALT_1 (T/F) 2.48x10-6 variant read  
median mismatches 

DP (bin) 7.14x10-6 total depth 

REF_CG (T/F) 8.35x10-3 reference allele 

MAPQ_ALT (bin) 0.143 variant read  
median MAPQ 

TV (T/F) 0.161 transversion 

TRF (T/F) 0.215 tandem repeat finder 
annotation 

SEGDUP (T/F) 0.575 segmental dup. 
annotation 

RMSK (T/F) 0.916 repeat masker 
annotation 

VARSCAN (T/F) 0.985 VarScan call 

mPUP (T/F) 0.987 mPUP call 

B 

Term Coefficient OR P-value 

DPALT 2.497 12.15 8.47x10-8 

ERROR - high -2.421 0.09 1.59x10-5 

ERROR - med -0.785 0.46 0.125 

AF - high 2.830 16.94 1.79x10-3 

AF - med 0.584 1.79 0.329 

XM_ALT_1 1.496 4.46 5.64x10-3 

REF_CG 1.483 4.41 2.09x10-3 

AIC: 171.91 

Hoslem-Lemeshow  
p-value: 0.56  
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Figure S10. Distribution of AF Confidence Intervals for Pilot PMMs Validated Mosaic or Germline 
WES AFs and confidence intervals for sites initially predicted mosaic and with validation data for pilot 24 (24 
quads) and pilot 400 (78 quads) families. Initial logistic model, pilot 400 singleton, and mismatch filters applied. 
Reclassifying predicted PMMs with 90% confidence intervals overlapping 0.4 as germline correctly excludes 
25/33 (76%) germline resolutions and retains 112/113 (99%) mosaic resolutions. Plot includes validation data 
for both parents and children. Confidence intervals calculated using Agresti-Coull method. 
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Figure S11. Development of Additional Filters Based on Validation Outcomes 
(A) Median mismatches in variant reads for pilot 24 and 400 validated calls by validation outcome, with jitter 
applied to points for visibility. Filter threshold at <= 3 selected to retain all validated germline de novo calls.  
(B) Occurrence of pilot 24 variants in pilot 400 families, with filter threshold at < 1. Variants in multiple families 
typically validated as false or parental germline.  
(C-E) Evaluation of additional factors driving false calls on pilot 24 and 400 validations after applying refined 
logistic regression model, variant read mismatch (A), and single pilot 400 (B) filters.  
(C) Occurrence of all validated calls across entire cohort, with filter threshold at <= 2. Variants present in more 
families typically validated as false or parental germline.  
(D) Effects on true, false, and indeterminate outcomes of excluding repetitive sequence annotation. Excluding 
both SD and TRF regions substantially reduced problematic calls and false validations. Abbreviations: RMSK- 
RepeatMasker, SD-segmental duplication, TRF-Tandem Repeat Finder, ND-indeterminate or low-confidence 
validations. 
(E) Effect of successively more stringent variant read depth (DPALT) filters on sensitivity and PPV for predicted 
PMMs in all validation groups passing all other filters except logistic score. Threshold of >= 5 variant reads 
selected to substantially reduce false positives while still passing ~90% of true calls into model scoring. No true 
germline variants were filtered under any threshold tested. Calls with indeterminate or low-confidence 
validations were not included. 
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Figure S12. Evaluation of Refined Logistic Regression Model Performance on Training Set and Pilot 24 
Validations 
(A) Sensitivity and PPV curves from 3-fold cross-validation using training set of pilot 400 predicted PMMs with 
high-confidence resolutions. All validated variants are considered true positives, regardless of germline or 
mosaic status.  
(B) Ranked score plot showing validation outcomes for training set against the characteristic predictors 
defining score ranges.  
(C) Sensitivity curves for successively more stringent filters applied to pilot 24 predicted PMMs with high-
confidence resolutions. Sensitivity for each filter set is defined using the set of validated true calls that pass 
filters regardless of logistic score. At logistic score cutoff 0.26, sensitivity is 0.94 for all filter sets. Logistic filters 
(LF) are the same filters applied in the pilot 400 dataset for model building. Intermediate line “-mPUP only” 
removes calls identified solely by the mPUP script. Final filters, adds the additional heuristic established, such 
as removing mPUP only and SD/TRF calls, updated mosaic predictions based on upper 90% CI, and cohort-
wide family count <= 2. Although final filters reduce apparent sensitivity at higher scores, excluded calls were 
predominantly parental mosaic predictions with germline resolutions (data not shown).  
(D) PPV curves for the same filter sets as in C. At cutoff 0.26, PPV values are 0.61 (LF), 0.83 (LF-mPUP), and 
0.85 (final filters). 
(E-F) Summary of performance of all validation data using refined logistic regression model and final filter 
heuristics, which are: removing mPUP only and SD/TRF calls, updated mosaic predictions based on upper 
90% CI, and cohort-wide family count <= 2, removal of outlier families, logistic score > 0.26, and pilot 400 
singletons. Pilot 400 are the training set. Added 400 are new pilot 400 calls tested after model development. All 
pilot 24 are initial validations and additional calls tested after model development (combined due to low 
numbers in latter set). All test sets combines the pilot 24 and added pilot 400 calls.  
(E) Sensitivity curves for all validation sets. Sensitivity for each set is defined using the set of validated true 
calls that pass filters regardless of logistic score.  
(F) PPV curves for all validation sets. 



