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A Scalable Bayesian Method for Integrating
Functional Information
in Genome-wide Association Studies
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Macular Degeneration Genomics Consortium

Genome-wide association studies (GWASs) have identifiedmany complex loci. However, most loci reside in noncoding regions and have

unknown biological functions. Integrative analysis that incorporates known functional information into GWASs can help elucidate the

underlying biological mechanisms and prioritize important functional variants. Hence, we develop a flexible Bayesian variable selection

model with efficient computational techniques for such integrative analysis. Different from previous approaches, our method models

the effect-size distribution and probability of causality for variants with different annotations and jointly models genome-wide variants

to account for linkage disequilibrium (LD), thus prioritizing associations based on the quantification of the annotations and allowing for

multiple associated variants per locus. Our method dramatically improves both computational speed and posterior sampling conver-

gence by taking advantage of the block-wise LD structures in human genomes. In simulations, our method accurately quantifies the

functional enrichment and performs more powerfully for prioritizing the true associations than alternative methods, where the power

gain is especially apparent when multiple associated variants in LD reside in the same locus. We applied our method to an in-depth

GWAS of age-related macular degeneration with 33,976 individuals and 9,857,286 variants. We find the strongest enrichment for

causality among non-synonymous variants (543more likely to be causal, 1.43 larger effect sizes) and variants in transcription, repressed

Polycomb, and enhancer regions, as well as identify five additional candidate loci beyond the 32 known AMD risk loci. In conclusion,

our method is shown to efficiently integrate functional information in GWASs, helping identify functional associated-variants and

underlying biology.
Introduction

Genome-wide association studies (GWASs) have identified

thousands of genetic loci for complex traits and diseases,

providing insights into the underlying genetic architec-

ture.1–5 Each associated locus typically contains hundreds

of variants in linkage disequilibrium (LD),6,7 most of

which are of unknown function and located outside pro-

tein-coding regions. Unsurprisingly, the biological mecha-

nisms underlying the identified associations are often

unclear8 and pinpointing causal variants is difficult.9

Recent functional genomic studies help understand and

pinpoint functional associations and mechanisms.10–12

Genetic variants can be annotated based on the genomic

location (e.g., coding, intronic, and intergenic), role in

determining protein structure and function (e.g., Sorting

Intolerant From Tolerant [SIFT]13 and Polymorphism

Phenotyping [PolyPhen]14 scores), ability to regulate gene

expression (e.g., expression quantitative trait loci [eQTL]

and allelic specific expression [ASE] evidence15,16),

biochemical function (e.g., DNase I hypersensitive sites

[DHS], metabolomic QTL [mQTL] evidence,17 and chro-

matin states18–20), evolutionary significance (e.g., Genomic

Evolutionary Rate Profiling [GERP] annotations21), and a

combination of different types of annotation (e.g.,

CADD22). Many statistical methods, including stratified
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LD score regression23 and MQS,24 can now evaluate

the role of functional annotations in GWASs through heri-

tability analysis. Preliminary studies also show higher pro-

portions of associated variants in protein-coding exons,

regulatory regions, and cell-type-specific DHSs.25–27

Integrating functional information into GWASs is

expected to help identify and prioritize true associations.

However, accomplishing this goal in practice requires

methods to account for both LD and computational cost.

Consider two recent methods, fGWAS26 and PAINTOR,27

as examples. fGWAS assumes that variants are indepen-

dent and there is at most one association signal per locus,

modeling no LD, which dramatically improves computa-

tional speed and allows fGWAS to be applied at genome-

wide scale; PAINTOR accounts for LD, assuming the

possibility of multiple association signals per locus, but is

computationally slow and can be used to fine-map small

regions only (�10 kb).

Here, we pair a flexible Bayesian method with an effi-

cient computational algorithm. Together the two represent

an attractive means to incorporate functional information

into association mapping. Our model accounts for geno-

type correlation due to LD, allows for multiple signals per

locus and, importantly, shares information genome-wide

to increase association-mapping power. Our algorithm

takes advantage of the local LD structure in the human
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genome28–30 and refines previous Markov chain Monte

Carlo (MCMC) algorithms to greatly improve mixing,

which is key when searching for independent signals

among many associated variants in LD (but less important

in other applications such as modeling total genomic

heritability). We refer to our method as the Bayesian func-

tional GWAS (bfGWAS). Below, we illustrate the benefits of

our method with extensive simulations as well as real

large-scale GWASs on age-related macular degeneration

(AMD)31 (33,976 individuals, 9,857,286 variants) and

skin cancer (17,624 individuals, 8,626,534 variants).
Material and Methods

Bayesian Variable Selection Model
Our method is based on the standard Bayesian variable selection

regression (BVSR) model32 (Supplemental Note; Figure S1A),

yn31 ¼ Xn3p bp31 þ en31 ;

bi � piN
�
0; t�1s2

i

�þ ð1� piÞd0ðbiÞ; ei � N
�
0; t�1

�
;

where yn31 is the centered phenotype vector with n individuals,

Xn3p is the centered genotype matrix with p genetic variants,

bp31 is a vector of genetic effect-sizes where each element

bi follows a ‘‘spike-and-slab’’ variable selection prior,

bi � piNð0; t�1s2i Þ þ ð1� piÞd0ðbiÞ. Different from the standard

BVSR, however, our method considers functional annotations

that classify variants into K non-overlapping categories. For

example, all variants could be annotated based on their most

important functions in a gene, such as non-synonymous, synon-

ymous, intronic, intergenic, or other genomic, which classifies

all variants into five non-overlapping categories.
Annotation-Specific Effect-Size Priors
We assume that variants in the same annotation category q share a

prior32,33 for effect sizes, bi � pqNð0; t�1s2qÞ þ ð1� pqÞd0ðbiÞ, with

the same category-specific parameters ðpq; s
2
qÞ. This model implies

that effect sizes are normally distributed as bi � Nð0; t�1s2qÞ with

probability pq, or set to zero with probability ð1� pqÞ, with d0ðbiÞ
denoting the point-mass function at 0. Here, pq represents the

(unknown) causal probability for variants in the qth category

and s2q represents the (unknown) corresponding effect-size vari-

ance. An enhancement to previous Bayesian models32,34,35 is

that wemodel both the proportion of associated variants and their

effect-size distribution in each annotation category. Note that our

model is different from simply applying BVSR on variants of each

annotation, because we model the LD among variants of different

annotations.

We assume independent, conjugate, and non-informative priors

for ðpq; s
2
qÞ, e.g., pq � Betaðaq; bqÞ with mean 10�6 and

s2q � InverseGammaðk1; k2Þ with k1 ¼ k2 ¼ 0.1. Although indepen-

dent and conjugate priors are assumed for the convenience of

deriving closed-form expressions for the conditional posterior

distributions (greatly saving computational cost), the posterior

distributions of ðpq; s
2
qÞ depend on each other through effect sizes

and the number of signals. Non-informative priors allow the

Bayesian estimates to be mainly determined by the likelihood

when there exist associations in the qth category (otherwise the

Bayesian estimates will be determined by the respective prior

modes; see derivation details in Supplemental Note). Particularly,
The American
assuming a conservative prior mean 10�6 for pq (equivalent to

assume one signal per 1M variants) enforces an initial sparse

model, which helps control false positives and barely affects iden-

tifying real signals. Taking k1 ¼ k2 ¼ 0.1 makes the Inverse Gamma

prior for s2q non-informative with mode at 0.09.

Our goal is to simultaneously make inference on the category-

specific parameters ðpq; s
2
qÞ that represent the importance of

each functional category, and on the variant-specific parame-

ters—effect-size bi and the probability of bis0 (referred as poste-

rior inclusion probability [PPi], representing association evidence,

i.e., the probability for the variant to be associated with the

phenotype). Our model shares information genome-wide to esti-

mate the category-specific parameters, which then inform the

variant-specific parameters. As a result, variant associations will

be prioritized based on the inferred importance of functional

categories.

Scalable EM-MCMC Algorithm
Because standard MCMC algorithms suffer from heavy computa-

tional burden and poor mixing of posterior samples for large

GWASs, we develop a scalable expectation-maximization MCMC

(or EM-MCMC) algorithm. Our algorithm is based on the observa-

tion that LD decays exponentially with distance and displays local

block-wise structure along the human genome.28–30,36,37 This

observation allows us to decompose the complex joint likelihood

of our model into a product of block-wise likelihoods (Appendix A

and Supplemental Note). Intuitively, conditional on a common

set of category-specific parameters ðpq; s
2
qÞ, we can infer ðbi; PPiÞ

by running the MCMC algorithm per genome block. A diagram

of this EM-MCMC algorithm is shown in Figure S1B.

Running MCMC per genome-block facilitates parallel

computing and reduces the search space. Unlike previous

MCMC algorithms for GWASs that use proposal distributions

based only on marginal association evidence (such as imple-

mented in GEMMA38), our MCMC algorithm uses a proposal

distribution that favors variants near the ‘‘causal’’ variants being

considered in each iteration and prioritizes among these neigh-

boring variants based on their conditional association evidence

(see Supplemental Note). Our strategy dramatically improves

the MCMC mixing property, encouraging our method to explore

different combinations of potentially associated variants in each

locus (Figure S2). In addition, we implemented memory-reduc-

tion techniques that reduce memory usage up to 97%, effectively

reducing the required physical memory from 120 Gb (usage by

GEMMA38) to 3.6 Gb for a GWAS with �33K individuals and

�400K genotyped variants (Appendix A and Supplemental

Note).

