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A Scalable Bayesian Method for Integrating
Functional Information
in Genome-wide Association Studies

Jingjing Yang,! Lars G. Fritsche,1.2 Xiang Zhou,* Gongalo Abecasis,* and International Age-Related
Macular Degeneration Genomics Consortium

Genome-wide association studies (GWASs) have identified many complex loci. However, most loci reside in noncoding regions and have
unknown biological functions. Integrative analysis that incorporates known functional information into GWASs can help elucidate the
underlying biological mechanisms and prioritize important functional variants. Hence, we develop a flexible Bayesian variable selection
model with efficient computational techniques for such integrative analysis. Different from previous approaches, our method models
the effect-size distribution and probability of causality for variants with different annotations and jointly models genome-wide variants
to account for linkage disequilibrium (LD), thus prioritizing associations based on the quantification of the annotations and allowing for
multiple associated variants per locus. Our method dramatically improves both computational speed and posterior sampling conver-
gence by taking advantage of the block-wise LD structures in human genomes. In simulations, our method accurately quantifies the
functional enrichment and performs more powerfully for prioritizing the true associations than alternative methods, where the power
gain is especially apparent when multiple associated variants in LD reside in the same locus. We applied our method to an in-depth
GWAS of age-related macular degeneration with 33,976 individuals and 9,857,286 variants. We find the strongest enrichment for
causality among non-synonymous variants (54 X more likely to be causal, 1.4 X larger effect sizes) and variants in transcription, repressed
Polycomb, and enhancer regions, as well as identify five additional candidate loci beyond the 32 known AMD risk loci. In conclusion,
our method is shown to efficiently integrate functional information in GWASs, helping identify functional associated-variants and
underlying biology.

Introduction LD score regression”> and MQS,** can now evaluate

the role of functional annotations in GWASs through heri-

Genome-wide association studies (GWASs) have identified
thousands of genetic loci for complex traits and diseases,
providing insights into the underlying genetic architec-
ture.'~> Each associated locus typically contains hundreds
of variants in linkage disequilibrium (LD),*’ most of
which are of unknown function and located outside pro-
tein-coding regions. Unsurprisingly, the biological mecha-
nisms underlying the identified associations are often
unclear® and pinpointing causal variants is difficult.’
Recent functional genomic studies help understand and
pinpoint functional associations and mechanisms.'®'?
Genetic variants can be annotated based on the genomic
location (e.g., coding, intronic, and intergenic), role in
determining protein structure and function (e.g., Sorting
Intolerant From Tolerant [SIFT]'? and Polymorphism
Phenotyping [PolyPhen]'* scores), ability to regulate gene
expression (e.g., expression quantitative trait loci [eQTL]
and allelic specific expression [ASE] evidence'*'®),
biochemical function (e.g., DNase I hypersensitive sites
[DHS], metabolomic QTL [mQTL] evidence,'” and chro-
matin states'®2%), evolutionary significance (e.g., Genomic
Evolutionary Rate Profiling [GERP] annotations*'), and a
combination of different types of annotation (e.g.,
CADD?). Many statistical methods, including stratified

tability analysis. Preliminary studies also show higher pro-
portions of associated variants in protein-coding exons,
regulatory regions, and cell-type-specific DHSs.”> >’

Integrating functional information into GWASs is
expected to help identify and prioritize true associations.
However, accomplishing this goal in practice requires
methods to account for both LD and computational cost.
Consider two recent methods, {GWAS?® and PAINTOR,?’
as examples. {GWAS assumes that variants are indepen-
dent and there is at most one association signal per locus,
modeling no LD, which dramatically improves computa-
tional speed and allows fGWAS to be applied at genome-
wide scale; PAINTOR accounts for LD, assuming the
possibility of multiple association signals per locus, but is
computationally slow and can be used to fine-map small
regions only (~10 kb).

Here, we pair a flexible Bayesian method with an effi-
cient computational algorithm. Together the two represent
an attractive means to incorporate functional information
into association mapping. Our model accounts for geno-
type correlation due to LD, allows for multiple signals per
locus and, importantly, shares information genome-wide
to increase association-mapping power. Our algorithm
takes advantage of the local LD structure in the human
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genome®® " and refines previous Markov chain Monte

Carlo (MCMC) algorithms to greatly improve mixing,
which is key when searching for independent signals
among many associated variants in LD (but less important
in other applications such as modeling total genomic
heritability). We refer to our method as the Bayesian func-
tional GWAS (bfGWAS). Below, we illustrate the benefits of
our method with extensive simulations as well as real
large-scale GWASs on age-related macular degeneration
(AMD)?! (33,976 individuals, 9,857,286 variants) and
skin cancer (17,624 individuals, 8,626,534 variants).

Material and Methods

Bayesian Variable Selection Model
Our method is based on the standard Bayesian variable selection
regression (BVSR) model®” (Supplemental Note; Figure S1A),

Vux1= Xuxp ﬁpxl +énx1,
Bi ~mN(0, 77'0%) + (1 — m)0(B;), & ~ N(0, 771),

where y,,,.; is the centered phenotype vector with n individuals,
Xnuxp is the centered genotype matrix with p genetic variants,
Bpx1 is a vector of genetic effect-sizes where each element
B; follows a “spike-and-slab” variable selection prior,
B; ~ mN(0, 77162) + (1 — m;)d0(8;). Different from the standard
BVSR, however, our method considers functional annotations
that classify variants into K non-overlapping categories. For
example, all variants could be annotated based on their most
important functions in a gene, such as non-synonymous, synon-
ymous, intronic, intergenic, or other genomic, which classifies
all variants into five non-overlapping categories.

Annotation-Specific Effect-Size Priors

We assume that variants in the same annotation category q share a
prior’*?* for effect sizes, 8; ~ myN(0, 7'02) + (1 — m,)0(8;), with
the same category-specific parameters (7, ‘72)- This model implies
that effect sizes are normally distributed as §; ~ N(0, 7~ 'o7) with
probability m,, or set to zero with probability (1 — =), with do(8;)
denoting the point-mass function at 0. Here, m,; represents the
(unknown) causal probability for variants in the gth category
and ‘TLZI represents the (unknown) corresponding effect-size vari-
ance. An enhancement to previous Bayesian models*****° is
that we model both the proportion of associated variants and their
effect-size distribution in each annotation category. Note that our
model is different from simply applying BVSR on variants of each
annotation, because we model the LD among variants of different
annotations.

We assume independent, conjugate, and non-informative priors
for (my, 0(21), e.g., m,~ Beta(a,, b;) with mean 10°°¢ and
o2 ~ InverseGamma(ki, kz) with k; = k = 0.1. Although indepen-
dent and conjugate priors are assumed for the convenience of
deriving closed-form expressions for the conditional posterior
distributions (greatly saving computational cost), the posterior
distributions of (,, ‘73) depend on each other through effect sizes
and the number of signals. Non-informative priors allow the
Bayesian estimates to be mainly determined by the likelihood
when there exist associations in the gth category (otherwise the
Bayesian estimates will be determined by the respective prior
modes; see derivation details in Supplemental Note). Particularly,

assuming a conservative prior mean 10~° for 7y (equivalent to
assume one signal per 1M variants) enforces an initial sparse
model, which helps control false positives and barely affects iden-
tifying real signals. Taking k; = k» = 0.1 makes the Inverse Gamma
prior for ‘7; non-informative with mode at 0.09.

Our goal is to simultaneously make inference on the category-
specific parameters (7, aé) that represent the importance of
each functional category, and on the variant-specific parame-
ters—effect-size §; and the probability of §;#0 (referred as poste-
rior inclusion probability [PPj], representing association evidence,
i.e., the probability for the variant to be associated with the
phenotype). Our model shares information genome-wide to esti-
mate the category-specific parameters, which then inform the
variant-specific parameters. As a result, variant associations will
be prioritized based on the inferred importance of functional
categories.

Scalable EM-MCMC Algorithm

Because standard MCMC algorithms suffer from heavy computa-
tional burden and poor mixing of posterior samples for large
GWASs, we develop a scalable expectation-maximization MCMC
(or EM-MCMC) algorithm. Our algorithm is based on the observa-
tion that LD decays exponentially with distance and displays local
block-wise structure along the human genome.”®%337 This
observation allows us to decompose the complex joint likelihood
of our model into a product of block-wise likelihoods (Appendix A
and Supplemental Note). Intuitively, conditional on a common
set of category-specific parameters (7, 05), we can infer (8;, PP;)
by running the MCMC algorithm per genome block. A diagram
of this EM-MCMC algorithm is shown in Figure S1B.

Running MCMC per genome-block facilitates parallel
computing and reduces the search space. Unlike previous
MCMC algorithms for GWASs that use proposal distributions
based only on marginal association evidence (such as imple-
mented in GEMMA®*®), our MCMC algorithm uses a proposal
distribution that favors variants near the “causal” variants being
considered in each iteration and prioritizes among these neigh-
boring variants based on their conditional association evidence
(see Supplemental Note). Our strategy dramatically improves
the MCMC mixing property, encouraging our method to explore
different combinations of potentially associated variants in each
locus (Figure S2). In addition, we implemented memory-reduc-
tion techniques that reduce memory usage up to 97%, effectively
reducing the required physical memory from 120 Gb (usage by
GEMMA®*®) to 3.6 Gb for a GWAS with ~33K individuals and
~400K genotyped variants (Appendix A and Supplemental
Note).

In practice, we segment the whole genome into blocks of 5,000—
10,000 variants, based on marginal association evidence, genomic
distance, and LD. We always ensure variants in LD (R* > 0.1)
with significant signals (p < 5 x 107%) are in the same block
(Appendix A). We first initialize the category-specific parameters
(7q, 03), then run the MCMC algorithm per block (E-step), sum-
marize the MCMC posterior estimates of (8;, PP;) across all blocks
to update (my, ”5) (M-step), and repeat the block-wise EM-MCMC
steps until the estimates of (m,, a?) converge (Figure S1B).

In addition, we calculate the regional posterior inclusion proba-
bility (regional-PP) per block that is the proportion of MCMC
iterations with at least one signal (see Supplemental Note).
Because Bayesian PP might be split among multiple variants in
high LD, the threshold of regional-PP > 0.95 (conservatively anal-
ogous to false discovery rate 0.05) is used for identifying loci.
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AMD and MGI GWAS Data

The GWAS data of age-related macular degeneration (AMD)
consist of 33,976 unrelated European samples (16,144 advanced
case subjects; 17,832 control subjects), and a total of 12,023,830
genotyped on a customized Exome-Chip and imputed against
the 1000 Genomes Project phase I reference panel.*'* Advanced
AMD case subjects include both subjects with choroidal neovascu-
larization and subjects with geographic atrophy. Samples were
aggregated across 26 studies and genotyped centrally.?’

The Michigan Genomics Initiative (MGI) data are the institu-
tional repository of DNA and electronic health records, collected
from patients recruited on the day of their elective surgery or pro-
cedure at the University of Michigan Health System. DNA was ex-
tracted from blood and samples were genotyped on the Illumina
HumanCoreExome v.12.1 array and then imputed against the
HRC reference panel.*” The MGI GWAS data studied in this paper
contain 17,624 unrelated European individuals and ~8.7M geno-
typed or imputed variants with frequency > 0.5%. The phenotype
of skin cancer was defined as the presence of ICD9 code 232 (car-
cinoma in situ of skin) on two or more visits (2,359 case subjects).
The control phenotype was defined as the absence of ICD9 codes
(172-173.99) on all visits (15,265 control subjects). For both MGI
and the AMD genetic studies, all participants gave informed con-
sent and the University of Michigan IRB approved our GWAS
analyses.

Results

Simulation

We simulated phenotypes with the genotype data (chro-
mosomes 18-22) from the AMD GWAS,*' including
33,976 individuals and 52,549 variants with minor allele
frequency (MAF) > 0.05. We segmented this small genome
into 100 x 2.5 Mb blocks, each with ~5K variants. Within
each block, we marked a 25 kb continuous region (starting
37.5 kb from the beginning of a block) as the potential lo-
cus. We randomly selected two causal SNPs per locus for
ten randomly selected loci. We simulated two complemen-
tary annotations to classify variants into “coding” and
“noncoding” groups, where the coding variants account
for ~1% overall variants but ~10% variants within the
causal loci (matching the pattern in the real AMD data).

O S e
e S

Figure 1. Power Comparison by Simula-
tion Studies
Compare the power of bfGWAS, the stan-
dard Bayesian variable selection regression
model (BVSR), f{GWAS, p value of single
i variant test with conditional analysis,
i with 100 simulation replicates and com-
plete sample size 33,976.
(A) Average ROC curves, larger area under
curve suggests higher power.
(B) Boxplot of the ranks of the true causal
SNP1 (with smaller p value) and SNP2,
higher rank (smaller rank value) suggests
higher power.

We simulated two scenarios: (1) cod-
ing variants ~53x enriched among
causal variants (7 coding versus 13
noncoding) and (2) no enrichment (randomly selecting
causal variants in risk loci with equally distributed annota-
tions). A total of 15% of phenotypic variance was divided
equally among causal variants. We compared bfGWAS
with single variant likelihood-ratio test, conditional anal-
ysis, {GWAS, and the standard Bayesian variable selection
regression model (BVSR, considering no functional infor-
mation). The single-variant test (also referred to as p value),
conditioned p value, f{GWAS posterior association proba-
bility (PP, see Appendix A), BVSR PP, and bfGWAS PP
were used as criteria to identify associations. The reason
that we did not include PAINTOR into comparison is
because PAINTOR costs >1,000 CPU hr to finish analyzing
one 2.5 Mb genome-block with ~5K variants.

We first compared power of different methods using
average ROC curves®’*? across 100 simulation replicates.
Because the p value is used differently from the other
“fine-mapping” criteria (fGWAS PP, BVSR PP, bfGWAS
PP), we compare only the average ROC curves of fGWAS,
BVSR, and bfGWAS (Figure 1A). We found that bfGWAS
(modeling LD and allowing multiple signals per locus) out-
performed both f{GWAS and BVSR. Specifically, with false
positive rate (FPR) 2 x 10~*, the power of identifying the
true associations is 0.55 by bfGWAS, 0.45 by BVSR, and
0.34 by fGWAS. In addition, for identifying associated
loci with regional-PP > 0.95, bfGWAS has power 0.98
and false discovery rate (FDR) 0.005, BVSR has power
0.97 and FDR 0.006, and f{GWAS has power 0.97 and FDR
0.005.

In a typical GWAS, researchers identify a series of associ-
ated loci and then examine associated variants within each
locus independently. We examined the ability of each
method to prioritize the true associations in each locus.
Since we simulated two causal SNPs per locus (SNP1 and
SNP2), we examine the power for identifying each of these
separately (Figure 1B). All methods have approximately the
same median rank for causal SNP1 (typically, 2nd rank
among 150 SNPs in the locus), suggesting that the stron-
gest signal in a locus can often be identified without incor-
porating functional information and LD. The median rank
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for the second causal SNP2 was the 2nd by bfGWAS, 3rd by
BVSR, 13th by {GWAS, and 6th by conditioned p value—
suggesting that incorporating functional information
improves power to identify multiple signals in a locus
and that fGWAS is limited by the assumption of at most
one signal per locus. Stratified results based on the LD
between two causal variants further demonstrate that
bfGWAS has the highest power for identifying the weaker
signal, especially when both SNPs are in high LD
(Figure S3).