 
 
Figure S13. Defining Coverage Thresholds with Adequate Power to Detect AFs 
(A) Probability of observing at least 5 variant reads across a range of read depths for the given variant allele 
fractions. Numbers beside lines denote the approximate read depths at which the probability curve crosses 
0.8.  
(B-C) Comparison of coverage depth to allele fraction of calls within full SSC cohort. Germline variants in red 
and mosaic in black.  
(B) Best practice filters applied but not 5%-45x high confidence threshold. 
(C) After 5%-45x threshold applied. 
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Figure S14. Coverage Distributions by Burden Analysis Depth Threshold 
(A) Boxplots of total haploid genome bases for merged pilot 24 families at each minimum depth threshold. 
(B) Boxplots of total haploid genome bases sequenced across the cohort at each minimum depth threshold. 
(C-D) Lowest three coverage deciles for each analysis group, with horizontal jitter applied for visibility of points. 
Approximately half of the lowest decile shows considerable spread for all coverages except 130x. 
Plots include both quad and trio families, and also include families determined to be outliers by SNV counts. 
(C) Minimum joint coverage of 45x, 50x, and 65x.  
(D) Minimum joint coverage of 85x and 130x.  
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Figure S15. Rate of Parental PMMs for Different Functional Classes 
Rates and burden analyses of PMMs in full SSC. Mean rates with 95% Poisson CIs (exact method) are shown 
for parents.  
(A) Nonsense/Splice Site Nontransmitted PMMs. 
(B) Missense Nontransmitted PMMs. 
(C) Synonymous Nontransmitted PMMs. 
(D) Nonsense/Splice Site Transmitted PMMs. 
(E) Missense Transmitted PMMs. 
(F) Synonymous Transmitted PMMs. 
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Figure S16. Distribution of Allele Fractions Before and After Transmission Based Filtering  
To determine the percentage of parental calls that may be due to incomplete filtering from inability to compare 
to previous generation, we determined the number of mosaic variants within children that were removed due to 
transmission filters. We took variants from a subset of the harmonized reprocessed cohort (pilot 24 and 400 
families) and ignored transmission, but applied model scoring and all other final filters. AF distributions were 
fitted using a normal mixed model with R package mixtools, function normalmixEM(). The red distribution 
represents Gaussian distribution G1 and the green distribution represents G2. Dashed Curve represents the 
observed AF distribution density.  
(A) AF distributions for variants in children (probands and siblings) before applying transmission filters fitted to 
a mixed model.  
(B) AF distributions for variants in children after applying transmission filters fitted to a mixed model.  
(C) For G1 (lower AFs), we combined calls within two standard deviations of the estimated mean. For G2, we 
combined calls more extreme than the mean of G1 plus two standard deviations. We then calculate the fraction 
of variants remaining after applying transmission filters. In G1, 41% of variants were filtered, 88% of variants in 