In practice, we segment the whole genome into blocks of 5,000–

10,000 variants, based on marginal association evidence, genomic

distance, and LD. We always ensure variants in LD (R2 > 0.1)

with significant signals (p < 5 3 10�8) are in the same block

(Appendix A). We first initialize the category-specific parameters

ðpq; s
2
qÞ, then run the MCMC algorithm per block (E-step), sum-

marize the MCMC posterior estimates of ðbi; PPiÞ across all blocks
to update ðpq; s

2
qÞ (M-step), and repeat the block-wise EM-MCMC

steps until the estimates of ðpq; s
2
qÞ converge (Figure S1B).

In addition, we calculate the regional posterior inclusion proba-

bility (regional-PP) per block that is the proportion of MCMC

iterations with at least one signal (see Supplemental Note).

Because Bayesian PP might be split among multiple variants in

high LD, the threshold of regional-PP > 0.95 (conservatively anal-

ogous to false discovery rate 0.05) is used for identifying loci.
Journal of Human Genetics 101, 404–416, September 7, 2017 405



A B Figure 1. Power Comparison by Simula-
tion Studies
Compare the power of bfGWAS, the stan-
dard Bayesian variable selection regression
model (BVSR), fGWAS, p value of single
variant test with conditional analysis,
with 100 simulation replicates and com-
plete sample size 33,976.
(A) Average ROC curves, larger area under
curve suggests higher power.
(B) Boxplot of the ranks of the true causal
SNP1 (with smaller p value) and SNP2,
higher rank (smaller rank value) suggests
higher power.
AMD and MGI GWAS Data
The GWAS data of age-related macular degeneration (AMD)

consist of 33,976 unrelated European samples (16,144 advanced

case subjects; 17,832 control subjects), and a total of 12,023,830

genotyped on a customized Exome-Chip and imputed against

the 1000 Genomes Project phase I reference panel.31,39 Advanced

AMD case subjects include both subjects with choroidal neovascu-

larization and subjects with geographic atrophy. Samples were

aggregated across 26 studies and genotyped centrally.31

The Michigan Genomics Initiative (MGI) data are the institu-

tional repository of DNA and electronic health records, collected

from patients recruited on the day of their elective surgery or pro-

cedure at the University of Michigan Health System. DNA was ex-

tracted from blood and samples were genotyped on the Illumina

HumanCoreExome v.12.1 array and then imputed against the

HRC reference panel.40 The MGI GWAS data studied in this paper

contain 17,624 unrelated European individuals and �8.7M geno-

typed or imputed variants with frequency> 0.5%. The phenotype

of skin cancer was defined as the presence of ICD9 code 232 (car-

cinoma in situ of skin) on two or more visits (2,359 case subjects).

The control phenotype was defined as the absence of ICD9 codes

(172–173.99) on all visits (15,265 control subjects). For both MGI

and the AMD genetic studies, all participants gave informed con-

sent and the University of Michigan IRB approved our GWAS

analyses.

Results

Simulation

We simulated phenotypes with the genotype data (chro-

mosomes 18–22) from the AMD GWAS,31 including

33,976 individuals and 52,549 variants with minor allele

frequency (MAF) > 0.05. We segmented this small genome

into 100 3 2.5 Mb blocks, each with �5K variants. Within

each block, we marked a 25 kb continuous region (starting

37.5 kb from the beginning of a block) as the potential lo-

cus. We randomly selected two causal SNPs per locus for

ten randomly selected loci. We simulated two complemen-

tary annotations to classify variants into ‘‘coding’’ and

‘‘noncoding’’ groups, where the coding variants account

for �1% overall variants but �10% variants within the

causal loci (matching the pattern in the real AMD data).
406 The American Journal of Human Genetics 101, 404–416, September 7, 2017
We simulated two scenarios: (1) cod-

ing variants �533 enriched among

causal variants (7 coding versus 13
noncoding) and (2) no enrichment (randomly selecting

causal variants in risk loci with equally distributed annota-

tions). A total of 15% of phenotypic variance was divided

equally among causal variants. We compared bfGWAS

with single variant likelihood-ratio test, conditional anal-

ysis, fGWAS, and the standard Bayesian variable selection

regression model (BVSR, considering no functional infor-

mation). The single-variant test (also referred to as p value),

conditioned p value, fGWAS posterior association proba-

bility (PP, see Appendix A), BVSR PP, and bfGWAS PP

were used as criteria to identify associations. The reason

that we did not include PAINTOR into comparison is

because PAINTOR costs >1,000 CPU hr to finish analyzing

one 2.5 Mb genome-block with �5K variants.

We first compared power of different methods using

average ROC curves27,32 across 100 simulation replicates.

Because the p value is used differently from the other

‘‘fine-mapping’’ criteria (fGWAS PP, BVSR PP, bfGWAS

PP), we compare only the average ROC curves of fGWAS,

BVSR, and bfGWAS (Figure 1A). We found that bfGWAS

(modeling LD and allowing multiple signals per locus) out-

performed both fGWAS and BVSR. Specifically, with false

positive rate (FPR) 2 3 10�4, the power of identifying the

true associations is 0.55 by bfGWAS, 0.45 by BVSR, and

0.34 by fGWAS. In addition, for identifying associated

loci with regional-PP > 0.95, bfGWAS has power 0.98

and false discovery rate (FDR) 0.005, BVSR has power

0.97 and FDR 0.006, and fGWAS has power 0.97 and FDR

0.005.

In a typical GWAS, researchers identify a series of associ-

ated loci and then examine associated variants within each

locus independently. We examined the ability of each

method to prioritize the true associations in each locus.

Since we simulated two causal SNPs per locus (SNP1 and

SNP2), we examine the power for identifying each of these

separately (Figure 1B). All methods have approximately the

same median rank for causal SNP1 (typically, 2nd rank

among 150 SNPs in the locus), suggesting that the stron-

gest signal in a locus can often be identified without incor-

porating functional information and LD. The median rank



for the second causal SNP2 was the 2nd by bfGWAS, 3rd by

BVSR, 13th by fGWAS, and 6th by conditioned p value—

suggesting that incorporating functional information

improves power to identify multiple signals in a locus

and that fGWAS is limited by the assumption of at most

one signal per locus. Stratified results based on the LD

between two causal variants further demonstrate that

bfGWAS has the highest power for identifying the weaker

signal, especially when both SNPs are in high LD

(Figure S3).

Both bfGWAS and fGWAS correctly identified enrich-

ment in scenario 1 and properly controlled for the type I

error of enrichment in scenario 2, despite some numerical

issues for fGWAS (Figure S4). Moreover, bfGWAS estimated

the effect-size variance per annotation. For all 100 simula-

tion replicates under both scenarios, the 95% confidence

intervals of the log-ratio of estimated effect-size variances

between coding and noncoding overlapped with 0 (Fig-

ure S5), suggesting that effect-size variances were similar

between two annotations (matching the simulated truth).

In summary, our simulation studies show that, in com-

parison with competing methods, bfGWAS has highest

power, especially in loci with multiple associated variants.

Further, bfGWAS produces enrichment parameter esti-

mates that can help with interpretation of association

results.

GWAS of AMD

Next, we applied our method to the AMD GWAS data with

33,976 unrelated European individuals (16,144 advanced

case subjects; 17,832 control subjects). We analyzed

9,866,744 (�10M) low-frequency and common variants

(MAF > 0.5%) with three types of genomic annotations:

gene-based functional annotations by SeattleSeq, summa-

rized regulatory annotations,41 and the core 15 chromatin

states profiled by ChromHMM42,43 with respect to 127

consolidated epigenomes (ROADMAP, ENCODE).44

Coding Variation and AMD

We used SeattleSeq to classify variants according to their

impact on coding sequences (Table S1) and then applied

our method bfGWAS and fGWAS. bfGWAS identified

37 loci out of 1,063 considered genome blocks with

regional-PP > 0.95 (Tables S2, S3, and S5), including 32

among the 34 known AMD loci31 and 5 extra candidate

loci. Using the threshold of Bayesian PP > 0.1068 (roughly

equivalent to the p value 5 3 10�8 based on permutations

of AMD data; Figure S6), we identified 150 associated vari-

ants (Figure S8A; Table S3), with 47 distributed among

42,005 non-synonymous variants, 4 among 67,165 synon-

ymous coding variants, 54 among 3,679,235 intronic var-

iants, 18 among 5,512,423 intergenic variants (including

non-annotated variants), and 27 among 565,916 ‘‘other-

genomic’’ variants (UTR, non-coding exons, upstream

and downstream of genes). Very roughly, this corresponds

to fraction of associated variants of �1:1,000 among

non-synonymous variants, 1:15,000 among synonymous
The American
variants, 1:100,000 among intronic variants, 1:300,000

among intergenic variants, and 1:20,000 among other-

genomic variants.

Similarly, fGWAS identified 39 loci by regional-PP >

0.95, including all 34 known loci and the same 5 extra

candidate loci identified by bfGWAS (Tables S2, S4, and

S6; Figure S9B). A total of 94 associated variants were iden-

tified by fGWAS with fGWAS PP > 0.1068, including

22 non-synonymous, 6 coding-synonymous, 28 intronic,

15 intergenic, and 23 other-genomic signals. Compared

with bfGWAS, the proportion of loci that contain at least

one non-synonymous variant with PP > 0.1068 is smaller

(31% by fGWAS versus 49% by bfGWAS). Similarly, the

proportion of non-synonymous variants prioritized by

fGWAS is also smaller (30% by fGWAS versus 46% by

bfGWAS), indicating that bfGWAS places greater weight

on non-synonymous variants—which, as a group, appears

to have both a higher prior probability of association and

larger effect sizes when associated.