Both bfGWAS and fGWAS correctly identified enrich-
ment in scenario 1 and properly controlled for the type I
error of enrichment in scenario 2, despite some numerical
issues for {GWAS (Figure S4). Moreover, bfGWAS estimated
the effect-size variance per annotation. For all 100 simula-
tion replicates under both scenarios, the 95% confidence
intervals of the log-ratio of estimated effect-size variances
between coding and noncoding overlapped with 0 (Fig-
ure S5), suggesting that effect-size variances were similar
between two annotations (matching the simulated truth).

In summary, our simulation studies show that, in com-
parison with competing methods, bfGWAS has highest
power, especially in loci with multiple associated variants.
Further, bfGWAS produces enrichment parameter esti-
mates that can help with interpretation of association
results.

GWAS of AMD

Next, we applied our method to the AMD GWAS data with
33,976 unrelated European individuals (16,144 advanced
case subjects; 17,832 control subjects). We analyzed
9,866,744 (~10M) low-frequency and common variants
(MAF > 0.5%) with three types of genomic annotations:
gene-based functional annotations by SeattleSeq, summa-
rized regulatory annotations,*' and the core 15 chromatin
states profiled by ChromHMM**** with respect to 127
consolidated epigenomes (ROADMAP, ENCODE).**

Coding Variation and AMD

We used SeattleSeq to classify variants according to their
impact on coding sequences (Table S1) and then applied
our method bfGWAS and fGWAS. bfGWAS identified
37 loci out of 1,063 considered genome blocks with
regional-PP > 0.95 (Tables S2, S3, and S5), including 32
among the 34 known AMD loci*! and 5 extra candidate
loci. Using the threshold of Bayesian PP > 0.1068 (roughly
equivalent to the p value 5 X 10~ ® based on permutations
of AMD data; Figure S6), we identified 150 associated vari-
ants (Figure S8A; Table S3), with 47 distributed among
42,005 non-synonymous variants, 4 among 67,165 synon-
ymous coding variants, 54 among 3,679,235 intronic var-
iants, 18 among 5,512,423 intergenic variants (including
non-annotated variants), and 27 among 565,916 “other-
genomic” variants (UTR, non-coding exons, upstream
and downstream of genes). Very roughly, this corresponds
to fraction of associated variants of ~1:1,000 among
non-synonymous variants, 1:15,000 among synonymous

variants, 1:100,000 among intronic variants, 1:300,000
among intergenic variants, and 1:20,000 among other-
genomic variants.

Similarly, {GWAS identified 39 loci by regional-PP >
0.95, including all 34 known loci and the same 5 extra
candidate loci identified by bfGWAS (Tables S2, S4, and
S6; Figure S9B). A total of 94 associated variants were iden-
tified by fGWAS with fGWAS PP > 0.1068, including
22 non-synonymous, 6 coding-synonymous, 28 intronic,
15 intergenic, and 23 other-genomic signals. Compared
with bfGWAS, the proportion of loci that contain at least
one non-synonymous variant with PP > 0.1068 is smaller
(31% by fGWAS versus 49% by bfGWAS). Similarly, the
proportion of non-synonymous variants prioritized by
fGWAS is also smaller (30% by fGWAS versus 46% by
bfGWAS), indicating that bfGWAS places greater weight
on non-synonymous variants—which, as a group, appears
to have both a higher prior probability of association and
larger effect sizes when associated.

Besides replicating the association results within
known AMD loci,®" bfGWAS identified five additional
candidate loci (Table S5): missense rs7562391/PPIL3,
rs61751507/CPN1, 1rs2232613/LBP, downstream rs114318558/
ZNRDIASP, and splice rs6496562/ABHD2. Among these
five candidate loci, f{GWAS identified three with the same
top risk variants, a different top risk variant (coding-synon-
ymous rs61733667) for CPN1, and a nearby locus (up-
stream rs116803720/HLA-K) of ZNRDI1ASP (Table S6).
Interestingly, there are several connections between these
candidate loci and known AMD loci. Specifically, the pro-
tein encoded by LBP is part of the lipid transfer protein
family (which also includes CETP among the known
AMD risk loci) that promotes the exchange of neutral
lipids and phospholipids between plasma lipoproteins.*®
ZNRDIASP has been associated with lipid metabolisms*®
and ABHDZ2 has been associated with coronary artery
disease,”” two other traits where the AMD loci encoding
CETP, APOE, and LIPC are also involved. The gene CPN1
has been associated with age-related disease (specifically,
hearing impairment™®).

Multiple Signals in a Single Locus

We use two examples to illustrate the importance of study-
ing multiple signals in a single locus. Our first example
focuses on a 1 Mb region around locus C2/CFB/SKIV2L
on chromosome 6 where 1,862 variants have p < 5 x
107%. There are an estimated 4 independent signals
in the region by conditional analysis,”’ 1 variant with
fGWAS PP > 0.1068, 11 with BVSR PP > 0.1068, and 8
with bfGWAS PP > 0.1068. Interestingly, the alternative
methods (p value, f{GWAS, and BVSR) identified intronic
SNP rs116503776/SKIV2L/NELFE as the top candidates
(p = 2.1 x 107 "% fGWAS PP = 0.912; BVSR PP = 1.0),
while bfGWAS identified two missense SNPs, rs4151667/
C2/CFB (p = 1.4 x 10~*%; bfGWAS PP = 0.917) and
1s115270436/SKIV2L/NELFE (p = 2.8 x 10~ °%; bfGWAS
PP = 0.633), as the top functional candidates (Figure 2;
Tables S2-S4).
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A haplotype analysis describing the odds ratios (ORs) for
all possible haplotypes for SNPs rs116503776, rs4151667,

15116503776 with the smallest p value appears to be asso-
ciated with the phenotype by tagging the other two

and rs115270436 helps clarify the region. Intronic SNP  missense SNPs (Table S15). In particular, haplotypes with
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(A and C) Causal probabilities.
(B and D) Effect-size variances.
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Category-Specific Parameter Estimates with 95% Error Bars by bfGWAS for Gene-Based Annotations and Regulatory

The estimates of UTR in (C) and (D) were estimated as their prior values due to no association was found for this annotation (hence not
shown in the plots). The estimate of the effect-size variance for the “Others” category in (D) is also close to the prior because of low
region-association evidence, hence it has a wide 95% error bar. The error bars denote the 95% confidence intervals for the category-spe-

cific parameter estimates.

rs116503776 can either increase or decrease risk, depend-
ing on alleles at the other two SNPs. To further confirm
the importance of the missense SNPs rs4151667 and
rs115270436, we compared the AIC/BIC/loglikelihood
between two models: one model with the top two inde-
pendent signals (rs116503776 and rs114254831) identi-
fied by single-variant conditional analysis,®' versus the
other model with the top two signals (rs4151667 and
rs115270436) identified by bfGWAS. As expected, the sec-
ond model has smaller AIC/BIC and larger loglikelihood
than the first one (Table S16). Thus, we can see that while
alternative methods (p value, {GWAS, and BVSR) focus on
the SNP with the smallest p value, our bfGWAS method
finds an alternative pairing of missense signals that better
accounts for all data.

Our second example focuses on a 1 Mb region around
gene C3 on chromosome 19 (Figure S9) with 112 genome-
wide significant variants with p < 5 x 1078, f{GWAS dis-
covered only a single missense signal, 7s2230199, with the
most significant p = 1.7 X 10~77 (top blue triangle in Figures
S9A and S9C). However, both BVSR and bfGWAS identified

two missense variants with PPs = 1.0 and five intronic vari-
ants with 0.11 < PPs < 0.18. The top two missense signals,
1s2230199 and rs147859257 (241 base pairs apart), were
confirmed by conditional analysis,®' where the second
signal 75147859257 has conditioned p = 6.0 x 1033 (purple
triangle in Figures S9B and S9D), overlapping with
1s2230199. These two missense signals match the inter-
pretation of previous studies.*”>' Because five other in-
tronic variants (rs11569479, rs11569470, rs201063729,
rs10408682, and rs11569466) are in high LD with R* >
0.98 between each other, we believe this is the third inde-
pendent signal whose Bayesian PP was split among five
variants in high LD by bfGWAS.

Enrichment Analysis

bfGWAS estimated that non-synonymous variants are
10-100 times more likely to be causal than variants in
other categories and that they also have larger effect sizes
(Figures 3A and 3B). To better compare enrichment among
multiple categories, we define two new sets of parameters
(Supplemental Note). The first set of parameters (m;/mayg)
is defined to contrast the posterior association probability
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estimate () for each category to the genome-wide average
(avg). The second set of parameters (d7/03,,) is similarly
defined to contrast the effect-size variance from each cate-
gory to the genome-wide average. Moreover, the square
root of the effect-size variance reflects the effect-size
magnitude because of the prior assumption for the effect
size in our model.

Compared to the genome-wide average probability of
causality ma, = 4.3%107% (Figure S12A), we found that
non-synonymous category were 53X more likely to be
causal (p = 7.24 x 10~%%), that coding-synonymous and
other variants were 4.3 x and 2.2 X more likely (p = 0.005,
0.003), and that intergenic variants were 0.7 X less likely
(p = 4.9 x 10°°), while the intronic variants matched
the genome-wide average (p = 0.659). In addition,
compared to the genome-wide average effect-size variance
(aﬁvg = 0.02; Figure S12B), we found that the effect size vari-
ance of was 1.9x larger for non-synonymous variants (p =
0.014; i.e., 1.4x larger effect-size), and 0.4x smaller for
variants in the intronic category (p = 4.5 x 10°°);
remaining categories were not significantly different (p >
0.2). The estimated enrichment parameters by fGWAS
show a similar pattern, although the contrast of the esti-
mated enrichment for non-synonymous versus other anno-
tations is not as pronounced as by bfGWAS (Figure S12A).

Analysis with Regulatory Annotations

In addition, we analyzed the GWAS data of AMD with the
summarized regulatory annotations:*' coding, UTR, pro-
moter (defined as within 2 kb of a transcription starting
site), DHS in any of 217 cell types, intronic, intergenic,
and “others” (not annotated as any of the previous six cate-
gories). Overall GWAS results were similar as the ones
described in previous context (Tables S7-S10). Compared
to the genome-wide average association probability (., =
4.03%x107%; Figure S12C), we found that the association
probability of the coding category was 28x higher (p <
2.2 x 107'%), the promoter was 2.6x (p = 0.028) higher,
and the intergenic and “others” were 0.5x and 0.9x
less (p = 5.3 x 10*, 0.033), while the DHS and intronic
were not significantly different (p > 0.1). In addition,

| ‘ P .
“ ﬂ*\&* Q(QO@ e 0‘3\66
&

Figure 4. Top Five Enriched Chromatin
States Identified by bfGWAS, using the
AMD GWAS Data with Respect to 127
Epigenomes

(A) Boxplot of the category-specific causal
probabilities for the top five enriched chro-
matin states.

(B) Boxplot of the effect-size variances for
the top five enriched chromatin states.

compared to the genome-wide average
effect-size variance (aﬁvg = 0.024), we
found that the effect-size variance of
the coding category was 1.9x larger
(p=0.019; i.e., 1.4x larger effect size)
and the DHS and intronic were 0.5x
less (p = 0.011, 0.007), while the promoter, intergenic,
and “others” were not significantly different (p > 0.1;
Figure S12D). Here, {GWAS identified a slightly different
enrichment pattern (Figure S12B), where UTR was identified
as the second most enriched category. This is presumably
because fGWAS assumes one signal per locus and tends to
prioritize the variant with the smallest p value in each locus,
e.g., UTR variants rs1142/KMT2E/SPRK2 and rs10422209/
CNNZ have the highest fGWAS PP and the smallest p value
in their respective locus (Tables S2 and S8).

Analysis with Chromatin States

Last, we considered the annotations of core 15 chromatin
states profiled by ChromHMM™** with respect to 127 consol-
idated epigenomes (ROADMAP, ENCODE):** active TSS
(TssA), flanking active TSS (TssAFInk), transcription at gene
5 and 3’ (TxFInk), strong transcription (Tx), weak transcrip-
tion (TxWK), genic enhancers (EnhG), enhancers (Enh), ZNF
genes & repeats (ZNF/Rpts), heterochromatin (Het), biva-
lent/poised TSS (TssBiv), flanking bivalent TSS/Enh
(BivFlnk), bivalent enhancer (EnhBiv), repressed PolyComb
(ReprPC), weak repressed PolyComb (ReprPCWKk), and
quiescent/low (Quies).

With each set of chromatin states profiled per epige-
nome, we applied bfGWAS on the GWAS data of AMD
and then counted the frequency of the top 5 enriched
chromatin states across all 127 epigenomes. We found
that the associations are mostly enriched with strong
transcription (Tx), weak transcription (TxWKk), repressed
PolyComb (ReprPC), enhancers (Enh), and Quies
(Figure 4). Specifically, the highest estimates of the causal
probabilities are 3.0 x 10~° for strong transcription with
respect to the fetal brain male tissue (E081), 1.2 x 107°
for weak transcription with respect to the adipose nuclei
(E063), 3.1 x 10> for repressed PolyComb with respect
to the spleen tissue (E113), 1.7 x 10~° for enhancers
with respect to the ovary tissue (E097), and 3.9 x 10°°
for Quies with respect to the pancreatic islets.

We further examined the list of variants that contribute
95% posterior probabilities in the identified loci with
regional-PP > 95%. We found that the results accounting
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for the chromatin states that are profiled with respect to
the epigenome of fetal thymus (E093) gave the shortest
list (average 11 variants per locus, and we present the cor-
responding results as an example (Figures S12E, S12F,
S13A, and S13B; Tables S11-S14). For this set of enrich-
ment analysis, we found that the repressed PolyComb
had the highest causal probability (3.8x higher than the
genome-wide average mu, =4.0x107%, p = 6.7 x 107/;
Figure S12E), and that all chromatin states have compara-
ble effect-size variances (Figure S12F). Here, f{GWAS identi-
fied transcription at gene 5’ and 3’ (TxFInk) as the most en-
riched chromatin state (Figure S13C).

MGI GWAS of Skin Cancer

To illustrate the benefits of using bfGWAS for GWAS data
that have relatively fewer loci, we further analyzed the
MGI GWAS data with the phenotype of skin cancer, with
17,624 unrelated European samples (2,359 case subjects
versus 15,265 control subjects) and ~8.7M variants with
MAF > 0.5%. We corrected the phenotype of skin cancer
with respect to age, sex, PC1-4, considered the same
gene-based annotations (from SeattleSeq) as for the AMD
GWAS, and compared the GWAS results by p value,
BVSR, fGWAS, and bfGWAS.