G2, and 63% overall.  
(D) AF distributions for variants in parents before applying transmission filters fitted to a mixed model.  
(E) AF distributions for variants in parents after applying transmission filters fitted to a mixed model. Plot 
depicts both nontransmitted and transmitted PMMs. Retained transmitted PMMs required a stricter binomial 
filter (p <= 0.0001) 
(F) For parents, 29% of variants in G1 were filtered, 67% of variants in G2, and 47% overall. The number 
actually retained (observed) is 71% in G1, 33% in G2, and 53% overall. Using the fraction retained for each 
Gaussian distribution in children, we estimated how many variants in parents we expect to retain if the same 
transmission data were available. We would expect to only retain 59% in G1, 4% in G2, and 33% overall. The 
Delta is the difference between the observed calls and expected which is 12% in G1, 29% in G2, and 20% 
overall. Based on the filter fraction rates from children, we estimate that 20% of the remaining calls in G1, 88% 
of remaining calls in G2, and 40% of the total remaining calls are likely due to incomplete transmission filtering. 
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Figure S17. Rate of Parental Nontransmitted PMMs with Age 
We used age given at time of blood draw. If not available, then we estimated age using age of parent at birth of 
proband and added age of proband at ADOS, which was conducted near time of blood draw.  
(A-B) Rates and burden analyses of PMMs within the 5%-45x set for a given age bin. Mean rates with 95% 
Poisson CIs (exact method) are shown for parents.  
(A) Age of parents divided into six age bins. 
(B) To increase power, we divided parents into two age bins to compare mutation burden. Significance 
determined using Wilcoxon rank sum test, one-sided. We see a significant increase in mutation rate for both 
mothers and fathers older than 45 yrs.  
(C) To adjust for differences in coverage we determined the percentage of the exome covered for each 
individual and extrapolated the observed variant count to the entirety of the exome. Age of parents was divided 
into six bins. The fraction of individuals with a given number of coverage adjusted variants within an age bin is 
shown. Data suggests more individuals appear to accumulate PMMs as they age. 
 

0.00

0.25

0.50

0.75

1.00

<30 30−34 35−39 40−44 45−50 50+
Age Range

Va
r C

ou
nt

 C
on

tri
bu

tio
n

ONE
TWO
THREE
FOUR
FIVE
SIX
SEVEN
EIGHT

A B 

C 

0.0e+00

5.0e−09

1.0e−08

1.5e−08

2.0e−08

     <30yr        30-34yr   35-39yr   40-44yr    45-49yr      50+ 

!!!!!!Fathers!n!=!2,154!
!!!!!!Mothers!n!=!2,153!

0.00!

Fathers           n=50       n=227     n=567     n=661      n=426     n=223 
Mothers          n=96        n=343    n=675     n=608      n=346      n=85             

1.00!

5.00!

SN
Vs
!p
er
!B
as
e!
(1
x1
0<

9 )
!

!

7.50!

10.0!

0.0e+00

5.0e−09

1.0e−08

1.5e−08

2.0e−08

!!!!!!Fathers!n!=!2,154!
!!!!!!Mothers!n!=!2,153!

 <45yr                  >=45yr 
0.00!

1.00!

5.00!

SN
Vs
!p
er
!B
as
e!
(1
x1
0<

9 )
!

!

7.50!

10.0!