Besides replicating the association results within

known AMD loci,31 bfGWAS identified five additional

candidate loci (Table S5): missense rs7562391/PPIL3,

rs61751507/CPN1, rs2232613/LBP, downstream rs114318558/

ZNRD1ASP, and splice rs6496562/ABHD2. Among these

five candidate loci, fGWAS identified three with the same

top risk variants, a different top risk variant (coding-synon-

ymous rs61733667) for CPN1, and a nearby locus (up-

stream rs116803720/HLA-K) of ZNRD1ASP (Table S6).

Interestingly, there are several connections between these

candidate loci and known AMD loci. Specifically, the pro-

tein encoded by LBP is part of the lipid transfer protein

family (which also includes CETP among the known

AMD risk loci) that promotes the exchange of neutral

lipids and phospholipids between plasma lipoproteins.45

ZNRD1ASP has been associated with lipid metabolisms46

and ABHD2 has been associated with coronary artery

disease,47 two other traits where the AMD loci encoding

CETP, APOE, and LIPC are also involved. The gene CPN1

has been associated with age-related disease (specifically,

hearing impairment48).

Multiple Signals in a Single Locus

We use two examples to illustrate the importance of study-

ing multiple signals in a single locus. Our first example

focuses on a 1 Mb region around locus C2/CFB/SKIV2L

on chromosome 6 where 1,862 variants have p < 5 3

10�8. There are an estimated 4 independent signals

in the region by conditional analysis,31 1 variant with

fGWAS PP > 0.1068, 11 with BVSR PP > 0.1068, and 8

with bfGWAS PP > 0.1068. Interestingly, the alternative

methods (p value, fGWAS, and BVSR) identified intronic

SNP rs116503776/SKIV2L/NELFE as the top candidates

(p ¼ 2.1 3 10�114; fGWAS PP ¼ 0.912; BVSR PP ¼ 1.0),

while bfGWAS identified two missense SNPs, rs4151667/

C2/CFB (p ¼ 1.4 3 10�44; bfGWAS PP ¼ 0.917) and

rs115270436/SKIV2L/NELFE (p ¼ 2.8 3 10�99; bfGWAS

PP ¼ 0.633), as the top functional candidates (Figure 2;

Tables S2–S4).
Journal of Human Genetics 101, 404–416, September 7, 2017 407
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Figure 2. ZoomLocus Plots around rs4151667 in the Locus C2/CFB/SKIV2L
(A) –log(p values) by single variant tests.
(B) Posterior inclusion probabilities (PP) by the standard Bayesian variable selection regression model (BVSR).
(C) Posterior association probabilities (PP) by fGWAS.
(D) Bayesian inclusion probabilities (PP) by bfGWAS.
The top cyan squares in (A)–(C) denote the intronic variant rs116503776; the purple triangle in (D) denotes the non-synonymous
variant rs4151667.
A haplotype analysis describing the odds ratios (ORs) for

all possible haplotypes for SNPs rs116503776, rs4151667,

and rs115270436 helps clarify the region. Intronic SNP
408 The American Journal of Human Genetics 101, 404–416, Septem
rs116503776 with the smallest p value appears to be asso-

ciated with the phenotype by tagging the other two

missense SNPs (Table S15). In particular, haplotypes with
ber 7, 2017
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Figure 3. Category-Specific Parameter Estimates with 95% Error Bars by bfGWAS for Gene-Based Annotations and Regulatory
Annotations
(A and C) Causal probabilities.
(B and D) Effect-size variances.
The estimates of UTR in (C) and (D) were estimated as their prior values due to no association was found for this annotation (hence not
shown in the plots). The estimate of the effect-size variance for the ‘‘Others’’ category in (D) is also close to the prior because of low
region-association evidence, hence it has a wide 95% error bar. The error bars denote the 95% confidence intervals for the category-spe-
cific parameter estimates.
rs116503776 can either increase or decrease risk, depend-

ing on alleles at the other two SNPs. To further confirm

the importance of the missense SNPs rs4151667 and

rs115270436, we compared the AIC/BIC/loglikelihood

between two models: one model with the top two inde-

pendent signals (rs116503776 and rs114254831) identi-

fied by single-variant conditional analysis,31 versus the

other model with the top two signals (rs4151667 and

rs115270436) identified by bfGWAS. As expected, the sec-

ond model has smaller AIC/BIC and larger loglikelihood

than the first one (Table S16). Thus, we can see that while

alternative methods (p value, fGWAS, and BVSR) focus on

the SNP with the smallest p value, our bfGWAS method

finds an alternative pairing of missense signals that better

accounts for all data.

Our second example focuses on a 1 Mb region around

gene C3 on chromosome 19 (Figure S9) with 112 genome-

wide significant variants with p < 5 3 10�8. fGWAS dis-

covered only a single missense signal, rs2230199, with the

most significant p¼ 1.73 10�77 (top blue triangle in Figures

S9A and S9C). However, both BVSR and bfGWAS identified
The American
twomissense variants with PPs¼ 1.0 and five intronic vari-

ants with 0.11 < PPs < 0.18. The top two missense signals,

rs2230199 and rs147859257 (241 base pairs apart), were

confirmed by conditional analysis,31 where the second

signal rs147859257has conditionedp¼ 6.0310�33 (purple

triangle in Figures S9B and S9D), overlapping with

rs2230199. These two missense signals match the inter-

pretation of previous studies.49–51 Because five other in-

tronic variants (rs11569479, rs11569470, rs201063729,

rs10408682, and rs11569466) are in high LD with R2 >

0.98 between each other, we believe this is the third inde-

pendent signal whose Bayesian PP was split among five

variants in high LD by bfGWAS.

Enrichment Analysis

bfGWAS estimated that non-synonymous variants are

10–100 times more likely to be causal than variants in

other categories and that they also have larger effect sizes

(Figures 3A and 3B). To better compare enrichment among

multiple categories, we define two new sets of parameters

(Supplemental Note). The first set of parameters ðpq=pavgÞ
is defined to contrast the posterior association probability
Journal of Human Genetics 101, 404–416, September 7, 2017 409



A B Figure 4. Top Five Enriched Chromatin
States Identified by bfGWAS, using the
AMD GWAS Data with Respect to 127
Epigenomes
(A) Boxplot of the category-specific causal
probabilities for the top five enriched chro-
matin states.
(B) Boxplot of the effect-size variances for
the top five enriched chromatin states.
estimate ðpqÞ for each category to the genome-wide average

ðpavgÞ. The second set of parameters ðs2q=s2avgÞ is similarly

defined to contrast the effect-size variance from each cate-

gory to the genome-wide average. Moreover, the square

root of the effect-size variance reflects the effect-size

magnitude because of the prior assumption for the effect

size in our model.

Compared to the genome-wide average probability of

causality pavg ¼ 4:3310�6 (Figure S12A), we found that

non-synonymous category were 533 more likely to be

causal (p ¼ 7.24 3 10�84), that coding-synonymous and

other variants were 4.33 and 2.23 more likely (p ¼ 0.005,

0.003), and that intergenic variants were 0.73 less likely

(p ¼ 4.9 3 10�6), while the intronic variants matched

the genome-wide average (p ¼ 0.659). In addition,

compared to the genome-wide average effect-size variance

(s2avg ¼ 0:02; Figure S12B), we found that the effect size vari-

ance of was 1.93 larger for non-synonymous variants (p ¼
0.014; i.e., 1.43 larger effect-size), and 0.43 smaller for

variants in the intronic category (p ¼ 4.5 3 10�6);

remaining categories were not significantly different (p >

0.2). The estimated enrichment parameters by fGWAS

show a similar pattern, although the contrast of the esti-

matedenrichment fornon-synonymousversusother anno-

tations is not as pronounced as by bfGWAS (Figure S12A).

Analysis with Regulatory Annotations

In addition, we analyzed the GWAS data of AMD with the

summarized regulatory annotations:41 coding, UTR, pro-

moter (defined as within 2 kb of a transcription starting

site), DHS in any of 217 cell types, intronic, intergenic,

and ‘‘others’’ (not annotated as any of the previous six cate-

gories). Overall GWAS results were similar as the ones

described in previous context (Tables S7–S10). Compared

to the genome-wide average association probability (pavg ¼
4:03310�6; Figure S12C), we found that the association

probability of the coding category was 283 higher (p <

2.2 3 10�16), the promoter was 2.63 (p ¼ 0.028) higher,

and the intergenic and ‘‘others’’ were 0.53 and 0.93

less (p ¼ 5.3 3 10�4, 0.033), while the DHS and intronic

were not significantly different (p > 0.1). In addition,
410 The American Journal of Human Genetics 101, 404–416, September 7, 2017
compared to thegenome-wide average

effect-size variance ðs2avg ¼ 0:024Þ, we

found that the effect-size variance of

the coding category was 1.93 larger

(p ¼ 0.019; i.e., 1.43 larger effect size)

and the DHS and intronic were 0.53
less (p ¼ 0.011, 0.007), while the promoter, intergenic,

and ‘‘others’’ were not significantly different (p > 0.1;

Figure S12D). Here, fGWAS identified a slightly different

enrichment pattern (Figure S12B),whereUTRwas identified

as the second most enriched category. This is presumably

because fGWAS assumes one signal per locus and tends to

prioritize the variantwith the smallest p value in each locus,

e.g., UTR variants rs1142/KMT2E/SPRK2 and rs10422209/

CNN2 have the highest fGWAS PP and the smallest p value

in their respective locus (Tables S2 and S8).

Analysis with Chromatin States

Last, we considered the annotations of core 15 chromatin

states profiled byChromHMM43with respect to 127 consol-

idated epigenomes (ROADMAP, ENCODE):44 active TSS

(TssA), flanking active TSS (TssAFlnk), transcription at gene

50 and 30 (TxFlnk), strong transcription (Tx), weak transcrip-

tion (TxWk), genic enhancers (EnhG), enhancers (Enh), ZNF

genes & repeats (ZNF/Rpts), heterochromatin (Het), biva-

lent/poised TSS (TssBiv), flanking bivalent TSS/Enh

(BivFlnk), bivalent enhancer (EnhBiv), repressed PolyComb

(ReprPC), weak repressed PolyComb (ReprPCWk), and

quiescent/low (Quies).