For this GWAS data of skin cancer, all method identified
the same four loci: SLC45A2, IRF4, MCIR, and RALY (Fig-
ures S14 and S15). Both bfGWAS and fGWAS identified
that non-synonymous is the most enriched annotation
(Figure S16). Although BVSR, f{GWAS, and bftGWAS all pro-
duced the highest PP for the leading SNP with the smallest
p value, our bfGWAS method outperformed BVSR for
identifying the leading SNP at locus SLC45A2, as well as
produced an additional and independent non-synony-
mous signal in locus MC1R (missed by fGWAS) for allowing
multiple signals per locus as well as accounting for func-
tional information and LD (Figure S17). In addition, our
bfGWAS method avoids the false signal on chromosome
3 by BVSR for using annotation-specific priors. Specifically,
by the threshold of PP > 0.1068, bfGWAS identified 9
associated variants (3 non-synonymous, 4 intronic, and
1 other genomic), and 9 by fGWAS (2 non-synoymous, 5
intronic, and 2 intergenic).

Therefore, this set of GWAS analyses further confirmed
the advantages of using our bfGWAS method for inte-
grating functional information and fine-mapping loci
with multiple signals.

Discussion

Here, we describe a scalable Bayesian hierarchical method,
bfGWAS, for integrating functional information in GWASs
to help prioritize functional associations and understand
underlying genetic architecture. bfGWAS models both
association probability and effect-size distribution as a
function of annotation categories for improving fine-map-
ping resolution. Unlike previous methods,”*?” bfGWAS ac-

counts for LD and allows for the possibility of multiple
signals per locus while remaining capable of genome-
wide inference. Further, bfGWAS employs an improved
MCMC sampling strategy to greatly improve the mixing
of MCMC samples, which ensures the capability of identi-
fying a list of independent association candidates.

By simulation studies, we demonstrated that bfGWAS
had higher power than the alternative methods for identi-
fying multiple signals in a single locus by accounting for
both functional information and LD. We also showed
that bfGWAS accurately estimated the enrichment pat-
terns under scenarios with or without enrichment for
one annotation in simulations. In the real GWASs of
AMD and skin cancer, we further confirmed the advan-
tages of identifying multiple independent signals per locus
and prioritizing important functional associations by
bfGWAS. Further, we gave two fine-mapped AMD loci,
C2/CFB/SKIV2L and C3, by bfGWAS as examples with jus-
tifications by haplotype analysis, model comparison, and
previous findings. Thus, we believe our method is useful
for understanding the underlying genetic architecture of
complex traits and diseases for efficiently integrating func-
tional information into GWASs.

Extending bfGWAS to deal with overlapping or quanti-
tative annotations might seem trivial in theory, by
assuming a logistic model with multiple functional cova-
riates (both categorical and quantitative) for =; in the
BVSR model. However, the posterior estimates for the
coefficients in the logistic model of m; no longer have
analytical formulas in the M-step of the EM-MCMC algo-
rithm (Supplemental Note). Specifically, overestimated m;
will inflate the number of false positives. In preliminary
analysis, we encountered computational challenges of
controlling the false positive rate, which requires further
studies.

Here, bfGWAS makes a key assumption that the variant
correlation matrix has a block-wise structure, which allows
us to segment the genome into approximately indepen-
dent blocks, analyze variants per block by MCMC, and
summarize genome-wide information by an EM algorithm.
In parallel to our study, many recent studies have also
explored the benefits of dividing the human genome
into approximately independent LD blocks to facilitate
genome-wide analyses.”>** Although the standard seg-
mentation methods (e.g., based on genomic location®* as
we adopted here, or the number of variants per block”®)
are often sufficient in practice, we expect that a better
segmentation method®’ based on LD blocks will further
increase the association mapping power.

The biggest limitation of bfGWAS is probably computa-
tional cost, as we perform MCMC using the complete
genotype data. Specifically, bfGWAS took 5,000 CPU hr
(~5 hr with parallel computations on 1,000 CPUs for
the 1,063 genome blocks) to analyze the AMD GWAS
data with 33,976 individuals and 9,857,286 variants.
Implementing bfGWAS with summary statistics is ex-
pected to reduce the computation cost significantly, which
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is part of our continuing research. In addition, the varia-
tional approximation®*>* and other approximations>>>°
of MCMC may provide an efficient alternative for posterior
inference in large GWASs.

Appendix A

Bayesian Hierarchical Model Accounting for Functional
Information

Recall the standard Bayesian variable selection regression
(BVSR) model as described in the Material and Methods,

Vux1= Xuxp Bpx1+ €nx1,
B; ~ TriN(O, T’la,-z) + (1 —m)do(Bi), €& ~ N(O, 1"1).

We assume that variants in the same functional category

have the same spike-and-slab prior, 8; ~ mN(0, 7~ 1¢?)+

1
(1 — m)00(B;), for the effect sizes. That is, m; = my, o7 = 05
for variants of the gth functional annotation category.
Consequently, m, denotes the category-specific causal
probability and ag denotes the category-specific effect-
size variance (the square root of og reflects the magnitude
of effect size).

We further assume the following independent hyper

priors:**
Ty~ Beta(aq7 bq), 03 ~ IG(ky, kz), qu_alzl,

where 7, follows a Beta distribution with positive shape pa-
rameters a, and b, and o7 follows an Inverse-Gamma distri-
bution with shape parameter k; and scale parameter k,. In
order to adjust for the unbalanced distribution of functional
annotations among all variants and enforce a sparse model
in our analysis, we choose values for a,; and b, such that
the Beta distribution has mean a,/(a, + by) = 10-° with
(aq + by) equal to the number of variants in category g. We
set k; = k; = 0.1 in our analysis to induce non-informative
prior for aé. Note that 7 is fixed as the phenotype variance
value in our Bayesian inferences (Supplemental Note).

Bayesian Inference

We introduce a latent indicator vector vypy; to facilitate
computation, where each element v; is a binary variable
and indicates whether 8; = 0 by v; = 0 or 8; ~ N(0, 7~ 14?)
by v; = 1 (v; corresponds to the ith variant with genetic ef-
fect-size 3;). Equivalently,

v; ~ Bernoulli(m;), B_, ~ 0, 8, ~MVN/, (0, 77'V,),

where |y | denotes the number of 1s in y; 8_, denotes the
zero effect-size vector with y; = 0; 8, denotes the non-zero
effect-size vector with (v;=1;j=1, ..., |y]); and V, de-
notes the diagonal covariance matrix, diag(o7, ..., o7,)),
corresponding to non-zero effect-sizes. Consequently,
the expectation of v; is an estimate of the posterior inclu-
sion probability (PP) for the ith wvariant, E[y;]=
Prob(y; = 1) = PP;.

The posterior joint distribution of our proposed Bayesian
hierarchical model is proportional to

PB,y, ma, 7| y, X, A)xP(y | X,B,7, 7) X

P(ﬂ, |A, m, a2, 'y,‘r)P('y | ‘rr)P(ﬂ')P(a'z)P(T)7
where 7 = (w1, ..., mq)", 02 = (03, ..., 0})" Alisthep x Q
matrix of binary annotations, and Q is the total number of
annotations. The goal is to estimate the category-specific
parameters (w, ¢%) and the variant-specific parameters
(8, E[y]) from their posterior distributions, conditioning
on the data (y, X, A). Here, the category-specific parame-
ters denote the shared characteristics among all variants
with the same annotation, which are also called enrich-
ment parameters.

EM-MCMC Algorithm

The basic idea of the EM-MCMC algorithm is to segment
the whole genome into approximately independent blocks
each with 5,000-10,000 variants, run MCMC algorithm
per block with fixed category-specific parameter values
(m, 6%) to obtain posterior estimates of (8, E[y]) (E-step),
then summarize the genome-wide posterior estimates of
(8, E[y]) and update values of (m, ¢2) by maximizing their
posterior likelihoods (M-step). Repeat such EM-MCMC it-
erations for a few times until the estimates of (w, o?)
(maximum a posteriori estimates, i.e.,, MAPs) converge
(Figure S1).

We derive the log-posterior-likelihood functions for
(w, ¢?) and the analytical formulas for their MAPs. In addi-
tion, we construct their confidence intervals using Fisher
information, whose analytical forms are derived for our
Bayesian hierarchical model (Supplemental Note). In our
practical analyses, we find that, in general, with about 5
EM iterations and 50K MCMC iterations per block, the
estimates for (m, ) would achieve convergence. Our
method of integrating functional information into GWAS
by using the above Bayesian hierarchical model and EM-
MCMC algorithm is referred as “Bayesian Functional
GWAS” (bfGWAS).

Convergence Diagnosis

The MCMC algorithm implemented in bfGWAS is essen-
tially a random walk over all possible linear regression
models with combinations of variants, which can start
with either a model containing multiple significant vari-
ants by sequential conditional analysis or the most signif-
icant variant by p value. In each MCMC iteration, a new
model is proposed by including an additional variant, by
deleting one variant from the current model, or by switch-
ing one variant within the current model with one outside;
and then up to acceptation or rejection by the Metropolis-
Hastings algorithm (Supplemental Note). Importantly, we
refine the standard proposal strategy for the switching
step by prioritizing variants in the neighborhood of the
switch candidate according to their conditional associa-
tion evidence (e.g.,, p values conditioning on variants,
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except the switch candidate, in the current model). As a
result, this MCMC algorithm encourages our method to
explore different combinations of potential signals in
each locus and significantly improves the mixing property.

We used the potential scale reduction factor (PSRF)°” to
quantitatively diagnose the MCMC mixing property.
PSRF is essentially a ratio between the average within-
chain variance of the posterior samples and the overall-
chain variance with multiple MCMC chains. From the
example plots of the PSRFs of Bayesian PPs (Figure S2),
for 58 top marginally significant SNPs (with p < 5 x
1078) in the WTCCC GWAS of Crohn disease,! we can
see that about half of the PSRF values by the standard
MCMC algorithm (used in GEMMA*°) exceed 1.2, suggest-
ing that the standard MCMC algorithm has poor mixing
property. In contrast, the PSRF values by our MCMC algo-
rithm are within the range of (0.9, 1.2), suggesting that our
MCMC algorithm has greatly improved mixing property.

Key Implementation Details

We employ two computational techniques to save mem-
ory in the bfGWAS software. One is to save all genotype
data as unsigned characters in memory, because unsigned
characters are equivalent to unsigned integers in (0, 256)
that can be easily converted to genotype values within
the range of (0.0, 2.0) by multiplying with 0.01. This tech-
nique saves up to 90% memory compared to saving geno-
types in double type. Second, with an option of in-memory
compression, bfGWAS will further save additional 70%
memory. As a result, we can decrease the memory usage
from ~120 GB (usage by GEMMA®®) to ~3.6 GB for a
typical GWAS dataset with ~33K individuals and ~400K
variants.

The bfGWAS software wraps a C++ executable file for
the E-step (MCMC algorithm) and an R script for the
M-step together by a Makefile, which is generated by a
Perl script and enables parallel computation through sub-
mitting jobs. Generally, 50K MCMC iterations with ~5K
variants and ~33K individuals require about 300 MB
memory and 1 hr CPU time on a 1.6 GHz core, where
the computation cost is of order 0(nm?) with the sample
size (n) and number of variants (m) considered in the linear
models during MCMC iterations (usually m < 10). The
computation cost for M-step is almost negligible due to
the analytical formulas of the MAPs.

fGWAS

In this paper, the {GWAS results were generated by using
summary statistics from single variant likelihood-ratio
tests and the same annotation information used by
bfGWAS. fGWAS*® produces variant-specific posterior
association probabilities (PPs), segment-specific PPs, and
enrichment estimates for all annotations. We used the
same genome segmentation as used by bftGWAS for {GWAS
in both simulations and real data analyses, to produce
comparable results. The final fGWAS PP is given by the
product of the variant-specific PP and the corresponding

segment-specific PP, and the f{GWAS regional-PP is given
by the highest segment-specific PP in a region or genome
block.

Simulation Studies
We used genotype data on chromosomes 18-22 from
the AMD GWAS (33,976 individuals and 241,500 vari-
ants with MAF > 0.05) to simulate quantitative pheno-
types from the standard linear regression model y; =
XiTﬁ +¢, i=1, ..., 33976, where X; is the genotype vec-
tor of the ith individual and ¢; is the noise term generated
from N(0, ¢2). We segmented the genotype data into 100x
2.5 Mb blocks each with ~5,000 variants. Within each
block, we marked a ~25 kb continuous region (starting
37.5 kb from the beginning of a block) as the causal locus
and randomly selected two causal SNPs if the genome
block was selected as a risk locus. Two complementary
annotations (“coding” versus “noncoding”) were simu-
lated, where the coding variants account for ~1% overall
variants but ~10% variants within the causal loci (match-
ing the pattern in the real AMD analysis). We selected pos-
itive effect-size vector § and noise variance ¢2 such that a
total of 15% phenotypic variance was equally explained
by causal SNPs. We controlled the enrichment-fold of cod-
ing variants by varying the number of coding variants
among the causal SNPs.

We compared bfGWAS with p value, conditioned
p value, and f{GWAS. In the simulation studies, p values
were obtained from a series of likelihood-ratio tests based
on the standard linear regression model. p values condi-
tioning on the top significant variant per locus were used
to identify the second signal by conditional analysis.
fGWAS was implemented with summary statistics from
single variant tests and the same genome segmentation
as used by bfGWAS. We failed to include PAINTOR in the
comparison, because PAINTOR cannot complete the anal-
ysis for one block in >1,000 CPU hr (on a 2.5 GHz, 64-bit
CPU) and is thus expected to require >1 million CPU hr for
a genome-wide analysis.

GWAS of AMD

In the GWAS data of AMD, all genotypes were generated by
a customized chip that contains (1) the usual genome-wide
variant content, (2) exome content comparable to the
Exome chip (protein-altering variants across all exons),
(3) variants in known AMD risk loci (protein-altering vari-
ants and previously associated variants), and (4) previously
observed and predicted variation in TIMP3 and ABCA4
(two genes implicated in monogenic retinal dystrophies).
The genotyped variants (439,350) were then imputed to
the 1000 Genomes reference panel (phase I),°® resulting a
total of 12,023,830 variants.

The software bfGWAS used dosage genotype data and
standardized phenotypes. Phenotypes were first coded
quantitatively with 1 for case subjects and O for control
subjects; then corrected for the first and second principle
components, age, gender, and source of DNA samples;
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and then standardized to have mean 0 and standard devi-
ation 1. In order to make the Bayesian inferences scalable
to the AMD GWAS data (33,976 individuals, 9,866,744 var-
iants with MAF > 0.5%), we segmented the whole genome
into 1,063 non-overlapped blocks, such that each block
has length ~2.5 Mb (containing ~10,000 variants) and
all previously identified loci along with variants in LD
(R? > 0.1) were not split. Then we applied the EM-
MCMC algorithm with 5 EM steps and 50,000 MCMC iter-
ations per block (including 50,000 extra burn-ins).

For comparison, p values were obtained by a series of
likelihood-ratio tests, using the same “quantitative”
phenotype vector as used by bfGWAS; f{GWAS was imple-
mented with the summary statistics from single variant
tests and the same genome segmentation as used by
bfGWAS; and a standard Bayesian variable selection regres-
sion (BVSR) method that models no functional informa-
tion was also applied.

Three types of genomic annotations were considered
for analyzing the AMD data: gene-based functional annota-
tions of SNPs and small indels from SeattleSeq, summarized
regulatory annotations,*' and the chromatin states profiled
respectively for 127 epigenomes by ChromHMM.'#**3 For
variants annotated with multiple functions, we used the
most severe function in the analysis: non-synonymous >
coding-synonymous > other-genomic > intronic > inter-
genic for the gene-based annotations; coding > UTR >
promoter > DHS > intronic > intergenic > “others” for
the summarized regulatory annotations.