Fathers        n=1505                 n=649            
Mothers       n=1722                  n=431 

p = 0.01 

p = 0.038 



 
 
Figure S18. Distribution of AF Confidence Intervals for Parental PMMs  
WES AFs and confidence intervals for sites validated within the pilot 24 (24 quads) and pilot 400 (78 quads) 
families. Confidence intervals calculated using Agresti-Coull method. Confidence intervals overlapping 0.4 
would be considered germline. Transmitted variants tend to skewer higher in AF. 
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Figure S19. Mutational Spectrum and Signature 
The R package MutationalPatterns17 was used to extract and plot mutational contexts, as well as calculating 
their frequency within our high confidence call set.  
(A) Mutational spectrum of the six different types of substitutions for child GDMs, child PMMs, and parent 
nontransmitted PMMs.  
(B) Mutational signature of the relative frequency of mutations (Y-axis) within trinucleotides (context) for child 
GDMs, child PMMs, and parent nontransmitted PMMs. 
(C) We determined the correlation by Pearson method of the trinucleotide frequencies with the 30 different 
cancer signatures observed in Alexandrov et al. 2013 (see Web Resources for download).18 We found child 
GDMs, child PMMs, and parent nontransmitted PMMs all are most correlated with cancer signature 1 and all 
have similar correlation profiles. Shown is the correlation profile of child PMMs and cancer signatures as a 
representative profile.  
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 Table S7. Results of Rare Inherited Variant Simulations 
 
      AF < 0.5 (left tail)   AF > 0.5 (right tail) 

 Region Total 
Mut # Exp Obs E-Frac O-Frac p-value Exp Obs E-Frac O-Frac p-value 

Probands            
p <= 0.001 True            SNVS Unique CDS 2662 33 250 0.01 0.09 < 0.0001 6 7 0.002 0.003 0.399 

 SD/TRF 231 42 55 0.18 0.24 0.017 4 2 0.017 0.009 0.87 

 Total 2893 78 305 0.03 0.11 < 0.0001 10 9 0.003 0.003 0.667 
Indels Unique CDS 250 15 50 0.06 0.20 < 0.0001 NA NA NA NA NA 

 SD/TRF 18 1 7 0.06 0.39 0.0003 NA NA NA NA NA 

 Total 268 16 57 0.06 0.21 < 0.0001 NA NA NA NA NA 
p <= 0.0001 True            SNVS Unique CDS 2662 19 200 0.007 0.08 < 0.0001 2 2 0.001 0.001 0.493 

 SD/TRF 231 33 51 0.14 0.22 0.0007 3 1 0.013 0.004 0.943 

 Total 2893 56 251 0.02 0.09 < 0.0001 5 3 0.002 0.001 0.849 
Indels Unique CDS 250 6 35 0.02 0.14 < 0.0001 NA NA NA NA NA 

 SD/TRF 18 <1 5 0.00 0.28 < 0.0001 NA NA NA NA NA 

 Total 268 7 40 0.03 0.15 < 0.0001 NA NA NA NA NA 
Siblings             p <= 0.001 True            SNVS Unique CDS 1849 24 163 0.02 0.09 < 0.0001 4 2 0.002 0.001 0.902 

 SD/TRF 144 27 28 0.19 0.19 0.4 3 3 0.021 0.021 0.391 

 Total 1993 47 191 0.03 0.10 < 0.0001 7 5 0.004 0.003 0.8 
Indels Unique CDS 124 8 39 0.06 0.31 < 0.0001 NA NA NA NA NA 

 SD/TRF 16 1 5 0.06 0.31 < 0.0001 NA NA NA NA NA 

 Total 140 10 48 0.07 0.34 < 0.0001 NA NA NA NA NA 
p <= 0.0001 True            SNVS Unique CDS 1849 15 136 0.008 0.07 < 0.0001 1 1 0.001 0.001 0.623 