With each set of chromatin states profiled per epige-

nome, we applied bfGWAS on the GWAS data of AMD

and then counted the frequency of the top 5 enriched

chromatin states across all 127 epigenomes. We found

that the associations are mostly enriched with strong

transcription (Tx), weak transcription (TxWk), repressed

PolyComb (ReprPC), enhancers (Enh), and Quies

(Figure 4). Specifically, the highest estimates of the causal

probabilities are 3.0 3 10�5 for strong transcription with

respect to the fetal brain male tissue (E081), 1.2 3 10�5

for weak transcription with respect to the adipose nuclei

(E063), 3.1 3 10�5 for repressed PolyComb with respect

to the spleen tissue (E113), 1.7 3 10�5 for enhancers

with respect to the ovary tissue (E097), and 3.9 3 10�6

for Quies with respect to the pancreatic islets.

We further examined the list of variants that contribute

95% posterior probabilities in the identified loci with

regional-PP > 95%. We found that the results accounting



for the chromatin states that are profiled with respect to

the epigenome of fetal thymus (E093) gave the shortest

list (average 11 variants per locus, and we present the cor-

responding results as an example (Figures S12E, S12F,

S13A, and S13B; Tables S11–S14). For this set of enrich-

ment analysis, we found that the repressed PolyComb

had the highest causal probability (3.83 higher than the

genome-wide average pavg ¼ 4:0310�6, p ¼ 6.7 3 10�7;

Figure S12E), and that all chromatin states have compara-

ble effect-size variances (Figure S12F). Here, fGWAS identi-

fied transcription at gene 50 and 30 (TxFlnk) as the most en-

riched chromatin state (Figure S13C).
MGI GWAS of Skin Cancer

To illustrate the benefits of using bfGWAS for GWAS data

that have relatively fewer loci, we further analyzed the

MGI GWAS data with the phenotype of skin cancer, with

17,624 unrelated European samples (2,359 case subjects

versus 15,265 control subjects) and �8.7M variants with

MAF > 0.5%. We corrected the phenotype of skin cancer

with respect to age, sex, PC1-4, considered the same

gene-based annotations (from SeattleSeq) as for the AMD

GWAS, and compared the GWAS results by p value,

BVSR, fGWAS, and bfGWAS.

For this GWAS data of skin cancer, all method identified

the same four loci: SLC45A2, IRF4, MC1R, and RALY (Fig-

ures S14 and S15). Both bfGWAS and fGWAS identified

that non-synonymous is the most enriched annotation

(Figure S16). Although BVSR, fGWAS, and bfGWAS all pro-

duced the highest PP for the leading SNP with the smallest

p value, our bfGWAS method outperformed BVSR for

identifying the leading SNP at locus SLC45A2, as well as

produced an additional and independent non-synony-

mous signal in locusMC1R (missed by fGWAS) for allowing

multiple signals per locus as well as accounting for func-

tional information and LD (Figure S17). In addition, our

bfGWAS method avoids the false signal on chromosome

3 by BVSR for using annotation-specific priors. Specifically,

by the threshold of PP > 0.1068, bfGWAS identified 9

associated variants (3 non-synonymous, 4 intronic, and

1 other genomic), and 9 by fGWAS (2 non-synoymous, 5

intronic, and 2 intergenic).

Therefore, this set of GWAS analyses further confirmed

the advantages of using our bfGWAS method for inte-

grating functional information and fine-mapping loci

with multiple signals.
Discussion

Here, we describe a scalable Bayesian hierarchical method,

bfGWAS, for integrating functional information in GWASs

to help prioritize functional associations and understand

underlying genetic architecture. bfGWAS models both

association probability and effect-size distribution as a

function of annotation categories for improving fine-map-

ping resolution. Unlike previousmethods,26,27 bfGWAS ac-
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counts for LD and allows for the possibility of multiple

signals per locus while remaining capable of genome-

wide inference. Further, bfGWAS employs an improved

MCMC sampling strategy to greatly improve the mixing

of MCMC samples, which ensures the capability of identi-

fying a list of independent association candidates.

By simulation studies, we demonstrated that bfGWAS

had higher power than the alternative methods for identi-

fying multiple signals in a single locus by accounting for

both functional information and LD. We also showed

that bfGWAS accurately estimated the enrichment pat-

terns under scenarios with or without enrichment for

one annotation in simulations. In the real GWASs of

AMD and skin cancer, we further confirmed the advan-

tages of identifying multiple independent signals per locus

and prioritizing important functional associations by

bfGWAS. Further, we gave two fine-mapped AMD loci,

C2/CFB/SKIV2L and C3, by bfGWAS as examples with jus-

tifications by haplotype analysis, model comparison, and

previous findings. Thus, we believe our method is useful

for understanding the underlying genetic architecture of

complex traits and diseases for efficiently integrating func-

tional information into GWASs.

Extending bfGWAS to deal with overlapping or quanti-

tative annotations might seem trivial in theory, by

assuming a logistic model with multiple functional cova-

riates (both categorical and quantitative) for pi in the

BVSR model. However, the posterior estimates for the

coefficients in the logistic model of pi no longer have

analytical formulas in the M-step of the EM-MCMC algo-

rithm (Supplemental Note). Specifically, overestimated pi

will inflate the number of false positives. In preliminary

analysis, we encountered computational challenges of

controlling the false positive rate, which requires further

studies.

Here, bfGWAS makes a key assumption that the variant

correlation matrix has a block-wise structure, which allows

us to segment the genome into approximately indepen-

dent blocks, analyze variants per block by MCMC, and

summarize genome-wide information by an EM algorithm.

In parallel to our study, many recent studies have also

explored the benefits of dividing the human genome

into approximately independent LD blocks to facilitate

genome-wide analyses.26,52 Although the standard seg-

mentation methods (e.g., based on genomic location52 as

we adopted here, or the number of variants per block26)

are often sufficient in practice, we expect that a better

segmentation method30 based on LD blocks will further

increase the association mapping power.

The biggest limitation of bfGWAS is probably computa-

tional cost, as we perform MCMC using the complete

genotype data. Specifically, bfGWAS took 5,000 CPU hr

(�5 hr with parallel computations on 1,000 CPUs for

the 1,063 genome blocks) to analyze the AMD GWAS

data with 33,976 individuals and 9,857,286 variants.

Implementing bfGWAS with summary statistics is ex-

pected to reduce the computation cost significantly, which
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is part of our continuing research. In addition, the varia-

tional approximation53,54 and other approximations55,56

of MCMCmay provide an efficient alternative for posterior

inference in large GWASs.
Appendix A

Bayesian Hierarchical Model Accounting for Functional

Information

Recall the standard Bayesian variable selection regression

(BVSR) model as described in the Material and Methods,

yn31 ¼ Xn3p bp31 þ en31 ;

bi � piN
�
0; t�1s2

i

�þ ð1� piÞd0ðbiÞ; ei � N
�
0; t�1

�
:

We assume that variants in the same functional category

have the same spike-and-slab prior, bi � piNð0; t�1s2i Þþ
ð1� piÞd0ðbiÞ, for the effect sizes. That is, pi ¼ pq; s

2
i ¼ s2q

for variants of the qth functional annotation category.

Consequently, pq denotes the category-specific causal

probability and s2q denotes the category-specific effect-

size variance (the square root of s2q reflects the magnitude

of effect size).

We further assume the following independent hyper

priors:34

pq � Beta
�
aq; bq

�
; s2

q � IGðk1; k2Þ; pqts2
q ;

where pq follows a Beta distribution with positive shape pa-

rameters aq and bq and s2q follows an Inverse-Gamma distri-

bution with shape parameter k1 and scale parameter k2. In

order to adjust for theunbalanced distributionof functional

annotations among all variants and enforce a sparse model

in our analysis, we choose values for aq and bq such that

the Beta distribution has mean aq=ðaq þ bqÞ ¼ 10�6 with

(aq þ bq) equal to the number of variants in category q. We

set k1 ¼ k2 ¼ 0.1 in our analysis to induce non-informative

prior for s2q. Note that t is fixed as the phenotype variance

value in our Bayesian inferences (Supplemental Note).
Bayesian Inference

We introduce a latent indicator vector gp31 to facilitate

computation, where each element gi is a binary variable

and indicates whether bi ¼ 0 by gi ¼ 0 or bi � Nð0; t�1s2i Þ
by gi ¼ 1 (gi corresponds to the ith variant with genetic ef-

fect-size bi). Equivalently,

gi � BernoulliðpiÞ; b�g � d0; bg � MVN jg j
�
0; t�1Vg

�
;

where jg j denotes the number of 1s in g; b�g denotes the

zero effect-size vector with gi ¼ 0; bg denotes the non-zero

effect-size vector with ðgj ¼ 1; j ¼ 1; .; jg j Þ; and Vg de-

notes the diagonal covariance matrix, diagðs21; .; s2jg j Þ,
corresponding to non-zero effect-sizes. Consequently,

the expectation of gi is an estimate of the posterior inclu-

sion probability (PP) for the ith variant, E½gi� ¼
Probðgi ¼ 1Þ ¼ PPi.
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The posterior joint distribution of our proposed Bayesian

hierarchical model is proportional to

P
�
b; g; p;s2; t j y; X; A

�
fPðy j X;b;g; tÞ3

P
�
b; jA; p;s2; g; t

�
Pðg j pÞPðpÞP�s2

�
PðtÞ;

where p ¼ ðp1; .; pQÞT , s2 ¼ ðs21; .; s2QÞT ; A is the p3 Q

matrix of binary annotations, and Q is the total number of

annotations. The goal is to estimate the category-specific

parameters ðp; s2Þ and the variant-specific parameters

ðb; E½g�Þ from their posterior distributions, conditioning

on the data ðy; X; AÞ. Here, the category-specific parame-

ters denote the shared characteristics among all variants

with the same annotation, which are also called enrich-

ment parameters.