We further did sensitivity analysis using varying prior
means as well as starting values (107%, 5 x 10°¢, 10°°)
for m;, and varying starting values (10, 5, 1) for ‘Tfj in
bfGWAS with gene-based functional annotations. As ex-
pected, the results showed that the posterior inference
results were not affected by various practical prior assump-
tions and starting values of the category-specific parame-
ters. Specifically, all three sets of results identified the
same 37 risk loci, comparable number of associated vari-
ants with Bayesian PP > 0.1068, as well as the same enrich-
ment pattern (Figure S10).

Accession Numbers

The accession number for the AMD genotype data analyzed in this
paper is dbGaP: phs001039.v1.p1.

Supplemental Data

Supplemental Data include 17 figures, 16 tables, and a detailed
technical note and can be found with this article online at
http://dx.doi.org/10.1016/j.ajhg.2017.08.002.
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bftGWAS, https://github.com/yjingj/bfGWAS

ChromHMM, http://compbio.mit.edu/ChromHMM/

fGWAS, https://github.com/joepickrell/fgwas

GEMMA, https://github.com/genetics-statistics/ GEMMA

Profiled chromatin states with respect to 127 epigenomes, http://
egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html#
core_15state

SeattleSeq, http://snp.gs.washington.edu/SeattleSeqAnnotation138/
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Supplemental Note

Technical Details about bfGWAS

1 Bayesian Hierarchical Model

1.1 Standard Bayesian Variable Selection Regression Model

Consider the following standard Bayesian variable selection regression (BVSR) model
Ynx1 = XnXpIBpxl + €nx1, 5% ~ WiN(Oa 7-710-1'2) + (1 - 7Ti)60<ﬁi>7 € ~ N(07T71>7 (1)

where y,.; denotes the centered phenotype vector of n samples; X,., denotes the
centered genotype matrix of p genetic variants; ¢; denotes the residual error independently
and identically distributed (i.i.d.) with normal distribution N (0,77'); and 3; follows a
spike-and-slab prior distribution [5, 6, 7] — that is, ; follows the normal distribution
N(0,77'0?) with probability 7; and the point-mass density function dy(-) at 0 with
probability (1 — ;) (0o(5;) = 1 if 5; = 0, otherwise dy(5;) = 0).

Here, the genotype matrix contains either dosage data within range [0, 2] or genotype
data with values {0, 1,2} denoting the number of minor alleles. The assumption of the
spike-and-slab prior for ; enforces variable selection in the regression model (1). We
drop the intercept term here for assuming both y,,«; and columns of X, are centered.
Although this model is developed for quantitative trait, we can treat dichotomous traits
(e.g., cases and controls) as quantitative with values of 1 and 0 (e.g., 1 for cases and 0
for controls), which was proven to be equivalent as using the logistic or probit model by
previous approaches [6, 7].

1.2 Integrating Functional Information

In this paper, we only consider non-overlapped categorical annotations. Let A; =
(Ai1, -+, Aig)T denotes the vector of () annotations for the ith variant, where A;, takes
binary values (1/0) to denote whether the ith variant is of the ¢th annotation. In order to
integrate functional annotations into the standard BVSR model (1), we assume all variants



of annotation ¢ have the same spike-and-slab prior with parameters (r,, c2). We further
assume the following independent and conjugate hyper priors (Figure S 1(A)):

g Lid. ~ Beta(ag,by), o) iid. ~ IG(ky, k), T~ G(ks, k), (2)

where Beta(a,, b,) denotes a Beta distribution with positive shape parameters a, and b,,
IG(ky, k2) denotes an Inverse-Gamma distribution with shape parameter k; and scale
parameter ky, and G(ks, ks) denotes a Gamma distribution with shape parameter ks
and scale parameter k, (Figure S1(A)). Note that parameters (a,,b,) could be different
with respect to different annotations. This hierarchical BVSR model is equivalent to the
standard BVSR model when modeling no functional information (i.e., assuming the same
7, and 03 for all variants).

In order to adjust for the unbalance distribution of functional annotations among all
variants and encourage for a sparse model, we choose values for a, and b, such that the
Y = 107° with (a, + b,) = mg = Y5 A;; (the total

ag+bg i=1,j=q
number of variants of annotation ¢). Here, the mean 107° of Beta(a,,b,) helps enforce

mean of the Beta distribution

a sparse initial model that is desired for controlling false positives (assuming one signal
perlM variants). We take k; = ks = k3 = k4 = 0.1 to induce non-informative priors on ag
and 7. Thus, the posterior estimates of 7, and 02 will mainly depend on the data likelihood.
However, when there are few association signals in the ¢th category, the posterior estimates

of 7, and 02) will be set as their respective prior modes. Note that although the hyper

2

q are no

priors are assumed to be independent, the posterior distributions of 7, and o
longer independent.

1.3 Latent Indicator Variable

To facilitate computation, we introduce a latent indicator vector ~,.; [5] into the model,
where each element v; € {0, 1} indicates whether the corresponding :th effect /5, equals to
0 with ; = 0 or follows the N (0, 7~ '0?) distribution with ; = 1. Equivalently,

Vi ~ Bernoulli(m;), By ~ 0o(-), By ~ MV N (0, V),

where || denotes the number of non-zero entries in «; 3_., denotes the sub-vector of 3,.;
corresponding to variants with ~; = 0; 3, denotes the sub-vector of 3, corresponding to
the variants with {y; = 1,7 = 1,--- ,|v|}; and V},| is the corresponding sub-matrix (with

v; = 1) of V,y,, = diag(c?, - - - ,012,).



1.4 Bayesian Inference

With the above Bayesian hierarchical model, the posterior joint distribution of
(B,~,02,m,7) is proportional to the product of likelihood and prior density functions,

P(B,v,0% =, 1ly, X, A)  P(y|X,B8,7v,7)P(B|A, 7,02 7)P(~y|7)P(w)P(c?)P(7), (3)

where w = (m,...,7g), 0% = (07,...,04), and A is the p x @ annotation matrix with

binary values.

Now our goal is to make inference on the category-specific parameters (m,o?)
and the variable-specific parameters (3, F[v|) from their respective marginal posterior
distributions, conditioning on the data (y, X, A). The category-specific parameters (7, o?)
denote the shared characteristics of variants with the same annotation, which are also
referred as enrichment parameters in this paper. Specifically, 7, denotes the causality for
variants of annotation ¢, and ag denotes the effect-size variance for associated variants
(with nonzero $3;) of annotation g.

To make the Bayesian inference of our model applicable for genome-wide analysis, we
pair it with a novel Expectation-Maximization Markov chain Monte Carlo (EM-MCMC)
algorithm. Because of the block-wise linkage disequilibrium (LD) structure of human
genome, we can segment the genotype data X into K approximately independent blocks,
ie., X ={X;,X,, -+, Xg}, where each submatrix X, has dimension n x p; (genotypes
of p, variants for n samples). Thus, we can write the likelihood function in (3) as a product
of a series likelihood functions for X,

K
P(y|X7167777—) = HPk<y‘Xk716k77kuT)7 (4)
k=1

where <y|Xk, ,Bk,’yk, 7‘) ~ MVN|7k\(Xk/6k> T71I|‘Yk\)'

To avoid adjusting for the residual variance with respect to each genome-block, we
fix 7=! as the phenotype variance. This assumption is reasonable because most genome-
blocks explain little phenotype variance in practice. Although fixing 7! as the phenotype
variance seems conservative for genome-blocks with true signals, our analysis showed that
it barely affect identifying true signals.

In the Expectation step (E-step), (Bk, E[vx]) are estimated by implementing MCMC
per block, conditioning on the given values of (7, o); in the Maximization step (M-step),
(m, o) are updated, conditioning on genome-wide estimates of (3, E[v]) from the E-step.
In general, ~5 EM iterations will lead to convergent estimates of (7, o), and the estimates
of (Bk, E|yk]) from the last E-step will be used to identify association signals (details are
provided in Section 2; Figure S 1(B)).



1.4.1 Conditional Posterior Distribution for 3,

Conditioning on the values of (w,o?,7), the posterior distribution for the variant-specific
parameters (3, ;) of block & is

P(/Bk77k|Xk7y77r70-27T> (8 P(y’kaBhpykaT)P(ﬁk|7kva2vT)P<7k|7T) (5)

Conditioning on the indicator vector -, the effect-sizes associated with zero indicator
variables are 0, while the posterior distribution for 3|, is given by

P (Bl | X il U, Vi 02, 7) < Pe(Yl X i) Byl Yoo T) P (Bl Vi, 02, 7)
o< exp { =3 (Y = X 1B) " (Y = X1yt Bl } exp {—éﬁﬁuvﬁjﬁw}

X exp{ 3 (’3|’7k|X|7kz|X|7k|/8|"/k| 2’3|1’;k|X|7k|y * Bﬁkl‘/l;jlﬁhko}
o exp{ 3 <18|'Yk|<X|7k|X|7k| + |"/k|)/6|"/k| Q'BITYkIXEMy)}’ ©

From (6), it is easy to see that

(’6|’7k|‘X|’7k| Y, 7’?70'2 T) ~

MV Nip <<X|fyk|Xlwl+Vw|> XY T X Xl Vi)™ ) 7

[V

Here, the subscript |y;| indicates sub-matrices or sub-vectors corresponding to variants
with nonzero indicator variables, and V},, is a diagonal matrix with (V},,);; = o7 if the
jth variant is of annotation q.

1.4.2 Conditional Posterior Distribution for -,

Because of the conditional conjugate prior for 3;, we can easily integrate (3, out from
the joint conditional posterior distribution (5) to obtain the marginal conditional posterior
distribution for ~,

P(7k|Xk7y7ﬂ-70-277—) X / Pk:(y|Xk7ﬁk77k7T>P(/6k|7ka0-27T)P(7k‘7r)dﬁk
Bk

X |Q|7k||_1/2exp{2y Xl‘)’k|‘/|‘)’k|9|—yk|X|fyk|y} P(yi|m),  (8)

where Q| = Vi X[, Xi| + Loy

[V

2 EM-MCMC Algorithm

The steps of the EM-MCMC algorithm are as follows:



(i) Fix 7 at the value of phenotype variance;
(ii) Set initial values for the category-specific parameters (7, o2);

(iii) E-step: Conditioning on the most recent values of (w,o?), estimate variant-specific
parameters (3, E[v]) by implementing MCMC per block;

(iv) M-step: Conditioning on the genome-wide estimates of (3, F[vy|) from the previous
E-step, update (7, o) by their MAPs (maximum a posteriori estimates), maximizing
the expected log-posterior-likelihood functions [2];

(v) Repeat the EM-steps (iii) and (iv) for a few times until the MAPs of (7, o?) converge.

2.1 Setup Initial Values

In this paper, we fix 7 at the value of phenotype variance, equivalent to assuming no
phenotype variance explained by the genetic variants. This assumption is true for most
blocks and slightly conservative for blocks with true signals. However, our analysis showed
that this assumption barely affects identifying true signals. We take initial values 7, =
1 x 107° to initial a sparse and conservative model, and o7 = 10 to start with a large
effect-size variance for all associated variants.

2.2 MCMC Sampling Scheme

The MCMC sampling is implemented per block for estimating (3, F'|7yx|), conditioning on
category-specific parameters (m, o?):

(i) First, sort all variants in the block by their base positions, perform single variant tests,
and rank variants based on their marginal association evidence (e.g., P-values) from
strong to weak.

(i) Second, select an initial model with independent significant signals. We first include
the variant with the smallest P-value into the model (i.e., set the corresponding
indicator value as 1). Then, conditioning on the currently selected variant(s), select
the next most significant variant with P-value < 5 x 107%. Stop selection when no
other independent genome-wide signal exists. Generally, most of the blocks with
~10K variants will start with only one variant.

(iii) Third, repeat the MCMC sampling for a large number of iterations (e.g., 50K
iterations with 50K burnins), in which the Metropolis-Hastings algorithm is used



to draw posterior samples for -+, based on (8). With indicator vector ~; and
corresponding effect-size vector 8,| from previous iteration, each MCMC iteration
is as follows:

(a) Randomly propose a new indicator vector =, by:

* Including an extra variant into the model with probability 1/3: generate a
rank r from a proposal distribution P,, such that the variant with rank r
is not included in the current model (change the corresponding indicator
variable from O to 1). Here, P,, is constructed as the mixture distribution
0.9%Utop+0.1U,c5;, where Uy, denotes the uniform distribution on top ranks
(1,...,tx) and U,.s denotes the uniform distribution on the remain ranks
(tg+1,- - ,pr) (tx is an arbitrary number). That is, we assume a variant
whose P-value is ranked in the top association group will be proposed with
probability 0.9/(¢), while a variant in the remaining group will be proposed
with probability 0.1/(pr — tx). A rank will keep being proposed from P,
until the corresponding variant is absent in the current model. We take
tr, = min(pg, 300) in our software.

x Deleting a variant from the current model with probability 1/3: randomly
delete a variant from the current model (change the corresponding
indicator variable from 1 to 0), i.e., each variant in the current model has
probability 1/|v;| to be deleted.

x Switching a variant in the current model with an un-included variant
in the neighborhood of the switch candidate (switch the corresponding
indicator variable values): randomly select a variant in the current model
as a switch candidate; propose a variant within its neighborhood from
the proposal distribution P,.;. In order to improve the MCMC mixing
property, we calibrate P,.;;, based on the conditional association evidence of
all un-included variants in the neighborhood, conditioning on all variants
in the current model except the switch candidate. For example, if
there are 20 un-included variants in the neighborhood with conditional
likelihood ratio test (LRT) statistic values {s;,--- ,s9}, we first subtract
the largest statistic value s,,,, from all values, then take P,.(s;) =
exp($; — Smaz)/ Zgil exp(Sp — Smaz) as the probability for the corresponding
jth variant to be proposed. The neighborhood size can be tuned by users
(we set the neighborhood window as 100 variants near the switch candidate
in our analyses).



(b) Conditioning on the indicator vector =}, the effect-size vector VIR estimated
by its conditional posterior mean in (7).

(c) Calculate the Metropolis-Hastings acceptance ratio, and then decide whether to
accept or reject v, by the Metropolis-Hastings algorithm.

(iv) Finally, E|v,] is estimated by w;; /M, where uy; is the number of times when the jth
variant in block k is included into the model and M is the total MCMC iterations.
Note that Elv;] is also referred as the Bayesian posterior inclusion probability (PP),
evidence for the ith variant in block k£ to be an association signal. The Bayesian
estimate of the corresponding (3, is given by the posterior mean $_,*/ S, /uy;, where
Br; is the effect-size estimate for the jth variant (in block £) when it is included into
the model for the /th time.

Within the MCMC sampling, we also record the number of iterations M,.;,. when the
linear regression model includes at least one variant by the Metropolis-Hastings algorithm.
Then the proportion of such MCMC iterations M,.;,./M gives us the regional posterior
inclusion probability (regional-PP) of the study block, which is the probability of existing
at least one signal in the block. Because variants in high LD and the same annotation
category have the same chance to be included into the linear model (splitting the posterior
probability for a single signal), the regional-PP is more appropriate than the single variant
Bayesian PP for claiming a risk locus.