 SD/TRF 144 22 22 0.15 0.15 0.49 2 2 0.014 0.014 0.516 

 Total 1993 41 158 0.02 0.08 < 0.0001 3 3 0.002 0.002 0.606 
Indels Unique CDS 124 4 25 0.03 0.20 < 0.0001 NA NA NA NA NA 

 SD/TRF 16 <1 8 0.00 0.50 < 0.0001 NA NA NA NA NA 

 Total 140 4 33 0.03 0.24 < 0.0001 NA NA NA NA NA 
Combined             p <= 0.001 True            SNVS Unique CDS 4511 57 413 0.01 0.09 < 0.0001 10 9 0.002 0.002 0.665 

 SD/TRF 375 68 83 0.18 0.22 0.03 6 5 0.016 0.01 0.682 

 Total 4886 136 496 0.03 0.10 < 0.0001 17 14 0.003 0.003 0.78 
Indels Unique CDS 374 23 89 0.06 0.24 < 0.0001 NA NA NA NA NA 

 SD/TRF 34 3 16 0.09 0.47 < 0.0001 NA NA NA NA NA 

 Total 408 25 105 0.06 0.26 < 0.0001 NA NA NA NA NA 
p <= 0.0001 True            SNVS Unique CDS 4511 33 336 0.007 0.07 < 0.0001 3 3 0.001 0.001 0.485 

 SD/TRF 375 55 73 0.15 0.19 0.006 4 3 0.011 0.008 0.826 

 Total 4886 97 409 0.02 0.08 < 0.0001 8 6 0.002 0.001 0.796 
Indels Unique CDS 374 10 60 0.03 0.16 < 0.0001 NA NA NA NA NA 

 SD/TRF 34 2 12 0.06 0.35 < 0.0001 NA NA NA NA NA 
  Total 408 11 77 0.03 0.19 < 0.0001 NA NA NA NA NA 
Total mutation # is the total number of mutations analyzed within each set. Exp column shows the expected number of variants with 
AFs exceeding the given threshold. Expected derived from the mean number of rare variants meeting the indicated binomial p-value 
threshold simulated over 10,000 trials. Observed are the counts of de novo variants meeting the indicated binomial p-value threshold 
and characterized as potential PMMs. The simulated p-value was calculated from the number of trials that met or exceeded our 
observed over 10,000 trials. Note: variants in sex chromosomes were excluded for this analysis and no observed indels met any >0.5 
threshold (listed as NAs). Abbreviations: AF-allele fraction, Exp-expected, Obs-observed, E-frac-the expected number of variants 
flagged as PMMs within a set (e.g. unique CDS) divided by the total, O-frac-the observed number of variants within a set (e.g. unique 
CDS) flagged as PMMs divided by the total, CDS-coding sequence, SD/TRF-coding sequence overlapping segmental duplication or 
tandem repeat finder tracks. 



 Table S8. Summary of Top Performing Callers on Simulated Data at Varying Depth and Coverage 
 
DEPTH AF BEST SENS SENS BEST PPV PPV BEST F0.5 F0.5 

30 0.01 --- --- --- --- --- --- 

30 0.05 --- --- --- --- --- --- 

30 0.10 mPUP 0.762 LoFreq 2.1.1, mPUP 1.000 mPUP 0.941 

30 0.25 mPUP 0.856 LoFreq 0.4.0/2.1.1,  
Varscan 2.3.2/2.3.7 1.000 Varscan 2.3.2 0.965 

30 0.50 LoFreq 0.4.0/2.1.1 0.901 LoFreq 0.4.0/2.1.1 1.000 LoFreq 0.4.0/2.1.1 0.978 

60 0.01 --- --- --- --- --- --- 

60 0.05 mPUP 0.755 LoFreq 2.1.1 1.000 mPUP 0.899 

60 0.10 mPUP 0.847 LoFreq 2.1.1, Varscan 
2.3.2/2.3.7 1.000 Varscan 2.3.2/2.3.7 0.954 