EM-MCMC Algorithm

The basic idea of the EM-MCMC algorithm is to segment

the whole genome into approximately independent blocks

each with 5,000–10,000 variants, run MCMC algorithm

per block with fixed category-specific parameter values

ðp; s2Þ to obtain posterior estimates of ðb; E½g�Þ (E-step),

then summarize the genome-wide posterior estimates of

ðb; E½g�Þ and update values of ðp; s2Þ by maximizing their

posterior likelihoods (M-step). Repeat such EM-MCMC it-

erations for a few times until the estimates of ðp; s2Þ
(maximum a posteriori estimates, i.e., MAPs) converge

(Figure S1).

We derive the log-posterior-likelihood functions for

ðp; s2Þ and the analytical formulas for their MAPs. In addi-

tion, we construct their confidence intervals using Fisher

information, whose analytical forms are derived for our

Bayesian hierarchical model (Supplemental Note). In our

practical analyses, we find that, in general, with about 5

EM iterations and 50K MCMC iterations per block, the

estimates for ðp; s2Þ would achieve convergence. Our

method of integrating functional information into GWAS

by using the above Bayesian hierarchical model and EM-

MCMC algorithm is referred as ‘‘Bayesian Functional

GWAS’’ (bfGWAS).

Convergence Diagnosis

The MCMC algorithm implemented in bfGWAS is essen-

tially a random walk over all possible linear regression

models with combinations of variants, which can start

with either a model containing multiple significant vari-

ants by sequential conditional analysis or the most signif-

icant variant by p value. In each MCMC iteration, a new

model is proposed by including an additional variant, by

deleting one variant from the current model, or by switch-

ing one variant within the current model with one outside;

and then up to acceptation or rejection by the Metropolis-

Hastings algorithm (Supplemental Note). Importantly, we

refine the standard proposal strategy for the switching

step by prioritizing variants in the neighborhood of the

switch candidate according to their conditional associa-

tion evidence (e.g., p values conditioning on variants,
ber 7, 2017



except the switch candidate, in the current model). As a

result, this MCMC algorithm encourages our method to

explore different combinations of potential signals in

each locus and significantly improves the mixing property.

We used the potential scale reduction factor (PSRF)57 to

quantitatively diagnose the MCMC mixing property.

PSRF is essentially a ratio between the average within-

chain variance of the posterior samples and the overall-

chain variance with multiple MCMC chains. From the

example plots of the PSRFs of Bayesian PPs (Figure S2),

for 58 top marginally significant SNPs (with p < 5 3

10�8) in the WTCCC GWAS of Crohn disease,1 we can

see that about half of the PSRF values by the standard

MCMC algorithm (used in GEMMA35) exceed 1.2, suggest-

ing that the standard MCMC algorithm has poor mixing

property. In contrast, the PSRF values by our MCMC algo-

rithm are within the range of (0.9, 1.2), suggesting that our

MCMC algorithm has greatly improved mixing property.

Key Implementation Details

We employ two computational techniques to save mem-

ory in the bfGWAS software. One is to save all genotype

data as unsigned characters in memory, because unsigned

characters are equivalent to unsigned integers in (0, 256)

that can be easily converted to genotype values within

the range of (0.0, 2.0) by multiplying with 0.01. This tech-

nique saves up to 90% memory compared to saving geno-

types in double type. Second, with an option of in-memory

compression, bfGWAS will further save additional 70%

memory. As a result, we can decrease the memory usage

from �120 GB (usage by GEMMA35) to �3.6 GB for a

typical GWAS dataset with �33K individuals and �400K

variants.

The bfGWAS software wraps a Cþþ executable file for

the E-step (MCMC algorithm) and an R script for the

M-step together by a Makefile, which is generated by a

Perl script and enables parallel computation through sub-

mitting jobs. Generally, 50K MCMC iterations with �5K

variants and �33K individuals require about 300 MB

memory and 1 hr CPU time on a 1.6 GHz core, where

the computation cost is of order 0(nm2) with the sample

size (n) and number of variants (m) considered in the linear

models during MCMC iterations (usually m < 10). The

computation cost for M-step is almost negligible due to

the analytical formulas of the MAPs.

fGWAS

In this paper, the fGWAS results were generated by using

summary statistics from single variant likelihood-ratio

tests and the same annotation information used by

bfGWAS. fGWAS26 produces variant-specific posterior

association probabilities (PPs), segment-specific PPs, and

enrichment estimates for all annotations. We used the

same genome segmentation as used by bfGWAS for fGWAS

in both simulations and real data analyses, to produce

comparable results. The final fGWAS PP is given by the

product of the variant-specific PP and the corresponding
The American
segment-specific PP, and the fGWAS regional-PP is given

by the highest segment-specific PP in a region or genome

block.

Simulation Studies

We used genotype data on chromosomes 18–22 from

the AMD GWAS (33,976 individuals and 241,500 vari-

ants with MAF > 0.05) to simulate quantitative pheno-

types from the standard linear regression model yi ¼
XT

i bþ ei; i ¼ 1; .; 33976, where Xi is the genotype vec-

tor of the ith individual and ei is the noise term generated

fromNð0; s2e Þ. We segmented the genotype data into 1003

2.5 Mb blocks each with �5,000 variants. Within each

block, we marked a �25 kb continuous region (starting

37.5 kb from the beginning of a block) as the causal locus

and randomly selected two causal SNPs if the genome

block was selected as a risk locus. Two complementary

annotations (‘‘coding’’ versus ‘‘noncoding’’) were simu-

lated, where the coding variants account for �1% overall

variants but �10% variants within the causal loci (match-

ing the pattern in the real AMD analysis). We selected pos-

itive effect-size vector b and noise variance s2e such that a

total of 15% phenotypic variance was equally explained

by causal SNPs. We controlled the enrichment-fold of cod-

ing variants by varying the number of coding variants

among the causal SNPs.

We compared bfGWAS with p value, conditioned

p value, and fGWAS. In the simulation studies, p values

were obtained from a series of likelihood-ratio tests based

on the standard linear regression model. p values condi-

tioning on the top significant variant per locus were used

to identify the second signal by conditional analysis.

fGWAS was implemented with summary statistics from

single variant tests and the same genome segmentation

as used by bfGWAS. We failed to include PAINTOR in the

comparison, because PAINTOR cannot complete the anal-

ysis for one block in >1,000 CPU hr (on a 2.5 GHz, 64-bit

CPU) and is thus expected to require>1million CPU hr for

a genome-wide analysis.

GWAS of AMD

In the GWAS data of AMD, all genotypes were generated by

a customized chip that contains (1) the usual genome-wide

variant content, (2) exome content comparable to the

Exome chip (protein-altering variants across all exons),

(3) variants in known AMD risk loci (protein-altering vari-

ants and previously associated variants), and (4) previously

observed and predicted variation in TIMP3 and ABCA4

(two genes implicated in monogenic retinal dystrophies).

The genotyped variants (439,350) were then imputed to

the 1000 Genomes reference panel (phase I),58 resulting a

total of 12,023,830 variants.

The software bfGWAS used dosage genotype data and

standardized phenotypes. Phenotypes were first coded

quantitatively with 1 for case subjects and 0 for control

subjects; then corrected for the first and second principle

components, age, gender, and source of DNA samples;
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and then standardized to have mean 0 and standard devi-

ation 1. In order to make the Bayesian inferences scalable

to the AMDGWAS data (33,976 individuals, 9,866,744 var-

iants with MAF > 0.5%), we segmented the whole genome

into 1,063 non-overlapped blocks, such that each block

has length �2.5 Mb (containing �10,000 variants) and

all previously identified loci along with variants in LD

(R2 > 0.1) were not split. Then we applied the EM-

MCMC algorithm with 5 EM steps and 50,000 MCMC iter-

ations per block (including 50,000 extra burn-ins).

For comparison, p values were obtained by a series of

likelihood-ratio tests, using the same ‘‘quantitative’’

phenotype vector as used by bfGWAS; fGWAS was imple-

mented with the summary statistics from single variant

tests and the same genome segmentation as used by

bfGWAS; and a standard Bayesian variable selection regres-

sion (BVSR) method that models no functional informa-

tion was also applied.

Three types of genomic annotations were considered

for analyzing the AMDdata: gene-based functional annota-

tions of SNPs and small indels from SeattleSeq, summarized

regulatory annotations,41 and the chromatin states profiled

respectively for 127 epigenomes byChromHMM.19,42,43 For

variants annotated with multiple functions, we used the

most severe function in the analysis: non-synonymous >

coding-synonymous > other-genomic > intronic > inter-

genic for the gene-based annotations; coding > UTR >

promoter > DHS > intronic > intergenic > ‘‘others’’ for

the summarized regulatory annotations.