2.3 EM Algorithm

In the EM algorithm, values of (w,o2) are updated by their respective maximum a
posteriori estimates (MAPs), maximizing expected log-posterior-likelihood functions. With
the Bayesian estimates of (3, F[y]) from the E-step, the expected log-posterior-likelihood
functions and MAPs can be derived with closed-form expressions.

2.3.1 MAP for o?

From the joint posterior distribution (3), the conditional posterior density function
(posterior likelihood) of o2 becomes

P(o?|B,7,7) < P(Bly,02,7)P(c?), 9)

where P(o?) = HqQ:1P(U2) with o2 ~  IG(ki, ko), 1ie. P(o?)

q q q

(03)_(k1+1) exp <_§—_§>; P(ﬁ|7702’7—) = f:l P(ﬁz‘o-ga’y’MT) with P(61|0-1277177-) =



(%N (Bi; 0,77 0?) + (1 = 7)d0(3:)); and o7 = o if the ith variant is of annotation

The expected log-posterior-likelihood of o2 is given by
l(0®) = Ey [In(P(0?|B,7,7))]
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where {3; = E[yi]}, {;} are Bayesian estimates by MCMC in the E-step, and C'is a constant

hS]

< 1 1
Z[k1+ (U—g)—k2§]+c, (10)

=1 q

free of o2.

From (10), we can see that the posterior distributions of {03; qg=1,...,Q} are disjoint,
because of independent priors and non-overlapped annotations. Thus, the expected log-
posterior-likelihood function for each o is

m —2
q — T Tﬁj 1 k’Q
lgg = Z ["yjq ( In (0_2> — T"; + (kl + 1)ln (;) — ; + C (11)
Jg=1 q q
where {7;,, Bj\q : jg =1,...,n,} are the Bayesian estimates for variants of annotation ¢, and

myg is the total number of variants with annotation ¢. The MAP of 57 can be solved from
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2.3.2 MAP for «

From the joint posterior distribution (3), the conditional posterior density function
(posterior likelihood) of w becomes

P(m|y) oc P(y|m)P(m), (12)

where P(y|w) = [[_, P(vilm) o« [, 7 (1 — m)*; = = m, if the ith variant is of
annotation ¢; and P(w) = Hqul P(m,) with 7, i.i.d. ~ Beta(a,, b,).
The expected log-posterior-likelihood of 7 can be derived as

l(ﬂ)ZE [In(P(m]Y))]
Zln (vilms))

_ ZE [In(P(vi|m;))] + In (P(m)) + C

p

= ) (Prob(y; = )in(m;) + Prob(y; = 0)In(1 — 7)) +

+In(P(m))+C

;1
Z ((ag — D)in(mg) + (bg — 1)in(l — m)) + C
P Q
~ Z (Filn(m)) + (1 = 3)in(l —m;)) + Z Din(my) + (by — 1)in(l — 7)) + C,

(13)

where {7; = E[v;]} are estimated by MCMC, and C is a constant free of 7.
Similarly, because the posterior distributions of {7,; ¢ = 1,...,Q} are also disjoint, the

expected log-posterior-likelihood function for =, is given by

lr, = Z [Viin(mg) + (1 = 7;)In(1 — )] + (ag — D)in(my) + (by — 1)in(1 — m,) + C, (14)
jqzl

and the MAP for 7, is solved as

~ qu—l Vjg T ag — 1
mg+a,+b,—2




3 Construct Confidence Intervals by Fisher Information

Fisher information of (w, 6%) can be derived from the second derivatives of the respective
expected log-posterior-likelihood functions as in (11) and (13). By the asymptotic-
normality of MAP, as n — oo, the distribution of a MAP estimate 7 converges to a
multivariate normal (MVN) distribution with mean equal to the true parameter value 6y
and covariance matrix equal to the inverse of the Fisher information.

Therefore, the MAPs o2 and 7 are converging to the following MVN distributions as

n — 00,

o2 — MVN(02,I,2(02)"), & — MV N(m,, L;(7)™Y), (15)
where o2 and =, are the true parameter values; Io.z((;a) R~ —%];; and
I.(7) ~ — gjg:% #. Because of the mutual independence among {o;,m; ¢ = 1,...,Q}

(conditioning on the estimates of 8 and E[v]), the analytical forms for the second
derivatives of lo2, lx, are

mgq —~ —~ 2
dlys St ( T B ) Lkl 2k
d20-3 — 2(0-2)2 (0-2)3 (0-2)2 (0-2)3

dlr, Z;’Z”’:l’%\q—i—aq—l nq_zzilﬁ+bq_1

2m, 2 a (1—m,)?

Then the Fisher informations of o7, 7, are given by

1 - 2ko
Uq Jg=1 Uq
AT a1 ng— > A b, — 1
I(ﬂ'q) _ Z]q_l Yiq q q Z]q_l Viq q

2 (1 —m,)?

The (1 — o)% confidence intervals of ¢, m, can be constructed by

02 £ Zo o\ 1(02)Y, Ty % Zayar/1(7y) 71, (16)

where Z,,, is the upper «/2 quantile of the standard normal distribution N (0, 1).



4 Compare Enrichment among Multiple Groups

With the MAPs of (r,, ag) and corresponding standard errors, we can easily compare the
enrichment among multiple groups. Take the case with two annotation groups for an
example, the 95% confidence intervals of the quantities In(m;/m2), In(o?/o3) can be easily
approximated by Fieller’s theorem [3] (if variables a ~ N(ag,02), b ~ N(by,0}), then
In(a/b) ~ N (In(ag/by),02/a% + o2 /b?)), and then can be used to test whether or not the
enrichment is significantly different between two groups (i.e. whether or not the 95%
confidence intervals of in(r/m), In(c}/03) overlap 0). Moreover, with the approximated
variance of the log-ratio by Fieller’s theorem, we can calculate a P-value for the null
hypothesis that the log-ratio equals 0. For example, the P-value for testing the null
hypothesis In(m/m) = 0 vs. the alternative hypothesis n(m/m) # 0 can be calculated

by o
(¥ (Gt

where U is the probability distribution function of N(0,1), (m,72) are MAPs, and
sd(In(m/my)) is the standard deviation of in(m; /7).

For the case with multiple annotation groups, we can calculate similar quantities to
compare the estimates by each group vs. the genome-wide average. That is, for causal
probability, In(m,/7..,) is used to test whether or not the causal probability of group g is

is the number of variants of annotation ¢). For the effect-size variance, a similar quantity

significantly different from the overall average, where 7,,, = Zle WyTy, Wy =

= Zqul fq0: is the weighted average of effect-size variances

25””—”‘1 (mym, is the expected number of associations in
q=1 MqTq

annotation category ¢). Again, the hypothesis tests for comparing enrichment among

In(o?/0?,,) is used, where o

avg

with weights given by f, =

multiple groups can be easily performed, because the approximated 95% confidence
intervals of these log-ratios can be easily obtained by Fieller’s theorem [3].

In addition, we can approximate the enrichment-fold 7 /7y by exp(In(m /m2)), and
0% /o3 by and exp(In(o?/03)).

5 Convergence Diagnosis

We used the potential scale reduction factor (PSRF) [4] to quantify the mixing property of
MCMC algorithms. With multiple MCMC chains, the PSRF for a parameter is basically the
ratio between the overall estimated parameter variance and the within-chain variance. A
PSRF value within (0.9, 1.2) suggests that the MCMC algorithm has good mixing property



and posterior samples converge. For example, in Figure S2, we present the PSRFs for
the E[y;] of top 58 variants with P-values < 5 x 10~® in the WTCCC GWAS of Chrohn’s
disease [1]. We can see that about half of the 58 variants had PSRFs > 1.2 by the standard
MCMC algorithm as used in GEMMA [7], while all PSRFs by our MCMC algorithm all fall
within (0.9, 1.2), suggesting greatly improved mixing property due to the refined proposal
distribution and relatively small block-sizes.

6 Challenges for Extending bfGWAS for Overlapped and Quantitative
Annotations

Theoretically, this Bayesian hierarchical model can be easily extended for analyzing
overlapped categorical and quantitative annotations, by assuming the following logistic
model for the 7; in model (1),

logit(T;) = ap + A cv. 17)

In the logistic model (17), A; is the quantitative annotation vector (with binary values
for categorical annotations) for the ith variant, and o = (o, - - - , o) is the vector of log-
odds for all considered annotations. Independent normal distributions can be assumed
as the hyper priors for the category-specific (enrichment) parameters (ag, ). With a
large number of annotations, variable selection of annotations might even be integrated
by assuming independent point-normal priors for c.

Conditioning on values for (ap,a), the MCMC algorithm (Section 2.2) can be
implemented similarly per block in the E-step. However, in the M-step, analytical formulas
are no longer available for the posterior MAPs of (g, ). In preliminary analysis, we
found that the false positive rate was inflated due to over estimated 7;, which is due to
the difficulties of estimating («g, ). We are still exploring an appropriate approach to
effectively control the false positive rate for this extension.

7 Software

Software implementing this Bayesian hierarchical model with the EM-MCMC algorithm,
referred as Bayesian Functional Genome-wide Association Study (bfGWAS), is now
available at GitHub (https://github.com/yjingj/bfGWAS). Within the software, the E-
step (MCMC algorithm) is written in C++ language; the M-step is written in an R script;
and both steps are wrapped together (enabling parallel computation) through submitting
jobs by a Makefile that is generated by a Perl script.



Supplemental Figures

Figure S 1: Flowcharts of bfGWAS.
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Figure S 2: Plots of the potential scale reduction factors (PSRF).
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Standard MCMC algorithm as used in GEMMA; (B) Our MCMC algorithm.
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Figure S 4: Estimates of the log-relative-risk In(my/71) by bfGWAS and the enrich-parameter by

fGWAS, along with 95% confidence intervals.
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Figure S 5: Estimates of the log-ratio of effect-size variances In(o3/03) by bfGWAS, along with
95% confidence intervals.
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(A) Simulation scenario (i) with enrichment in coding; (B) Simulation scenario (ii) with
no enrichment. Note that the effect-sizes of both groups in scenarios (i) and (ii) were
simulated from the same normal distribution, thus the 95% confidence intervals covering
0 suggest that bfGWAS estimates similar effect-size variances between two categories.



Figure S 6: Sorted top bfGWAS PPs versus sorted top —logl0(P-values) of single variant tests.
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Figure S 7: Manhattan plot highlighting AMD GWAS signals with BVSR PP > 0.1068.
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Figure S 8: Manhattan plots highlighting AMD GWAS signals by accounting for gene-based
annotations.

(A)

AMD
10
400 - Annotation
& Non-syn
_| ® Coding-syn -
300 7 Other-genomic H
= [ntronic
200 — « Intergenic
. 0.8
100 -
+
20 == i :0 "
18 - v I be e
J . 2o
Ty 18 s . ! [ i
g 14 H I [ i ;
] i ' . H l
i : . : ® I I T i’
1 R . !
10 a ' I ‘ l 1 ¢
1 i s 04
8 - ! i .
5 - 3
4 -
2 0.2
0_
2 4 ] 8 10 12 14 16 18 20 22
1 3 s T k] 1 13 15 17 16 21
AMD
10
400 - Annotation
& Non-syn
_| ® Coding-syn »
300 v Cther-genomic =
= [ntronic
200 — « Intergenic
0.8
100 - ;)
i "
20 =~ i ': L,
18 - v I be e
J . 2|
5 . S &
B 14 H I 3 HH i :
. : i
12 4 s
: . o ' e. ]
10 iy 3 H A | I !.
ol 3 1l '! LI 04
8+ b 9 .
Ay }- +1 L . § i3
6 s
4—
2 0.2
0_
2 4 & 8 10 12 14 16 18 20 22
1 3 s T k] 1 13 15 17 16 21

(A) Highlighting signals with fGWAS posterior association probability (PP) > 0.1068 are
colored; (B) Highlighting signals with bfGWAS PP > 0.1068.



Figure S 9: LocusZoom plots of region CHR19:6218146-7218146.
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Figure S 10: Enrichment analysis results with varying prior means as well as starting values
(107%,5 x 1075,107?) for w4, and varying starting values (10,5, 1) for o2.
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fGWAS Enrichment

Figure S 11: f{GWAS enrichment estimates with 95% error bars.
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(B)

Figure S 12: Ratios of enrich parameters versus the respective genome-wide averages, along with

95% confidence intervals.
(A)

Gene-based Annotation

79 -
53-
2 -
o 26- o
> >
E i)
;fr Nbcr 1-
1- :I: i
_ ‘\3(\ ) @ " QC
N ) c,cd\‘\g v(}"’(\o W« &
©
Regulatory Annotation
42 -
28 -
14 -
2
E
) I
1- ]: RN
—-_
Qe(‘i\oo’i(\e“s

WO (@ g ©
SR o o e

(E)
Chromatin States (E093)
7.180 - -T-
4,922 -
I:% 2.664 -
4
1.000 -

0.406 -

(A, C, E) Causal probability ratios (7,/m,.,); (B, D, F) Effect-size variance ratios (03 /o

Gene-based Annotation

P W e e
$0<\% oé\“g «Qe‘(\o W© \Q‘Q’e
(D)

Regulatory Annotation
21- —+
14-
~g 77
°
N T
©
) I TT

« ‘?\ o é ‘\0 N “5
TSN ?‘06\0\ o \(\.\‘o“&e&e“ e
\

()
Chromatin States (E093)
9.948 - =
6.764 -
N % 3.581 -
o
NOU‘
1.000 - I —
0.397 -

| | | | | | \(\ |
<+ < N\(‘ @“‘(\ Y\e\ y Q‘QC < ?CN“ &69
« Q\QQ

I I I I I
C

o «*‘*\4\ «©® ‘8\‘3‘?\2\)\?
Q\QQ

| |
‘?C'“«\Q‘i\ee

2

avg)'



Figure S 13: Enrichment analysis results for the AMD GWAS data with chromatin states profiled
with respect to the epigenome of fetal thymus (E093).

>
=

Causal Probabi

2.5e-05-
2.0e-05-

1.5e-05-
1.0e-05-

0.0e+00 -

S

N
<k

t

fGWAS Enrichmen

(A)
E093

2.0e-01-
- 1.5e-01-

C

=

o

it

o

=
I

5.0e-02 -

Effect—size Variance

o 0.0e+00 -
I I \Cj \N\‘\ . \6
e © v 0
?\69 ?\29\? Q)
(@)
E093

1.72e+02 - T

1.15e+02 -

5.75e+01 -

0.00e+00 -

<+

(B)

1

\\4~ ‘\<\ I \' I O I \‘\
AT e e ¥ Q«)O““
?\8

I

I I I I I I I I I I I I
O\ O Qo uet o ko o0
«f;P‘?\'\*F?\(\ TN e R PR (\‘(\%?\»GQ‘:\X?
X

2

2

[l

| |
O@é\i\?ﬁ

Q®

|
S



Figure S 14: Manhattan plot highlighting MGI GWAS signals of skin cancer with BVSR PP > 0.1068.
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Figure S 15: Manhattan plots highlighting MGI GWAS signals of skin cancer by accounting
for gene-based annotations.
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(A) Highlighting signals with with fGWAS PP > 0.1068; (B) Highlighting signals with
bfGWAS PP > 0.1068. Variants with PP > 0.1068 are plotted in different shapes with
respect to gene-based annotations.