60 0.25 LoFreq 0.4.0 0.900 LoFreq 0.4.0/2.1.1,  
Varscan 2.3.2/2.3.7 1.000 LoFreq 0.4.0 0.978 

60 0.50 LoFreq 0.4.0 0.915 LoFreq 0.4.0/2.1.1,  
Varscan 2.3.2/2.3.7 1.000 LoFreq 0.4.0 0.982 

100 0.01 mPUP 0.015 mPUP 0.300 mPUP 0.062 

100 0.05 mPUP 0.801 LoFreq 2.1.1,  
Varscan 2.3.2/2.3.7 1.000 mPUP 0.922 

100 0.10 Varscan 2.3.2 0.871 LoFreq 0.4.0/2.1.1,  
Varscan 2.3.2/2.3.7 1.000 Varscan 2.3.2 0.971 

100 0.25 LoFreq 0.4.0 0.906 LoFreq 0.4.0/2.1.1,  
Varscan 2.3.2/2.3.7 1.000 LoFreq 0.4.0 0.980 

100 0.50 LoFreq 0.4.0/2.1.1 0.891 LoFreq 0.4.0/2.1.1, mPUP, 
Varscan 2.3.2/2.3.7 1.000 LoFreq 0.4.0/2.1.1 0.976 

250 0.01 mPUP 0.010 mPUP 0.500 mPUP 0.046 

250 0.05 Varscan 2.3.2 0.891 LoFreq 0.4.0/2.1.1,  
Varscan 2.3.2/2.3.7 1.000 Varscan 2.3.2 0.976 

250 0.10 LoFreq 0.4.0, mPUP 0.891 LoFreq 0.4.0,  
Varscan 2.3.2/2.3.7 1.000 LoFreq 0.4.0 0.976 

250 0.25 LoFreq 0.4.0 0.905 LoFreq 0.4.0/2.1.1,  
Varscan 2.3.2/2.3.7 1.000 LoFreq 0.4.0 0.980 

250 0.50 LoFreq 0.4.0/2.1.1, mPUP 0.905 LoFreq 0.4.0/2.1.1, mPUP, 
Varscan 2.3.2/2.3.7 1.000 LoFreq 0.4.0/2.1.1, mPUP 0.980 

500 0.01 Varscan 2.3.2/2.3.7 0.557 mPUP 1.000 Varscan 2.3.2/2.3.7 0.858 

500 0.05 LoFreq 0.4.0, mPUP, 
Varscan 2.3.2/2.3.7 0.891 LoFreq 0.4.0, mPUP,  

Varscan 2.3.2/2.3.7 1.000 LoFreq 0.4.0, mPUP, 
Varscan 2.3.2/2.3.7 0.976 

500 0.10 LoFreq 0.4.0 0.906 LoFreq 0.4.0, mPUP,  
Varscan 2.3.2/2.3.7 1.000 LoFreq 0.4.0 0.980 

500 0.25 LoFreq 0.4.0, mPUP 0.901 LoFreq 0.4.0, mPUP,  
Varscan 2.3.2/2.3.7 1.000 LoFreq 0.4.0, mPUP 0.978 

500 0.50 LoFreq 0.4.0/2.1.1, mPUP 0.906 LoFreq 0.4.0/2.1.1, mPUP, 
Varscan 2.3.2/2.3.7 1.000 LoFreq 0.4.0/2.1.1, mPUP 0.980 

Abbreviations: AF-allele fraction, SENS-sensitivity, PPV-positive predictive value, F0.5-F-score with 0.5 beta value.  
 