We further did sensitivity analysis using varying prior

means as well as starting values (10�6, 5 3 10�6, 10�5)

for pq, and varying starting values (10, 5, 1) for s2q in

bfGWAS with gene-based functional annotations. As ex-

pected, the results showed that the posterior inference

results were not affected by various practical prior assump-

tions and starting values of the category-specific parame-

ters. Specifically, all three sets of results identified the

same 37 risk loci, comparable number of associated vari-

ants with Bayesian PP> 0.1068, as well as the same enrich-

ment pattern (Figure S10).
Accession Numbers

The accession number for the AMD genotype data analyzed in this

paper is dbGaP: phs001039.v1.p1.
Supplemental Data

Supplemental Data include 17 figures, 16 tables, and a detailed

technical note and can be found with this article online at

http://dx.doi.org/10.1016/j.ajhg.2017.08.002.
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Web Resources

bfGWAS, https://github.com/yjingj/bfGWAS

ChromHMM, http://compbio.mit.edu/ChromHMM/

fGWAS, https://github.com/joepickrell/fgwas

GEMMA, https://github.com/genetics-statistics/GEMMA

Profiled chromatin states with respect to 127 epigenomes, http://

egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html#

core_15state

SeattleSeq, http://snp.gs.washington.edu/SeattleSeqAnnotation138/
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Supplemental Note

Technical Details about bfGWAS

1 Bayesian Hierarchical Model

1.1 Standard Bayesian Variable Selection Regression Model

Consider the following standard Bayesian variable selection regression (BVSR) model

yn×1 = Xn×pβp×1 + εn×1, βi ∼ πiN(0, τ−1σ2
i ) + (1− πi)δ0(βi), εi ∼ N(0, τ−1), (1)

where yn×1 denotes the centered phenotype vector of n samples; Xn×p denotes the
centered genotype matrix of p genetic variants; εi denotes the residual error independently
and identically distributed (i.i.d.) with normal distribution N(0, τ−1); and βi follows a
spike-and-slab prior distribution [5, 6, 7] — that is, βi follows the normal distribution
N(0, τ−1σ2

i ) with probability πi and the point-mass density function δ0(·) at 0 with
probability (1− πi) (δ0(βi) = 1 if βi = 0, otherwise δ0(βi) = 0).

Here, the genotype matrix contains either dosage data within range [0, 2] or genotype
data with values {0, 1, 2} denoting the number of minor alleles. The assumption of the
spike-and-slab prior for βi enforces variable selection in the regression model (1). We
drop the intercept term here for assuming both yn×1 and columns of Xn×p are centered.
Although this model is developed for quantitative trait, we can treat dichotomous traits
(e.g., cases and controls) as quantitative with values of 1 and 0 (e.g., 1 for cases and 0

for controls), which was proven to be equivalent as using the logistic or probit model by
previous approaches [6, 7].

1.2 Integrating Functional Information

In this paper, we only consider non-overlapped categorical annotations. Let Ai =

(Ai1, · · · , AiQ)T denotes the vector of Q annotations for the ith variant, where Aiq takes
binary values (1/0) to denote whether the ith variant is of the qth annotation. In order to
integrate functional annotations into the standard BVSR model (1), we assume all variants



of annotation q have the same spike-and-slab prior with parameters (πq, σ
2
q ). We further

assume the following independent and conjugate hyper priors (Figure S 1(A)):

πq i.i.d. ∼ Beta(aq, bq), σ
2
q i.i.d. ∼ IG(k1, k2), τ ∼ G(k3, k4), (2)

where Beta(aq, bq) denotes a Beta distribution with positive shape parameters aq and bq,
IG(k1, k2) denotes an Inverse-Gamma distribution with shape parameter k1 and scale
parameter k2, and G(k3, k4) denotes a Gamma distribution with shape parameter k3

and scale parameter k4 (Figure S1(A)). Note that parameters (aq, bq) could be different
with respect to different annotations. This hierarchical BVSR model is equivalent to the
standard BVSR model when modeling no functional information (i.e., assuming the same
πq and σ2

q for all variants).
In order to adjust for the unbalance distribution of functional annotations among all

variants and encourage for a sparse model, we choose values for aq and bq such that the
mean of the Beta distribution aq

aq+bq
= 10−6 with (aq + bq) = mq =

∑p
i=1,j=q Aij (the total

number of variants of annotation q). Here, the mean 10−6 of Beta(aq, bq) helps enforce
a sparse initial model that is desired for controlling false positives (assuming one signal
per1M variants). We take k1 = k2 = k3 = k4 = 0.1 to induce non-informative priors on σ2

q

and τ . Thus, the posterior estimates of πq and σ2
q will mainly depend on the data likelihood.

However, when there are few association signals in the qth category, the posterior estimates
of πq and σ2

q ) will be set as their respective prior modes. Note that although the hyper
priors are assumed to be independent, the posterior distributions of πq and σ2

q are no
longer independent.

1.3 Latent Indicator Variable

To facilitate computation, we introduce a latent indicator vector γp×1 [5] into the model,
where each element γi ∈ {0, 1} indicates whether the corresponding ith effect βi equals to
0 with γi = 0 or follows the N(0, τ−1σ2

i ) distribution with γi = 1. Equivalently,

γi ∼ Bernoulli(πi), β−γ ∼ δ0(·), βγ ∼MVN|γ|(0, τ
−1Vγ),

where |γ| denotes the number of non-zero entries in γ; β−γ denotes the sub-vector of βp×1
corresponding to variants with γi = 0; βγ denotes the sub-vector of βp×1 corresponding to
the variants with {γj = 1; j = 1, · · · , |γ|}; and V|γ| is the corresponding sub-matrix (with
γj = 1) of Vp×p = diag(σ2

1, · · · , σ2
p).



1.4 Bayesian Inference

With the above Bayesian hierarchical model, the posterior joint distribution of
(β,γ,σ2,π, τ) is proportional to the product of likelihood and prior density functions,

P (β,γ,σ2,π, τ |y,X,A) ∝ P (y|X,β,γ, τ)P (β|A,π,σ2, τ)P (γ|π)P (π)P (σ2)P (τ), (3)

where π = (π1, . . . , πQ), σ2 = (σ2
1, . . . , σ

2
Q), and A is the p × Q annotation matrix with

binary values.
Now our goal is to make inference on the category-specific parameters (π,σ2)

and the variable-specific parameters (β, E[γ]) from their respective marginal posterior
distributions, conditioning on the data (y,X,A). The category-specific parameters (π,σ2)

denote the shared characteristics of variants with the same annotation, which are also
referred as enrichment parameters in this paper. Specifically, πq denotes the causality for
variants of annotation q, and σ2

q denotes the effect-size variance for associated variants
(with nonzero βj) of annotation q.

To make the Bayesian inference of our model applicable for genome-wide analysis, we
pair it with a novel Expectation-Maximization Markov chain Monte Carlo (EM-MCMC)
algorithm. Because of the block-wise linkage disequilibrium (LD) structure of human
genome, we can segment the genotype data X into K approximately independent blocks,
i.e., X = {X1,X2, · · · ,XK}, where each submatrix Xk has dimension n × pk (genotypes
of pk variants for n samples). Thus, we can write the likelihood function in (3) as a product
of a series likelihood functions for Xk,

P (y|X,β,γ, τ) =
K∏
k=1

Pk(y|Xk,βk,γk, τ), (4)

where (y|Xk,βk,γk, τ) ∼MVN|γk|(Xkβk, τ
−1I|γk|).

To avoid adjusting for the residual variance with respect to each genome-block, we
fix τ−1 as the phenotype variance. This assumption is reasonable because most genome-
blocks explain little phenotype variance in practice. Although fixing τ−1 as the phenotype
variance seems conservative for genome-blocks with true signals, our analysis showed that
it barely affect identifying true signals.

In the Expectation step (E-step), (βk, E[γk]) are estimated by implementing MCMC
per block, conditioning on the given values of (π,σ); in the Maximization step (M-step),
(π,σ) are updated, conditioning on genome-wide estimates of (β, E[γ]) from the E-step.
In general, ∼5 EM iterations will lead to convergent estimates of (π,σ), and the estimates
of (βk, E[γk]) from the last E-step will be used to identify association signals (details are
provided in Section 2; Figure S 1(B)).



1.4.1 Conditional Posterior Distribution for βk

Conditioning on the values of (π,σ2, τ), the posterior distribution for the variant-specific
parameters (βk,γk) of block k is

P (βk,γk|Xk,y,π,σ
2, τ) ∝ P (y|Xk,βk,γk, τ)P (βk|γk,σ2, τ)P (γk|π). (5)

Conditioning on the indicator vector γk, the effect-sizes associated with zero indicator
variables are 0, while the posterior distribution for β|γk| is given by

P (β|γk||X|γk|,y,γk,σ2, τ) ∝ Pk(y|X|γk|,β|γk|,γk, τ)P (β|γk||γk,σ2, τ)

∝ exp
{
− τ

2
(y −X|γk|β|γk|)T (y −X|γk|β|γk|)

}
exp

{
− τ

2
βT|γk|V

−1
|γk|β|γk|

}
∝ exp

{
− τ

2

(
βT|γk|X

T
|γk|X|γk|β|γk| − 2βT|γk|X|γk|y + βT|γk|V

−1
|γk|β|γk|

)}
∝ exp

{
− τ

2

(
βT|γk|(X

T
|γk|X|γk| + V

−1
|γk|)β|γk| − 2βT|γk|X

T
|γk|y

)}
. (6)

From (6), it is easy to see that

(β|γk||X|γk|,y,γk,σ2, τ) ∼

MVN|γk|

(
(XT
|γk|X|γk| + V

−1
|γk|)

−1XT
|γk|y, τ

−1(XT
|γk|X|γk| + V

−1
|γk|)

−1
)
. (7)

Here, the subscript |γk| indicates sub-matrices or sub-vectors corresponding to variants
with nonzero indicator variables, and V|γk| is a diagonal matrix with (V|γk|)jj = σ2

q if the
jth variant is of annotation q.