Figure S 16: Enrichment analysis results of the MGI GWAS of skin cancer, accounting for gene-

based annotations.
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Figure S 17: LocusZoom plots in the region of CHR16:89686117-90172696.
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Supplemental Tables

Table S1: Classification of gene-based functional annotations.

Native gene-based functional annotations

Annotation categories considered

in the analysis

frameshift, frameshift-near-splice

splice-acceptor, splice-donor,

stop-gained, stop-gained-near-splice, stop-lost

missense, missense-near-splice

synonymous-near-splice, non-coding-exon-near-splice,

coding-near-splice, coding-unknown-near-splice, intron-near-splice

Non-synonymous

coding, coding-unknown, synonymous, nc-transcript-variant

Coding-synonymous

intronic

Intronic

intergenic, NAs

Intergenic

3-prime-UTR, 5-prime-UTR,

downstream-gene, upstream-gene, non-coding-exon

Other-genomic




Table S2: Compare results by P-value, f{GWAS, and bfGWAS in the 34 known AMD loci, accounting for gene-based annotations.

. I . Bayesian fGWAS
Known 34 Loci Top significant variant by P-value Regional-PP | Regional-PP

Locus name Chr Start End dbSNPID Chr:Position MAF P-value Anno
CFH 1 195,679,832 197,768,053 | rs10922109 1:196,704,632 0.329 <9x10732! intronic 1.000 1.000
COL4A3 2 227,573,015 228,592,110 | rs11884770 2:228,086,920 0.731 5.6x107° intronic 0.984 0.986
ADAMTS9-AS 3 64,199,445 65,230,121 | rs62247658  3:64,715,155  0.551 1.4x10715 intronic 0.978 1.000
COLBA1 3 98,551,114 100,381,567 | rs140647181  3:99,180,668 0.019 5.4x10713 intergenic 1.000 0.999
CFl 4 110,126,506 111,185,820 | rs10033900 4:110,659,067 0.506 7.1x1071° downstream 1.000 1.000
Cc9 5 38,699,134 39,831,894 | rs62358361 5:39,327,888  0.012 3.1x10716 intronic 1.000 1.000
PRLR/SPEF2 5 34,769,332 36,493,378 | rs114092250 5:35,494,448 0.018 2.5x107° intergenic 0.961 0.987
C2/CFB/SKIV2L 6 30,505,490 33,238,589 | rs116503776 6:31,930,462 0.120 2.1x107'1* intronic 1.000 1.000
VEGFA 6 43,305,296 44,329,629 rs943080 6:43,826,627 0.518 2.0x107% intergenic 1.000 1.000
KMT2E/SRPK2 7 104,081,402 105,563,372 rs1142 7:104,756,326  0.357 1.5x1071° downstream 0.999 0.999
PILRB/PILRA 7 99,394,940 100,611,776 | rs7803454 7:99,991,548  0.199 3.6x10710 intronic 0.999 0.999
TNFRSF10B 8 22,582,971 23,588,984 | rs79037040  8:23,080,971 0.534 2.9%x10712 nc-transcript 1.000 0.999
MIR6130/RORB 9 75,935,160 77,189,752 | rs10781180 9:76,615,662 0.683 3.0x1071° intergenic 0.997 0.999
TRPM3 9 72,938,605 73,946,180 | rs7150714 9:73,438,605 0.584 3.2x107° intronic 0.929 0.999
TGFBR1 9 101,358,102 102,431,769 | rs1626340 9:101,923,372 0.199 2.3x107'' intergenic 1.000 0.999
ABCA1 9 107,139,414 108,167,147 | rs2740488 9:107,661,742 0.265 1.7x107° intronic 0.963 0.985
ARHGAP21 10 24,360,361 25,556,538 | rs12357257 10:24,999,593 0.232 4.3x107° intronic 0.962 0.986
ARMS2/HTRA1 10 123,702,126 124,735,355| rs3750846 10:124,215,565 0.316 <9x107321 intronic 1.000 1.000
RDH5/CD63 12 55,615,585 56,713,297 | rs3138141 12:56,115,778 0.214 4.7x10710 intronic 0.034 0.999
ACAD10 12 110,919,995 113,502,935 | rs73205633 12:112,357,085 0.019 1.2x1071° intergenic 0.997 0.999




. I . Bayesian fGWAS
Known 34 Loci Top significant variant by P-value Regional-PP | Regional-PP

Locus name Chr Start End dbSNPID Chr:Position MAF P-value Anno

B3GALTL 13 31,242,232 32,339,274 | rs9564692  13:31,821,240 0.288 3.2x107! splice 1.000 0.999
RAD51B 14 68,227,506 69,550,783 | rs1956526  14:68,799,787 0.650 1..0x107! intronic 1.000 0.999
LIPC 15 58,171,721 59,242,418 | rs2414577 15:58,680,638 0.365 4.8x107'7 nc-transcript 1.000 1.000
CETP 16 56,485,514 57,506,829 | rs5817082  16:56,997,349 0.248 1.7x1072! intronic 1.000 1.000
CTRB2/CTRB1 16 74,732,528 76,017,115 | rs72802342 16:75,234,872 0.073 2.8x107'® downstream 1.000 1.000
TMEM97/VTN 17 26,092,946 27,240,139 | rs11080055 17:26,649,724 0.524 1.5x107° intronic 0.996 0.998
NPLOC4/TSPAN10 17 79,015,509 80,186,552 | rs6565597  17:79,526,821 0.390 1.0x10712 intronic 1.000 0.999
C3 19 5,311,717 7,224,340 rs2230199 19:6,718,387 0.764 1.7x10777  missense 1.000 1.000
CNNZ2 19 523,867 1,533,360 | rs10422209  19:1,026,318 0.132 5.5x107° upstream 0.970 0.993
APOE 19 44,892,254 46,313,830 rs429358 19:45,411,941 0.118 3.3x107*  missense 1.000 1.000
MMP9 20 44,114,991 45,160,699 | rs142450006 20:44,614,991 0.132 1.4x107'' intergenic 1.000 0.999
C200rf85 20 56,084,276 57,174,034 | rs117739907 20:56,652,781 0.062 7.8x10718 intergenic 1.000 1.000
SYN3/TIMP3 22 32,546,536 33,613,375 | rs5754227  22:33,105,817 0.123 2.0x107% intronic 1.000 1.000
SLC16A8 22 37,795,271 39,003,972 | rs8135665 22:38,476,276 0.205 2.9x10712 intronic 1.000 0.999




Table S3: AMD risk variants identified by bfGWAS in the 34 known loci, accounting for gene-based annotations.

Signal - peside/Nearby Gene dbSNPID Chr:Position Anno MaF  DIGWAS Effect b aiue
number PP size

1.1 CFH rs800292 1:196,642,233 missense 0.183 0.997 -0.312 2.4x10731°
1.2 CFH rs10922094 1:196,661,505 intronic 0.530 1.000 -0.214 < 9.0x107321
1.3 CFHR1 rs605082 1:196,801,917 downstream 0.353 0.518 -0.092 7.5%x107257
1.4 CFHR4 rs58175074 1:196,820,080 intronic 0.158 0.792 -0.314 < 9.0x107321
1.5 CFHR4 rs149032610 1:196,857,150 5-UTR 0.015 1.000 0.195 6.6x10738
1.6 CFHR4 rs10494745 1:196,887,457 missense 0.134 0.526 0.092 7.4x107137
1.7 CFHR2 rs138579109 1:196,923,955 intronic 0.043 0.893 0.167 8.4x10785
1.8 CFHR5 rs35662416 1:196,967,354 missense 0.022 0.889 -0.122 5.8x107°
2 COL4A3 rs11884770 2:228,086,920 intronic 0.731 0.269 0.052 5.6x107°
3 ADAMTS9-AS2 rs7428936 3:64,710,850 intronic 0.448 0.167 -0.061 1.5x10715
4 COLB8A1 rs140647181 3:99,180,668 intergenic 0.019 0.687 0.224 54x10713
5 CFI rs10033900 4:110,659,067 downstream 0.506 0.999 -0.067 7.2x1071°
6 C9 rs34882957 5:39,331,894 missense 0.012 0.998 0.278 4.0x10°16
7 PRLR/SPEF2 rs114092250 5:35,494,448 intergenic 0.019 0.403 -0.174 2.5%107°
8.1 C2/CFB rs4151667 6:31,914,024 missense 0.036 0.917 -0.279 1.4x107%*
8.2 SKIV2L/NELFE rs115270436 6:31,928,306 missense 0.071 0.633 -0.321 2.8x107%°
8.3 HLA-DQB1 rs3891176 6:32,634,318 missense 0.159 0.726 0.153 1.2x10711
9 VEGFA rs943080 6:43,826,627 intergenic 0.518 0.435 0.063 2.0x10716
10 KMT2E/SRPK2 rs1142 7:104,756,326 downstream 0.357 0.125 0.052 1.5x1071°
11 PILRB rs35986051 7:99,956,439 missense 0.139 0.193 0.075 4.0%x10710
12 TNFRSF10A rs79037040 8:23,082,971 nc-transcript 0.534 0.996 0.053 2.9%x10712
13 MIR6130/RORB rs10781182 9:76,617,720 intergenic 0.684 0.070 -0.052 3.0x10710
14 TRPM3 rs71507014 9:73,438,605 intronic 0.584 0.822 -0.046 3.2x107°
15 TGFBR1 rs10819635 9:101,864,510 upstream 0.186 0.137 -0.066 2.4%x107 11
16 ABCA1 rs2740488 9:107,661,742 intronic 0.266 0.756 -0.053 1.7x107°
17 ARHGAP21 rs12357257 10:24,999,593 intronic 0.232 0.318 0.053 43%x107°
18 ARMS2 rs10490924 10:124,214,448 missense 0.316 0.996 0.474 < 9.0x107321
19 RDH5/CD63 rs3138142 12:56,115,585 coding-syn 0.213 0.706 0.074 6.1x10710
20 MAPKAPKS rs61941287 12:112,330,305 intronic 0.019 0.309 0.191 1.2x10710
21 B3GLCT rs9564692 13:31,821,240 splice 0.288 0.942 -0.056 3.2x107 11
22 RAD51B rs2842339 14:68,986,999 intronic 0.899 0.243 -0.082 3.1x1077
23 ALDH1A2 rs2414577 15:58,680,638 intronic 0.366 0.501 -0.067 4.8x10~17
24 CETP rs1532625 16:57,005,301 splice 0.448 0.358 0.044 7.9%10°1°
25 CTRB2 rs72802342 16:75,234,872 downstream 0.360 0.297 -0.114 2.8x10713
26 CTB-96E2.2/VTN rs704 17:26,694,861 missense 0.483 0.325 0.042 3.3x1078
27 NPLOC4/TSPAN10 rs6420484 17:79,612,397 missense 0.622 0.402 -0.055 4.0x10712
28.1 FUT6/NRTN rs17855739 19:5,831,840 missense 0.044 0.681 -0.159 1.5x1071
28.2 C3/CTD-3128G10.7 rs147859257 19:6,718,146 missense 0.008 1.000 0.501 43x10731
28.3 C3/CTD-3128G10.7 rs2230199 19:6,718,387 missense 0.764 1.000 -0.172 1.7x10777




Signal bfGWAS  Effect-

Reside/Nearby Gene dbSNPID Chr:Position Anno MAF . P-value

number PP size

291 ABCA7 rs3752237 19:1,047,161 coding-syn 0.644 0.544 -0.065 6.7x1073
29.2 ABCA7 rs12151021 19:1,050,874 intronic 0.708 1.000 0.091 1.9x107°
30 g/;gf_j/zgcl):/\g/\;m/ rs429358 19:45,411,941 missense 0.118 1.000 -0.173 3.3x10°%°
31 MMP9/RP11-465L10.10 rs2274755 20:44,639,692 splice 0.138 0.435 -0.073 5.4x10711
32 C200rf85 rs201459901 20:56,653,724 intergenic 0.063 0.078 -0.135 7.9x10718
33 SYN3 rs5754227 22:33,105,817 intronic 0.124 0.764 -0.128 2.0x107%7
341 SLC16A8/BAIAP2L2 rs4289289 22:38,477,342 missense 0.485 0.824 0.056 1.1x107%°
34.2 SLC16A8/BAIAP2L2 rs77968014 22:38,478,666 splice 0.009 0.973 0.212 3.1x10°¢

Variants with Bayesian PPs >0.5 or the highest bfGWAS PPs in the loci are listed. Shown are reside/nearby genes, dbSNPIDs, positions, functional
annotations, MAFs (unfolded, corresponding to the direction of effect-sizes), P-values, and Bayesian PPs/effect-sizes.



Table S4: AMD risk variants identified by fGWAS in the 34 known loci, accounting for gene-based annotations.

Signal number Reside/Nearby Gene dbSNPID Chr:Position Anno MAF fGWAS PP P-value

1 CFH rs10922109 1:196,704,632 intronic 0.329 0.802 < 9.0x107321
2 COL4A3 rs11884770 2:228,086,920 intronic 0.731 0.181 5.7x107°
3 ADAMTS9-AS2 rs62247658 3:64,715,155 intronic 0.551 0.167 1.5x10715
4 COLB8A1 rs140647181 3:99,180,668 intergenic 0.019 0.999 5.4x10713
5 CFI rs10033900 4:110,659,067 downstream  0.506 0.996 7.2x1071°
6 C9 rs34882957 5:39,331,894 missense 0.012 0.900 4,0x10716
7 PRLR/SPEF2 rs114092250 5:35,494,448 intergenic 0.019 0.626 2.5x107°
8 NELFE/SKIV2L rs116503776 6:31,930,462 intronic 0.120 0.912 2.1x107114
9 VEGFA rs943080 6:43,826,627 intergenic 0.518 0.437 2.0x10°16
10 KMT2E/SRPK2 rs1142 7:104,756,326 downstream 0.357 0.182 1.5x1071°
11 PILRB rs72615157 7:99,956,444 missense 0.139 0.118 4,0x10710
12 TNFRSF10A rs79037040 8:23,082,971 nc-transcript 0.534 0.996 2.9%x10712
13 MIR6130/RORB rs10781180 9:76,615,662 intergenic 0.683 0.068 3.0x10710
14 TRPM3 rs71507014 9:73,438,605 intronic 0.584 0.860 3.2x107°
15 TGFBR1 rs10819635 9:101,864,510 upstream 0.186 0.188 2.4x1011
16 ABCA1 rs2740488 9:107,661,742 intronic 0.266 0.760 1.7x107°
17 ARHGAP21 rs12357257 10:24,999,593 intronic 0.232 0.280 43x107°
18 ARMS2 rs10490924 10:124,214,448 missense 0.316 0.626 < 9.0x107321
19 RDH5/CD63 rs3138142 12:56,115,585 coding-syn 0.213 0.847 6.1x10°10
20 MAPKAPKS5 rs61941287 12:112,330,305 intronic 0.019 0.503 1.2x1071°
21 B3GALTL rs9564692 13:31,821,240 splice 0.288 0.889 3.2x10711
22 RAD51B rs1956526 14:68,799,787 intronic 0.650 0.039 1.0x10~11
23 ALDH1A2 rs2414577 15:58,680,638 intronic 0.366 0.495 48x10"17
24 CETP rs5817082 16:56,997,349 intronic 0.248 0.193 1.7x10721
25 BCAR1 rs72802395 16:75,286,484 intronic 0.068 0.605 2.1x10~11
26 POLDIP2/TNFAIP1 rs13469 17:26,676,135 coding-syn 0.523 0.168 5.1x107°
27 NPLOC4/TSPAN10 rs6420484 17:79,612,397 missense 0.622 0.351 4.0x1071?
28 C3 rs2230199 19:6,718,387 missense 0.764 0.999 1.7%10777
29 CNN2 rs10422209 19:1,026,318 upstream 0.132 0.229 5.2x107°
30 APOE/TOMMA40 rs429358 19:45,411,941 missense 0.118 1.000 3.3x10746
31 MMP9 rs2274755 20:44,639,692 splice 0.138 0.194 5.4x10~11
32 C200rf85 rs117739907 20:56,652,781 intergenic 0.063 0.079 7.8x10718
33 SYN3 rs5754227 22:33,105,817 intronic 0.124 0.781 2.0x107%7
34 SLC16A8/PICK1 rs8135665 22:38,476,276 intronic 0.205 0.596 2.9%x10712

Variants with fGWAS PPs >0.5 or the highest f{GWAS PPs in the loci are listed in this table. Shown are reside/nearby genes, dbSNPIDs, positions,
functional annotations, MAFs (unfolded), fGWAS PPs, and P-values.