  
Table S10. Rank Enrichments for Genomewide ASD Predictions 
 
Missense     ASD Association Rank LGD Rank LGD&RVIS Avg. Rank  
  Count Pro Count Sib p-value p-value p-value 
Whole Cohort 184 134 0.6808 0.7358 0.5445 
Pro Has LGD GDM 25 32 0.7993 0.4172 0.3246 
Pro No LGD GDM 159 102 0.5408 0.7709 0.5551 
Pro Has NS GDM 114 91 0.9056 0.2011 0.7252 
Pro No NS GDM  70 43 0.1595 0.3234 0.1524 
  

    
  

Synonymous     ASD Association Rank LGD Rank LGD&RVIS Avg. Rank  
  Count Pro Count Sib p-value p-value p-value 
Whole Cohort 80 42 0.1855 0.346 0.4358 
Pro Has LGD GDM 20 11 0.04931 0.5165 0.849 
Pro No LGD GDM 60 31 0.5217 0.3047 0.2555 
Pro Has NS GDM 52 31 0.07623 0.5431 0.8687 
Pro No NS GDM  28 11 0.6266 0.2176 0.02911* 
  

    
  

Essential Missense     ASD Association Rank LGD Rank LGD&RVIS Avg. Rank  
  Count Pro Count Sib p-value p-value p-value 
Whole Cohort 41 24 0.9697 0.7183 0.2527 
Pro Has LGD GDM 5 6 0.7316 0.3961 0.1645 
Pro No LGD GDM 36 18 0.9625 0.8458 0.35 
Pro Has NS GDM 27 16 0.9285 0.7055 0.4359 
Pro No NS GDM  14 8 0.8175 0.7589 0.07252* 
  

    
  

Intolerant Missense      ASD Association Rank LGD Rank LGD&RVIS Avg. Rank  
  Count Pro Count Sib p-value p-value p-value 
Whole Cohort 59 34 0.8538 0.593 0.3839 
Pro Has LGD GDM 7 7 0.9869 0.1914 0.5 
Pro No LGD GDM 52 27 0.467 0.8506 0.4547 
Pro Has NS GDM 36 21 0.9676 0.2233 0.5359 
Pro No NS GDM  23 13 0.2146 0.9192 0.2446 

Analysis performed on high confidence call set (5%-45x). Significance determined using unpaired Wilcoxon rank sum test, one-sided 
for missense and two-sided for synonymous. ASD Association rank obtained from per gene ASD association scores in Krishnan et al. 
2016.19 LGD rank and LGD&RIVIS Avg. rank obtained from per gene ranks derived in Iossifov et al. 2015.20 *Nominally significant 
values called out in text. Abbreviations: Pro-probands (Quads + Trios), Sib-siblings, LGD-likely gene disrupting, NS-nonsynonymous 
GDM-germline de novo mutation. 



Table S11. Primer and Guide Sequences Used in smMIP Preparation and Sequencing 
 
PROBE SET PRIMER SEQUENCE GUIDE OLIGO GUIDE SEQUENCE 

Set 02 ArrayMIP_02_FWD /5BiosG/GCCGGTCAACAAACTCGCATG Guide_02_NlaIII_2N NNCATGCGAGTTTGTTGACCGGC 

 ArrayMIP_02_REV TGCGCAGTGCCATCATCCTGG Guide_02_NlaIII_GC CGCATGCGAGTTTGTTGACCGGC 

   Guide_02_NlaIII_GD DGCATGCGAGTTTGTTGACCGGC 

Set 03 ArrayMIP_03_FWD /5BiosG/CCATAGCCGAGTCCACACATG Guide_03_NlaIII_2N NNCATGTGTGGACTCGGCTATGG 

 ArrayMIP_03_REV GCCAGACGCTGTCATTCCTGG Guide_03_NlaIII_GC CGCATGTGTGGACTCGGCTATGG 

   Guide_03_NlaIII_GD DGCATGTGTGGACTCGGCTATGG 

Set 04 ArrayMIP_04_FWD /5BiosG/CCCTTCACGCGTTCTTCCATG Guide_04_NlaIII_2N NNCATGGAAGAACGCGTGAAGGG 