1.4.2 Conditional Posterior Distribution for γk

Because of the conditional conjugate prior for βk, we can easily integrate βk out from
the joint conditional posterior distribution (5) to obtain the marginal conditional posterior
distribution for γk,

P (γk|Xk,y,π,σ
2, τ) ∝

∫
βk

Pk(y|Xk,βk,γk, τ)P (βk|γk,σ2, τ)P (γk|π)dβk

∝ |Ω|γk||−1/2 exp
{τ

2
yTX|γk|V|γk|Ω

−1
|γk|X

T
|γk|y

}
P (γk|π), (8)

where Ω|γk| = V|γk|X
T
|γk|X|γk| + I|γk|.

2 EM-MCMC Algorithm

The steps of the EM-MCMC algorithm are as follows:



(i) Fix τ at the value of phenotype variance;

(ii) Set initial values for the category-specific parameters (π,σ2);

(iii) E-step: Conditioning on the most recent values of (π,σ2), estimate variant-specific
parameters (β, E[γ]) by implementing MCMC per block;

(iv) M-step: Conditioning on the genome-wide estimates of (β, E[γ]) from the previous
E-step, update (π,σ2) by their MAPs (maximum a posteriori estimates), maximizing
the expected log-posterior-likelihood functions [2];

(v) Repeat the EM-steps (iii) and (iv) for a few times until the MAPs of (π,σ2) converge.

2.1 Setup Initial Values

In this paper, we fix τ at the value of phenotype variance, equivalent to assuming no
phenotype variance explained by the genetic variants. This assumption is true for most
blocks and slightly conservative for blocks with true signals. However, our analysis showed
that this assumption barely affects identifying true signals. We take initial values πq =

1 × 10−6 to initial a sparse and conservative model, and σ2
q = 10 to start with a large

effect-size variance for all associated variants.

2.2 MCMC Sampling Scheme

The MCMC sampling is implemented per block for estimating (βk, E[γk]), conditioning on
category-specific parameters (π,σ2):

(i) First, sort all variants in the block by their base positions, perform single variant tests,
and rank variants based on their marginal association evidence (e.g., P-values) from
strong to weak.

(ii) Second, select an initial model with independent significant signals. We first include
the variant with the smallest P-value into the model (i.e., set the corresponding
indicator value as 1). Then, conditioning on the currently selected variant(s), select
the next most significant variant with P-value < 5 × 10−8. Stop selection when no
other independent genome-wide signal exists. Generally, most of the blocks with
∼10K variants will start with only one variant.

(iii) Third, repeat the MCMC sampling for a large number of iterations (e.g., 50K
iterations with 50K burnins), in which the Metropolis-Hastings algorithm is used



to draw posterior samples for γk based on (8). With indicator vector γ ′k and
corresponding effect-size vector β|γ′

k| from previous iteration, each MCMC iteration
is as follows:

(a) Randomly propose a new indicator vector γ ′′k by:

∗ Including an extra variant into the model with probability 1/3: generate a
rank r from a proposal distribution Pγk such that the variant with rank r

is not included in the current model (change the corresponding indicator
variable from 0 to 1). Here, Pγk is constructed as the mixture distribution
0.9∗Utop+0.1Urest, where Utop denotes the uniform distribution on top ranks
(1, . . . , tk) and Urest denotes the uniform distribution on the remain ranks
(tk+1, · · · , pk) (tk is an arbitrary number). That is, we assume a variant
whose P-value is ranked in the top association group will be proposed with
probability 0.9/(tk), while a variant in the remaining group will be proposed
with probability 0.1/(pk − tk). A rank will keep being proposed from Pγk
until the corresponding variant is absent in the current model. We take
tk = min(pk, 300) in our software.

∗ Deleting a variant from the current model with probability 1/3: randomly
delete a variant from the current model (change the corresponding
indicator variable from 1 to 0), i.e., each variant in the current model has
probability 1/|γ′k| to be deleted.

∗ Switching a variant in the current model with an un-included variant
in the neighborhood of the switch candidate (switch the corresponding
indicator variable values): randomly select a variant in the current model
as a switch candidate; propose a variant within its neighborhood from
the proposal distribution Pneib. In order to improve the MCMC mixing
property, we calibrate Pneib based on the conditional association evidence of
all un-included variants in the neighborhood, conditioning on all variants
in the current model except the switch candidate. For example, if
there are 20 un-included variants in the neighborhood with conditional
likelihood ratio test (LRT) statistic values {s1, · · · , s20}, we first subtract
the largest statistic value smax from all values, then take Pneib(sj) =

exp(sj − smax)/
∑20

b=1 exp(sb− smax) as the probability for the corresponding
jth variant to be proposed. The neighborhood size can be tuned by users
(we set the neighborhood window as 100 variants near the switch candidate
in our analyses).



(b) Conditioning on the indicator vector γ ′′k, the effect-size vector β|γ′′
k | is estimated

by its conditional posterior mean in (7).

(c) Calculate the Metropolis-Hastings acceptance ratio, and then decide whether to
accept or reject γ ′′k by the Metropolis-Hastings algorithm.

(iv) Finally, E[γkj] is estimated by ukj/M , where ukj is the number of times when the jth
variant in block k is included into the model and M is the total MCMC iterations.
Note that E[γkj] is also referred as the Bayesian posterior inclusion probability (PP),
evidence for the ith variant in block k to be an association signal. The Bayesian
estimate of the corresponding βkj is given by the posterior mean

∑ukj
l=1 βkjl/ukj, where

βkjl is the effect-size estimate for the jth variant (in block k) when it is included into
the model for the lth time.

Within the MCMC sampling, we also record the number of iterations Mactive when the
linear regression model includes at least one variant by the Metropolis-Hastings algorithm.
Then the proportion of such MCMC iterations Mactive/M gives us the regional posterior
inclusion probability (regional-PP) of the study block, which is the probability of existing
at least one signal in the block. Because variants in high LD and the same annotation
category have the same chance to be included into the linear model (splitting the posterior
probability for a single signal), the regional-PP is more appropriate than the single variant
Bayesian PP for claiming a risk locus.

2.3 EM Algorithm

In the EM algorithm, values of (π,σ2) are updated by their respective maximum a
posteriori estimates (MAPs), maximizing expected log-posterior-likelihood functions. With
the Bayesian estimates of (β, E[γ]) from the E-step, the expected log-posterior-likelihood
functions and MAPs can be derived with closed-form expressions.

2.3.1 MAP for σ2

From the joint posterior distribution (3), the conditional posterior density function
(posterior likelihood) of σ2 becomes

P (σ2|β,γ, τ) ∝ P (β|γ,σ2, τ)P (σ2), (9)

where P (σ2) =
∏Q

q=1 P (σ2
q ) with σ2

q ∼ IG(k1, k2), i.e. P (σ2
q ) ∝(

σ2
q

)−(k1+1)
exp

(
− k2
σ2
q

)
; P (β|γ,σ2, τ) =

∏p
i=1 P (βi|σ2

i , γi, τ) with P (βi|σ2
i , γi, τ) =



(γiN(βi; 0, τ−1σ2
i ) + (1− γi)δ0(βi)); and σ2

i = σ2
q if the ith variant is of annotation

q.
The expected log-posterior-likelihood of σ2 is given by

l(σ2) = Eγ
[
ln(P (σ2|β,γ, τ))

]
= Eγ

[
p∑
i=1

ln
(
P (βi|σ2

i , γi, τ)
)]

+

Q∑
q=1

ln
(
P (σ2

q )
)

+ C

=

p∑
i=1

Eγ
[
ln
(
P (βi|σ2

i , γi, τ)
)]

+

Q∑
q=1

ln
(
P (σ2

q )
)

+ C

≈
p∑
i=1

[
γ̂iln

(
P (βi|γi = 1, σ2

i )
)

+ (1− γ̂i)ln (P (βi|γi = 0))
]

+

Q∑
q=1

[
(k1 + 1)ln

(
1

σ2
q

)
− k2

1

σ2
q

]
+ C

=

p∑
i=1

[
γ̂i

(
1

2
ln

(
τ

σ2
i

)
− τ β̂i

2

2σ2
i

)]
+

Q∑
q=1

[
(k1 + 1)ln

(
1

σ2
q

)
− k2

1

σ2
q

]
+ C, (10)

where {γ̂i = E[γi]}, {β̂i} are Bayesian estimates by MCMC in the E-step, and C is a constant
free of σ2.

From (10), we can see that the posterior distributions of {σ2
q ; q = 1, . . . , Q} are disjoint,

because of independent priors and non-overlapped annotations. Thus, the expected log-
posterior-likelihood function for each σ2

q is

lσ2
q

=

mq∑
jq=1

[
γ̂jq

(
1

2
ln

(
τ

σ2
q

)
−
τ β̂jq

2

2σ2
q

)]
+ (k1 + 1)ln

(
1

σ2
q

)
− k2
σ2
q

+ C, (11)

where {γ̂jq , β̂jq ; jq = 1, . . . , nq} are the Bayesian estimates for variants of annotation q, and
mq is the total number of variants with annotation q. The MAP of σ2

q can be solved from

dlσ2
q

d(1/σ2
q )

=

mq∑
jq=1

[
γ̂jq

σ2
q

2
− γ̂jq

τβ2
jq

2

]
+ (k1 + 1)σ2

q − k2 = 0,

which is

σ̂2
q =

τ
∑mq

jq=1(γ̂jq β̂
2
jq

) + 2k2∑mq

jq=1 γ̂jq + 2(k1 + 1)
.



2.3.2 MAP for π

From the joint posterior distribution (3), the conditional posterior density function
(posterior likelihood) of π becomes

P (π|γ) ∝ P (γ|π)P (π), (12)

where P (γ|π) =
∏p

i=1 P (γi|πi) ∝
∏p

i=1 π
γi
i (1 − πi)

1−γi; πi = πq if the ith variant is of
annotation q; and P (π) =

∏Q
q=1 P (πq) with πq i.i.d. ∼ Beta(aq, bq).