Table S5: Candidate AMD loci identified by bfGWAS, accounting for gene-based annotations.

Locus Reside gene dbSNPID Chr:Position Anno MAF P-value Regional-PP  bfGWAS PP  Effect-size
1 PPIL3 rs7562391 2:201,736,166 missense 0.127 4.8x1077 0.989 0.666 -0.061
2 ZNRD1ASP rs114318558 6:29,966,787 downstream  0.175 2.3x1077 0.993 0.135 0.058
3 CPN1 rs61751507 10:101,829,514 missense 0.043 6.7x1078 0.994 0.598 -0.106
4 ABHD2 rs6496562 15:89,736,558 splice 0.417 8.4x10°8 0.974 0.517 0.042
5 LBP rs2232613 20:36,997,655 missense 0.073 4.3x1077 0.955 0.881 -0.079

Variants with the highest bfGWAS single variant PP in the candidate loci are listed in this table. Shown are reside genes, dbSNPIDs, positions, functional
annotations, MAFs, P-values, Bayesian regional-PPs, and Bayesian PPs/effect-sizes.

Table S6: Candidate AMD loci identified by fGWAS, accounting for gene-based annotations.

Locus Reside gene dbSNPID Chr:Position Anno MAF P-value Regional-PP f{GWAS PP Effect-size
1 PPIL3 rs7562391 2:201,736,166 missense 0.127 4.8x1077  0.986 0.475 -0.061
2 HLA-K rs116803720 6:29,889,989 upstream 0.691 9.3x1071° 0.998 0.101 0.056
3 CPN1 rs61733667 10:101,802,262 coding-syn 0.036 1.0x1077  0.994 0.254 -0.118
4 ABHD2 rs6496562 15:89,736,558 splice 0.417 8.4x10"% 0.978 0.405 0.042
5 LBP rs2232613 20:36,997,655 missense 0.073 43x1077  0.973 0.796 -0.079

Variants with the highest f{GWAS single variant PP in the candidate loci are listed in this table. Shown are reside genes, dbSNPIDs, positions, functional
annotations, MAFs, P-values, f{GWAS regional-PPs, f{GWAS PPs, and Bayesian effect-sizes



Table S7: AMD risk variants by bfGWAS in the 34 known loci, accounting for summarized regulatory annotations.

Signal

bfGWAS

Effect-size

number Reside/nearby gene dbSNPID Chr:Position Anno MAF Pp P-value

1.1 KCNT2 rs144520124 1:196,371,908 DHS 0.005 1.000 -0.383 1.9x10723
1.2 CFH rs74979069 1:196,588,463 intergenic 0.049 1.000 0.181 8.1x10792
1.3 CFH rs1089033 1:196,666,793 intronic 0.412 1.000 -0.117 < 9.0x107321
1.4 CFH rs2133143 1:196,718,099 intergenic 0.165 0.736 -0.358 5.7x107246
1.5 CFH esv2672010 1:196,733,401 others 0.157 1.000 -0.283 3.3x107314
1.6 CFHR3 rs188826801 1:196,762,123 intronic 0.014 0.993 0.176 1.2x1073%9
1.7 CFH rs79251424 1:196,782,416 intergenic 0.030 0.998 0.144 2.1x107°
1.8 RP4-608015.3 rs146093852 1:196,811,860 intergenic 0.277 0.994 -0.143 5.7x10725%
2 COL4A3 rs11884770 2:228,086,920 intronic 0.731 0.213 0.050 5.6x107°
3 ADAMTS9-AS2 rs11914351 3:64,723,441 intronic 0.240 0.950 -0.064 8.7x1077
4 COL8A1 rs140647181 3:99,180,668 intergenic 0.019 0.575 0.221 5.4x10713
5 CFI rs10033900 4:110,659,067 intergenic 0.506 0.994 -0.067 7.2x1071°
6 C9 rs34882957 5:39,331,894 coding 0.012 0.982 0.278 4.0x107°
7 PRLR/SPEF2 rs114092250 5:35,494,448 intergenic 0.019 0.346 -0.172 2.5x107°
8.1 C2/CFB rs4151667 6:31,914,024 coding 0.035 0.579 -0.284 1.3x107**
8.2 SKIV2/NELFE rs115270436 6:31,928,306 coding 0.071 0.566 -0.321 2.8x107%°
9 VEGFA rs943080 6:43,826,627 DHS 0.518 0.678 0.063 2.0x10716
10 LINCO1004/KMT2E-AS1 rs6950894 7:104,652,671 promoter 0.511 0.063 -0.047 9.8x10°1°
11 PILRB rs7783159 7:100,017,454 coding 0.203 0.115 0.059 5.1x10710
12 TNFRSF10A rs79037040 8:23,082,971 DHS 0.534 0.995 0.053 2.9x10712
13 MIR6130/RORB rs10781180 9:76,615,662 intergenic 0.684 0.070 -0.052 3.0x10710
14 TRPM3 rs71507014 9:73,438,605 intronic 0.584 0.763 -0.046 3.2x107°
15 TGFBR1 rs401186 9:101,925,077 promoter 0.200 0.109 -0.063 2.5x10~11
16 ABCA1 rs2740488 9:107,661,742 intronic 0.266 0.727 -0.053 1.7x107°
17 ARHGAP21 rs12357257 10:24,999,593 intronic 0.232 0.297 0.053 4.3x107°
18.1 ARMS2 rs7068411 10:124,202,878 intergenic 0.621 1.000 0.252 2.4x107212
18.2 ARMS2 rs7898343 10:124,212,887 promoter 0.083 0.868 -0.311 2.0x10751
18.3 ARMS2 rs10490923 10:124,214,251 coding 0.109 0.962 -0.272 1.7x10753
18.4 ARMS2 rs2736911 10:124,214,355 coding 0.137 0.781 -0.350 1.8x10753
18.5 HTRA1 rs2672601 10:124,220,023 promoter 0.136 0.524 -0.321 4.8x107°3
18.6 HTRA1 rs74895474 10:124,230,397 intronic 0.094 1.000 -0.199 1.3x10742
18.7 HTRA1 rs12252027 10:124,234,988 intronic 0.099 1.000 -0.189 1.4x10751
18.8 HTRA1 rs2672589 10:124,234988 DHS 0.653 1.000 0.220 8.9x10°180
19 RDH5/CD63 rs143673140 12:56,514,414 coding 0.009 0.001 -0.096 1.3x1072
20 MAPKAPK5 rs61941287 12:112,330,305 intronic 0.019 0.318 0.199 1.2x10710
21 B3GALTL rs9564692 13:31,821,240 DHS 0.288 0.429 -0.056 3.2x10711
22 RAD51B rs2842344 14:68,976,971 DHS 0.899 0.215 -0.082 3.7x1077
23 ALDH1A2 rs2414577 15:58,680,638 DHS 0.366 0.508 -0.067 1.5%x107°
24 CETP rs5883 16:57,007,353 promoter 0.060 0.415 0.085 1.4x10720



Signal Reside/nearby gene dbSNPID Chr:Position Anno MAF bIGWAS  Effect-size p | 216
number PP

25 CTRB2 rs55993634 16:75,236,763 promoter 0.082 0.321 -0.104 4,6x107°
26 POLDIP2/TNFAIP1 rs13469 17:26,676,135 coding 0524 0.280 0.044 5210
57 NPLOC4/TSPAN10 159894429 17:79,596,811 coding 0.441 0261 -0.045 2.0x10~12
28.1 FUT6/NRTN rs17855739 19:5,831,840 coding 0.044 0549  -0.159 15%10-16
28.2 C3/CTD-3128G10.7 rs147859257 19:6.718,146 coding 0.008  1.000 0.501 43x10-3
28.3 C3/CTD-3128G10.7 (52230199 19:6.718,387 coding 0764 0999  -0.173 1.7%10~77
29 ABCA7 (53752241 19:1,053,524 coding 0.160 _ 0.268 __ 0.055 3.2x10~7
30 APOE(EXOC3L2/MARK4) _ rsA29358 10:45,411,041 coding 0.118 _ 1.000 _ -0.173 3.3x10~%
31 MMP9/RP11-465L10.10 _ rs17577 20:44,643,111 coding 0.138 0377 -0.072 6.8x10-11
32 RP13-379L11.1 (57266392 20:56,651,542 DHS 0.063 0115 _ -0.134 9.2x1018
33 SYN3 (55754227 22:33,105,817 intronic 0.124 0524 -0.129 2.0x10°%
34 SLC16A8/BAIAP2L2 (577968014 02:38 478,666 coding 0.009 0842 0.207 3.1x10-°

Variants with Bayesian PPs >0.5 or the highest bfGWAS PPs in the loci are listed (horizontal lines separate loci). Shown are reside/nearby genes,
dbSNPIDs, positions, functional annotations, MAFs (unfolded, corresponding to the direction of effect-sizes), Bayesian PPs/effect-sizes, and P-values.



Table S8: AMD risk variants by fGWAS in the 34 known loci, accounting for summarized regulatory annotations.

Signal number Reside/nearby gene dbSNPID Chr:Position Anno MAF fGWAS PP P-value

1 CFH rs1089033 1:196,666,793 Intronic 0.412 0.522 < 9.0x107321
2 COL4A3 rs112103000 2:228,072,336 intronic 0.163 0.135 2.0x1078
3 ADAMTS9-AS2 rs6793431 3:64,729,510 intronic 0.891 0.001 6.4x1077
4 Intergenic rs115407994 3:99,268,860 intergenic 0.018 0.367 9.4x10713
5 CFl rs10033900 4:110,659,067 intergenic 0.506 0.996 7.2x1071°
6 C9 rs34882957 5:39,331,894 coding 0.012 0.757 4.0x10716
7 Intergenic rs114092250 5:35,494,448 intergenic 0.019 0.617 2.5x107°
8 NELFE/SKIV2L rs116503776 6:31,930,462 intronic 0.120 0.789 2.1x107114
9 Intergenic rs943080 6:43,826,627 DHS 0.518 0.557 2.0x10°1°
10 KMT2E/SRPK2 rs1142 7:104,756,326 UTR 0.357 0.215 1.5x10710
11 ZCWPW1 rs7783159 7:100,017,454 coding 0.203 0.047 5.1x10710
12 TNFRSF10A rs79037040 8:23,082,971 DHS 0.534 0.995 2.9x10712
13 Intergenic rs10781180 9:76,615,662 intergenic 0.683 0.067 3.0x10710
14 TRPM3 rs71507014 9:73,438,605 intronic 0.584 0.837 3.2x107°
15 TGFBR1 rs10760667 9:101,864,607 DHS 0.105 0.186 2.5x10711
16 ABCA1 rs2740488 9:107,661,742 intronic 0.266 0.667 1.7%107°
17 ARHGAP21 rs142336524 10:24,879,784 intronic 0.215 0.255 3.2x1078
18 ATE1-AS1 rs11594070 10:123,702,736 nc-transcript  0.334 0.003 1.7x1071
19 RDH5/CD63 rs3138136 12:56,117,570 intronic 0.098 0.001 3.9x107*
20 MAPKAPK5 rs61941287 12:112,330,305 nc-transcript  0.019 0.153 1.2x10710
21 B3GALTL rs9564692 13:31,821,240 DHS 0.288 0.543 3.2x10711
22 RAD51B rs11158728 14:68,762,205 DHS 0.641 0.040 1.2x107 11
23 ALDH1A2 rs2414577 15:58,680,638 DHS 0.366 0.500 4.8x10717
24 CETP rs7499892 16:57,006,590 intronic 0.169 0.182 5.3x10721
25 BCAR1 rs72802395 16:75,286,484 intronic 0.068 0.623 2.1x10711
26 POLDIP2/NFAIP1 rs13469 17:26,676,135 coding 0.523 0.134 5.1x10712
27 NPLOC4 rs8070929 17:79,530,993 intronic 0.378 0.176 1.1x107 12
28 C3 rs2230199 19:6,718,387 coding 0.764 0.999 1.7x10777
29 CNN2/ABCA7 rs58369307 19:1,038,290 UTR 0.109 0.207 8.5x107°
30 APOE/TOMMA40 rs429358 19:45,411,941 coding 0.118 1.000 3.3x107%6
31 MMP9 rs17577 20:44,643,111 coding 0.138 0.131 6.8x10711
32 RP13-379L.11.1 rs141945849 20:56,650,604 DHS 0.063 0.092 9.3x10718
33 SYN3 rs5754227 22:33,105,817 intronic 0.124 0.681 2.0x1072%7
34 SLC16A8/PICK1 rs8135665 22:38,476,276 intronic 0.205 0.607 2.9x10712

Variants with f{GWAS PPs >0.5 or the highest f{GWAS PPs in the loci or are listed (horizontal lines separate loci). Shown are reside/nearby genes,

dbSNPIDs, positions, annotations, MAFs (unfolded, corresponding to the direction of effect-sizes), {GWAS PPs, and P-values.



Table S9: Candidate AMD loci identified by bfGWAS, accounting for summarized regulatory annotations.

Locus Reside gene dbSNPID Chr:Position Anno MAF P-value Regional-PP  bfGWAS PP  Effect-size
1 PPIL3 rs7562391 2:201,736,166 coding 0.127  4.8x1077 0.967 0.475 -0.061
2 ZNRD1-AS1 rs114357644 6:29,924,728 intergenic 0.669  2.3x1077 0.999 0.609 0.051
3 CPN1 rs61733667 10:101,829,514 coding 0.036 1.0x1077 0.994 0.463 -0.118

Variants with the highest bfGWAS PP in the candidate loci are listed in this table. Shown are reside genes, dbSNPIDs, positions, functional annotations, MAFs, P-
values, Bayesian regional-PPs, and Bayesian PPs/effect-sizes.

Table S10: Candidate AMD loci identified by fGWAS, accounting for summarized regulatory annotations.