 ArrayMIP_04_REV ATGCTATGGAGCGTCACCTGG Guide_04_NlaIII_GC CGCATGGAAGAACGCGTGAAGGG 

   Guide_04_NlaIII_GD DGCATGGAAGAACGCGTGAAGGG 

Set 05 ArrayMIP_05_FWD /5BiosG/GTCCGGCTCTCCTCAGTCATG Guide_05_NlaIII_2N NNCATGACTGAGGAGAGCCGGAC 

 ArrayMIP_05_REV AACCTATGACCTCACGCCTGG Guide_05_NlaIII_GC CGCATGACTGAGGAGAGCCGGAC 

   Guide_05_NlaIII_GD DGCATGACTGAGGAGAGCCGGAC 

Set 06 ArrayMIP_06_FWD /5BiosG/CTGAATAGCAGCTACCGCATG Guide_06_NlaIII_2N NNCATGCGGTAGCTGCTATTCAG 

 ArrayMIP_06_REV CTCGGTCACTATGTGCCCTGG Guide_06_NlaIII_GC CGCATGCGGTAGCTGCTATTCAG 

   Guide_06_NlaIII_GD DGCATGCGGTAGCTGCTATTCAG 

Set 07 ArrayMIP_07_FWD /5BiosG/GAACACGTACCAATCCGCATG Guide_07_NlaIII_2N NNCATGCGGATTGGTACGTGTTC 

 ArrayMIP_07_REV AAAGATACCAGTCGTGCCTGG Guide_07_NlaIII_GC CGCATGCGGATTGGTACGTGTTC 

   Guide_07_NlaIII_GD DGCATGCGGATTGGTACGTGTTC 

Set 08 ArrayMIP_08_FWD /5BiosG/TCGCAAGTCTTGAACCGCATG Guide_08_NlaIII_2N NNCATGCGGTTCAAGACTTGCGA 

 ArrayMIP_08_REV GTTCAGTGATCTCGTGCCTGG Guide_08_NlaIII_GC CGCATGCGGTTCAAGACTTGCGA 

   Guide_08_NlaIII_GD DGCATGCGGTTCAAGACTTGCGA 

Set 09 ArrayMIP_09_FWD /5BiosG/TACAGGTCCGTGCCATTCATG Guide_09_NlaIII_2N NNCATGAATGGCACGGACCTGTA 

 ArrayMIP_09_REV TCGTGTGGCTAGATTCCCTGG Guide_09_NlaIII_GC CGCATGAATGGCACGGACCTGTA 

   Guide_09_NlaIII_GD DGCATGAATGGCACGGACCTGTA 

Set 10 ArrayMIP_10_FWD /5BiosG/CACTGTCCCCTTGCTTCCATG Guide_10_NlaIII_2N NNCATGGAAGCAAGGGGACAGTG 

 ArrayMIP_10_REV GATTCGATAGGCTGACCCTGG Guide_10_NlaIII_GC CGCATGGAAGCAAGGGGACAGTG 

   Guide_10_NlaIII_GD DGCATGGAAGCAAGGGGACAGTG 

Set 11 ArrayMIP_11_FWD /5BiosG/TCGTCGCACTACTCTGACATG Guide_11_NlaIII_2N NNCATGTCAGAGTAGTGCGACGA 

 ArrayMIP_11_REV CAAGCATTCAGCTCTACCTGG Guide_11_NlaIII_GC CGCATGTCAGAGTAGTGCGACGA 

   Guide_11_NlaIII_GD DGCATGTCAGAGTAGTGCGACGA 

     

Sequencing  
Primers MIPBC_SEQ_FOR CATACGAGATCCGTAATCGGGAAGCTGAAG  

 MIPBC_SEQ_REV ACACGCACGATCCGACGGTAGTGT  

 MIPBC_SEQ_INDX 1 ACACTACCGTCGGATCGTGCGTGT  

 MIPBC_SEQ_INDX 2 CTTCAGCTTCCCGATTACGGATCTCGTATG  
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