Locus Reside gene dbSNPID Chr:Position Anno MAF P-value Regional-PP f{GWAS PP Effect-size
1 PPIL3 rs7562391 2:201,736,166 coding 0.127 4.8x10°7 0.976 0.322 -0.061
2 Intergenic rs115754868 6:29,884,646 intergenic 0.653 9.6x1071% 0.998 0.101 0.053
3 CPN1 rs61733667 10:101,802,262 coding 0.036 1.0x10°7 0.994 0.253 -0.118
4 ABHD2 rs8042649 15:89,740,469 UTR 0.417 1.2x10°7 0.973 0.093 0.049

Variants with the highest f{GWAS PP in the candidate loci are listed in this table. Shown are reside genes, dbSNPIDs, positions, functional annotations,
MAFs, P-values, f{GWAS regional-PPs, f{GWAS PPs, and Bayesian effect-sizes.



Table S11: AMD risk variants by bfGWAS in the 34 known loci, accounting for chromatin states profiled with the epigenome of fetal thymus.

Signal

bfGWAS

Effect-size

number Reside/nearby gene dbSNPID Chr:Position Anno MAF Pp P-value

1.1 KCNT2 rs144520124 1:196,371,908 Quies 0.005 1.000 -0.389 1.9x10723
1.2 KCNTZ2 rs10754198 1:196,573,505 Quies 0.258 1.000 -0.078 1.4x107228
1.3 Intergenic rs74979069 1:196,588,463 Quies 0.049 1.000 0.160 8.1x107%2
1.4 CFH rs72734340 1:196,681,376 Quies 0.037 1.000 -0.189 1.1x1071
1.5 Intergenic rs200467660 1:196,721,770 Quies 0.161  1.000 -0.405 1.1x10724°
1.6 Intergenic rs113632891 1:196,731,186 Quies 0.155  1.000 -0.173 2.8x1072%
1.7 ZNF675 rs146093952 1:196,811,860 Quies 0.277 1.000 -0.207 2.2x107310
1.8 CFHRA4 rs76258418 1:196,815,863 Quies 0.130 1.000 -0.199 2.7x107293
2 COL4A3 rs112103000 2:228,072,336 Quies 0.064 0.072 0.064 2.0x10°8
3.1 ADAMTS9-AS2 rs57305229 3:64,720,574 Quies 0.304 0.572 -0.057 2.3x1075
3.2 ADAMTS9-AS2 rs11914351 3:64,723,441 Quies 0.240 0.968 -0.064 8.7x1077
4 Intergenic rs140647181 3:99,180,668 Quies 0.019  0.703 0.222 5.3x10°13
5 CFI rs10033900 4:110,659,067 Quies 0.506 0.999 -0.067 7.2x1071°
6 C9 rs62358361 5:39,327,888 Quies 0.012  0.551 0.271 3.1x10°16
7 Intergenic rs114092250 5:35,494,448 Quies 0.019 0.213 -0.171 2.5x107°
8.1 SKivaL rs116503776 6:31,930,462 Tx 0.120 1.000 -0.307 2.1x10"114
8.2 STK19/C4A rs144629244 6:31,946,792 Enh 0.014 0.536 0.435 4.4x1077
8.3 PBX2/AGER/GPSM3 rs114254831 6:32,155,581 EnhG 0.271 0.693 0.080 8.1x10°13
9 Intergenic rs943080 6:43,826,627 Quies 0.518 0.422 0.063 2.0x10716
10 KMT2E/SRPK2 rs1142 7:104,756,326 Tx 0.357 0.197 0.051 1.5x10710
11 NYAP1 rs67040465 7:100,083,078 ReprPCWk 0.200 0.040 0.059 5.7x10710
12 TNFRSF10A rs79037040 8:23,082,971 BivFInk 0.534 0.967 0.053 2.9x10712
13 Intergenic rs10781180 9:76,615,662 Quies 0.684  0.090 -0.052 3.0x10°1°
14 TRPM3 rs71507014 9:73,438,605 Quies 0.585 0.819 -0.046 3.2x107°
15 TGFBR1 rs10819635 9:10,819,635 TxWk 0.186 0.084 -0.066 2.5x10"11
16 ABCA1 rs2740488 9:107,661,742 TxWk 0.266 0.759 -0.053 1.7x107°
17 ARHGAP21 rs12357257 10:24,999,593 Quies 0.232 0.308 0.053 4.3x107°
18.1 Intergenic rs7068411 10:124,202,878 Quies 0.621  1.000 0.198 2.4x107212
18.2 HTRAT1 rs2672595 10:124,227,288 ReprePCWk 0.213 0.844 -0.466 8.7x10-111
18.3 HTRAT1 rs74895474 10:124,230,397 ReprePCWk 0.094 0.578 -0.181 1.3x10742
18.4 HTRAT1 rs4752699 10:124,234,320 ReprePCWk 0.128 1.000 -0.292 2.1x10751
18.5 HTRAT1 rs2672589 10:124,234,988 ReprePCWk 0.653 1.000 0.274 8.9x10~180
19 CDK2/PMEL rs2069389 12:56,359,642 Enh 0.044 0.001 0.042 5.3x1072
20 cuxz rs142641895 12:111,786,202 Het 0.019 0.635 0.249 1.6x107°
21 B3GALTL rs9564692 13:31,821,240 Quies 0.288 0.411 -0.056 3.2x10°11
22 RAD51B rs2842339 14:68,986,999 TxWk 0.899 0.206 -0.082 3.1x1077
23 ALDH1A2 rs2414577 15:58,680,638 Quies 0.366 0.525 -0.067 4.8x10"17
24 CETP rs11076175 16:57,006,378 TxWk 0.67 0.203 -0.072 5.0x10721



Signal Reside/nearby gene dbSNPID Chr:Position Anno MAF ~ DIGWAS - Effectsizep | ) 6
number PP

25 CTRB2 1572802342 16:75,034 872 Enh 0074 0478 0114 2.8x10° 0
26 SARM7/SLC46AT 154795433 17:26,716,821 ReprPCWK 0.524 0138 __ 0.045 1.6x10°°
27 NPLOC4 158070929 17:79,530,993 Tx 0.378 0226 0.058 1.1x1012
28.1 FUT6 1512019136 19:5,835,677 Quies 0.042 0639 0160  3.7x10° 7
28.2 C3 15147859257 19:6.718,146 Het 0.008 1.000 0504  4.3x10°%
28.3 C3 152230199 19:6.718,387 Het 0.764 0996  -0172  1.7x10"7"
29 CNN2/ABCA7 153087680 191,038,289 TxFInk 0109 0.208 __ 0.072 8.6x10~°
30 APOE/TOMMA40 15429358 10:45,411,941 ReprPCWk 0.118 1000 _ -0.186 __ 3.3x10°%
31 MMP9 15142450006 20:44,614,991 ReprPCWK 0132 0.251 0079 1.4x10 1
32 Intergenic rs140611615 20:56,653,111 Quies 0.062  0.080 -0.135 8.2x10°18
33 SYN3 155754227 22:33,105,817 Quies 0.124 0896 _ -0.128 2.0x10-27
34 g’/‘\i\’ggﬁf IeK1/ 158135665 02:38 476,276 ReprPC 0.206 0624  0.066 2.9%10-12

Variants with Bayesian PPs >0.5 or the highest bfGWAS PPs in the loci are listed in this table. Shown are reside/nearby genes, dbSNPIDs, positions,

annotations, MAFs (unfolded, corresponding to the direction of effect-sizes), P-values, and Bayesian PPs/effect-sizes.



Table S12: AMD risk variants by fGWAS in the 34 known loci, accounting for chromatin states profiled with the epigenome of fetal thymus.

fGWAS

Signal number Reside/Nearby Gene dbSNPID Chr:Position Anno MAF PP P-value

1 CFH rs1089033 1:196,666,793 Quies 0.412 1.000 < 9.0x107321
2 COL4A3 rs11884770 2:228,086,920 Quies 0.731 0.731 5.7x107°
3 ADAMTS9-AS2 rs66793786 3:64,707,880 Quies 0.243 0.050 2.0x1077
4 COLBA1 rs140647181 3:99,180,668 Quies 0.019 0.307 5.4x10713
5 CFlI rs10033900 4:110,659,067 Quies 0.506 0.994 7.2%x1071°
6 C9 rs62358361 5:39,327,888 Quies 0.012 0.559 3.1x10716
7 PRLR/SPEF2 rs114092250 5:35,494,448 Quies 0.019 0.468 2.5%107°
8 NELFE/SKIV2L rs116503776 6:31,930,462 TX 0.120 0.967 2.1x10°114
9 VEGFA rs943080 6:43,826,627 Quies 0.518 0.437 2.0x10716
10 KMT2E/SRPK2 rs1142 7:104,756,326 TX 0.357 0.141 1.5x10710
11 ZKSCAN1 rs2406255 7:100,053,690 EnhG 0.200 0.026 5.9x10710
12 TNFRSF10A rs79037040 8:23,082,971 BivFink 0.534 0.998 2.9x10712
13 Intergenic rs10781180 9:76,615,662 Quies 0.684 0.068 3.0x10710
14 TRPM3 rs71507014 9:73,438,605 Quies 0.584 0.776 3.2x107°
15 TGFBR1 rs6478972 9:101,869,278 Enh 0.200 0.103 3.5x10°11
16 ABCA1 rs2740488 9:107,661,742 TxWk 0.266 0.746 1.7x107°
17 ARHGAP21 rs12357257 10:24,999,593 Quies 0.232 0.269 4.3%x107°
18 ARMS2 rs2672599 10:124,211,875 Quies 0.641 1.000 2.7x107263
19 RDH5/CD63 rs3138136 12:56,117,570 EnhG 0.099 0.001 3.9%x107*
20 MAPKAPK5 rs61941287 12:112,330,305 TX 0.019 0.205 1.2x10710
21 B3GALTL rs9564692 13:31,821,240 Quies 0.288 0.388 3.2x10° 11
22 RAD51B rs11158728 14:68,762,205 Enh 0.640 0.066 1.0x10° 11
23 ALDH1A2 rs2414577 15:58,680,638 Quies 0.366 0.495 4.8x10717
24 CETP rs5817082 16:56,997,349 TxWk 0.248 0.254 1.7x10721
25 CTRB2 rs72802342 16:75,234,872 Enh 0.073 0.656 2.8x10713
26 TNFAIP1/POLDIP2 rs733914 17:26,671,196 EnhG 0.526 0.156 3.5x107°
27 NPLOC4 rs8070929 17:79,530,993 TX 0.378 0.221 1.1x10712
28 C3 rs2230199 19:6,718,387 Het 0.764 0.992 1.7x10777
29 CNN2/ABCA7 rs58369307 19:1,038,290 TxFInk 0.109 0.369 8.5x107°
30 APOE/TOMMA40 rs429358 19:45,411,941 ReprPCWk 0.118 1.000 3.3x107%6
31 MMP9 rs1888235 20:44,623,967 Enh 0.133 0.281 1.4x10°11
32 C200rf85 rs117739907 20:56,652,781 Quies 0.062 0.079 7.8x10718
33 SYN3 rs5754227 22:33,105,817 Quies 0.124 0.791 2.0x107%7
34 SLC16A8/PICK1 rs8135665 22:38,476,276 ReprPC 0.205 0.773 2.9x10712

Variants with either the highest f{GWAS PP per locus or fGWAS PP > 0.5 are listed (horizontal lines separate loci). Shown are reside/nearby genes,
dbSNPIDs, positions, functional annotations, MAFs (unfolded, corresponding to the direction of effect-sizes), {GWAS PPs, and P-values.



Table S13: Candidate AMD loci identified by bfGWAS, accounting for chromatin states profiled with the epigenome of fetal thymus.

Locus Reside gene dbSNPID Chr:Position Anno MAF P-value Regional-PP  bfGWAS PP  Effect-size
1 HLA-W rs114357644 6:29,924,728 TxWk 0.669 2.3x1077 0.988 0.877 0.051
2 CPN1 rs111563092 10:101,808,993 ReprPCWk 0.045 7.2x107% 0.998 0.171 -0.106

Variants with the highest bfGWAS PPs in the candidate loci are listed in this table. Shown are reside genes, doSNPIDs, positions, functional annotations, MAFs, P-
values, Bayesian regional-PPs, and Bayesian PPs/effect-sizes.

Table S14: Candidate AMD loci identified by f{GWAS, accounting for chromatin states profiled with the epigenome of fetal thymus.

Locus Reside gene dbSNPID Chr:Position Anno MAF P-value Regional-PP  f{GWAS PP Effect-size
1 PPIL3 rs7562391 2:201,736,166 Tx 0.127 6.5x107%  0.969 0.088 -0.061
2 Intergenic rs140766203 6:29,883,869 Quies 0.652 8.5x107° 0.998 0.044 0.053
3 CPN1 rs113582392 10:101,804,258 Enh 0.045 1.4x10"%  0.993 0.154 -0.106
4 ABHD2 rs4932480 15:89,723,858 EnhG 0.501 7.2x10°%  0.971 0.138 -0.043

Variants with the highest {GWAS PPs in the candidate loci are listed in this table. Shown are reside genes, dbSNPIDs, positions, functional annotations,
MAFs, P-values, f{GWAS regional-PPs, f{GWAS PPs, and Bayesian effect-sizes.



Table S15: Haplotype analysis in locus C2/CFB/SKIV2L.

Region Haplotype Haplotype P-value OR (95% ClI)
Frequency (%)
SKIV2L intronic CFB missense CFB missense Cases Controls
(rs116503776) (rs4151667) (rs115270436)
C2/CFB/SKIV2L 1 1 1 1.5x1073 42x1073 8.9x10711 0.364 (0.265, 0.501)
1 0 1 0.046 0.085 1.5x10786 0.522 (0.490, 0.557)
1 1 0 0.023 0.041 5.0x1073¢6 0.561 (0.513, 0.613)
0 0 1 8.9x10™* 1.5x1073 0.024 0.586 (0.375, 0.917)
1 0 0 0.018 0.017 0.092 1.102 (0.983, 1.236)
0 0 0 0.909 0.850 - Reference Haplotype
0 1 0 6.1x107° 2.8x107° 0.306 1.840 (0.243, 13.938)

Considered the haplotype consisting with the top significant intronic variant found by single variant test P-values (rs116503776 with p-value=2.1x10711%),
the top two significant missense variants (in the +20KB region around rs116503776) found by bfGWAS (rs4151667 with Bayesian PP=0.903,

rs115270436 with Bayesian PP= 0.638).

Table S16: Model comparison.

Region (C2/CFB/SKIV2L)

SKIV2L intronic (rs116503776) &
PBX2 intronic (rs114254831)

CFB missense (rs4151667) &
SKIV2L missense (rs115270436)

Differences (col2-col3)

Akaike information criterion
(AIC)

Bayesian information
criterion (BIC)

Log Likelihood

95857.36

95891.1

-47924.68

95752.63

95786.36

-47872.31

104.73

104.74

-52.37

Compared the linear regression model with the top two independent significant variants (rs116503776, rs114254831) found by conditional analysis, versus the

linear regression model with the top two significant variants (rs4151667, rs115270436) found by bfGWAS accounting for gene-based annotations.
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