The expected log-posterior-likelihood of π can be derived as

l(π) = Eγ [ln(P (π|γ))]

= Eγ

[
p∑
i=1

ln(P (γi|πi))

]
+ ln (P (π)) + C

=

p∑
i=1

Eγ [ln(P (γi|πi))] + ln (P (π)) + C

=

p∑
i=1

(Prob(γi = 1)ln(πi) + Prob(γi = 0)ln(1− πi)) +

Q∑
q=1

((aq − 1)ln(πq) + (bq − 1)ln(1− πq)) + C

≈
p∑
i=1

(γ̂iln(πi)) + (1− γ̂i)ln(1− πi)) +

Q∑
q=1

((aq − 1)ln(πq) + (bq − 1)ln(1− πq)) + C,

(13)

where {γ̂i = E[γi]} are estimated by MCMC, and C is a constant free of π.
Similarly, because the posterior distributions of {πq; q = 1, . . . , Q} are also disjoint, the

expected log-posterior-likelihood function for πq is given by

lπq =

mq∑
jq=1

[
γ̂jq ln(πq) + (1− γ̂jq)ln(1− πq)

]
+ (aq − 1)ln(πq) + (bq − 1)ln(1− πq) + C, (14)

and the MAP for πq is solved as

π̂q =

∑mq

jq=1 γ̂jq + aq − 1

mq + aq + bq − 2
.



3 Construct Confidence Intervals by Fisher Information

Fisher information of (π,σ2) can be derived from the second derivatives of the respective
expected log-posterior-likelihood functions as in (11) and (13). By the asymptotic-
normality of MAP, as n → ∞, the distribution of a MAP estimate θ̂ converges to a
multivariate normal (MVN) distribution with mean equal to the true parameter value θ0
and covariance matrix equal to the inverse of the Fisher information.

Therefore, the MAPs σ̂2 and π̂ are converging to the following MVN distributions as
n→∞,

σ̂2 −→MVN(σ2
∗, Iσ2(σ̂2)−1), π̂ −→MVN(π∗, Iπ(π̂)−1), (15)

where σ2
∗ and π∗ are the true parameter values; Iσ2(σ̂2) ≈ − ∂2l(σ2)

∂σ2(∂σ2)T
|
σ̂2; and

Iπ(π̂) ≈ − ∂2l(π)
∂π∂πT |π̂. Because of the mutual independence among {σ2

q , πq; q = 1, . . . , Q}
(conditioning on the estimates of β and E[γ]), the analytical forms for the second
derivatives of lσ2

q
, lπq are

dlσ2
q

d2σ2
q

=

mq∑
jq=1

(
γ̂jq

2(σ2)2
−
γ̂jqτ β̂jq

2

(σ2)3

)
+
k1 + 1

(σ2)2
− 2k2

(σ2)3
,

dlπq
d2πq

= −
∑mq

jq=1 γ̂jq + aq − 1

π2
q

−
nq −

∑mq

jq=1 γ̂jq + bq − 1

(1− πq)2
.

Then the Fisher informations of σ2
q , πq are given by

I(σ2
q ) =

1

(σ2
q )

2

 mq∑
jq=1

γ̂jq(τ − 0.5)− (k1 + 1) +
2k2
σ2
q

 ,

I(πq) =

∑mq

jq=1 γ̂jq + aq − 1

π2
q

+
nq −

∑mq

jq=1 γ̂jq + bq − 1

(1− πq)2
.

The (1− α)% confidence intervals of σ2
q , πq can be constructed by

σ̂2
q ± Zα/2

√
I(σ̂2

q )
−1, π̂q ± Zα/2

√
I(π̂q)−1, (16)

where Zα/2 is the upper α/2 quantile of the standard normal distribution N(0, 1).



4 Compare Enrichment among Multiple Groups

With the MAPs of (πq, σ
2
q ) and corresponding standard errors, we can easily compare the

enrichment among multiple groups. Take the case with two annotation groups for an
example, the 95% confidence intervals of the quantities ln(π1/π2), ln(σ2

1/σ
2
2) can be easily

approximated by Fieller’s theorem [3] (if variables a ∼ N(a0, σ
2
a), b ∼ N(b0, σ

2
b ), then

ln (a/b) ∼ N (ln (a0/b0) , σ
2
a/a

2
0 + σ2

b/b
2
0)), and then can be used to test whether or not the

enrichment is significantly different between two groups (i.e. whether or not the 95%
confidence intervals of ln(π1/π2), ln(σ2

1/σ
2
2) overlap 0). Moreover, with the approximated

variance of the log-ratio by Fieller’s theorem, we can calculate a P-value for the null
hypothesis that the log-ratio equals 0. For example, the P-value for testing the null
hypothesis ln(π1/π2) = 0 vs. the alternative hypothesis ln(π1/π2) 6= 0 can be calculated
by

2

(
1−Ψ

(
|ln(π̂1/π̂2)|
sd(ln(π1/π2))

))
,

where Ψ is the probability distribution function of N(0, 1), (π̂1, π̂2) are MAPs, and
sd(ln(π1/π2)) is the standard deviation of ln(π1/π2).

For the case with multiple annotation groups, we can calculate similar quantities to
compare the estimates by each group vs. the genome-wide average. That is, for causal
probability, ln(πq/πavg) is used to test whether or not the causal probability of group q is
significantly different from the overall average, where πavg =

∑Q
q=1wqπq, wq = mq∑Q

q=1mq
(mq

is the number of variants of annotation q). For the effect-size variance, a similar quantity
ln(σ2

q/σ
2
avg) is used, where σ2

avg =
∑Q

q=1 fqσ
2
q is the weighted average of effect-size variances

with weights given by fq = mqπq∑Q
q=1mqπq

(mqπq is the expected number of associations in

annotation category q). Again, the hypothesis tests for comparing enrichment among
multiple groups can be easily performed, because the approximated 95% confidence
intervals of these log-ratios can be easily obtained by Fieller’s theorem [3].

In addition, we can approximate the enrichment-fold π1/π2 by exp(ln(π1/π2)), and
σ2
1/σ

2
2 by and exp(ln(σ2

1/σ
2
2)).

5 Convergence Diagnosis

We used the potential scale reduction factor (PSRF) [4] to quantify the mixing property of
MCMC algorithms. With multiple MCMC chains, the PSRF for a parameter is basically the
ratio between the overall estimated parameter variance and the within-chain variance. A
PSRF value within (0.9, 1.2) suggests that the MCMC algorithm has good mixing property



and posterior samples converge. For example, in Figure S2, we present the PSRFs for
the E[γi] of top 58 variants with P-values < 5 × 10−8 in the WTCCC GWAS of Chrohn’s
disease [1]. We can see that about half of the 58 variants had PSRFs > 1.2 by the standard
MCMC algorithm as used in GEMMA [7], while all PSRFs by our MCMC algorithm all fall
within (0.9, 1.2), suggesting greatly improved mixing property due to the refined proposal
distribution and relatively small block-sizes.

6 Challenges for Extending bfGWAS for Overlapped and Quantitative

Annotations

Theoretically, this Bayesian hierarchical model can be easily extended for analyzing
overlapped categorical and quantitative annotations, by assuming the following logistic
model for the πi in model (1),

logit(πi) = α0 +AT
i α. (17)

In the logistic model (17), Ai is the quantitative annotation vector (with binary values
for categorical annotations) for the ith variant, and α = (α1, · · · , αQ) is the vector of log-
odds for all considered annotations. Independent normal distributions can be assumed
as the hyper priors for the category-specific (enrichment) parameters (α0,α). With a
large number of annotations, variable selection of annotations might even be integrated
by assuming independent point-normal priors for α.

Conditioning on values for (α0,α), the MCMC algorithm (Section 2.2) can be
implemented similarly per block in the E-step. However, in the M-step, analytical formulas
are no longer available for the posterior MAPs of (α0,α). In preliminary analysis, we
found that the false positive rate was inflated due to over estimated πi, which is due to
the difficulties of estimating (α0,α). We are still exploring an appropriate approach to
effectively control the false positive rate for this extension.

7 Software

Software implementing this Bayesian hierarchical model with the EM-MCMC algorithm,
referred as Bayesian Functional Genome-wide Association Study (bfGWAS), is now
available at GitHub (https://github.com/yjingj/bfGWAS). Within the software, the E-
step (MCMC algorithm) is written in C++ language; the M-step is written in an R script;
and both steps are wrapped together (enabling parallel computation) through submitting
jobs by a Makefile that is generated by a Perl script.



Supplemental Figures

Figure S 1: Flowcharts of bfGWAS.
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(A) Hierarchical Bayesian variable selection model; (B) EM-MCMC algorithm.



Figure S 2: Plots of the potential scale reduction factors (PSRF).
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Standard MCMC algorithm as used in GEMMA; (B) Our MCMC algorithm.



Figure S 3: Prioritization ranks of the true causal SNP1 (pink) and SNP2 (cyan).
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Figure S 4: Estimates of the log-relative-risk ln(π0/π1) by bfGWAS and the enrich-parameter by
fGWAS, along with 95% confidence intervals.
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(B) Scenario (ii)
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Figure S 5: Estimates of the log-ratio of effect-size variances ln(σ20/σ
2
1) by bfGWAS, along with

95% confidence intervals.
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(A) Simulation scenario (i) with enrichment in coding; (B) Simulation scenario (ii) with
no enrichment. Note that the effect-sizes of both groups in scenarios (i) and (ii) were
simulated from the same normal distribution, thus the 95% confidence intervals covering
0 suggest that bfGWAS estimates similar effect-size variances between two categories.



Figure S 6: Sorted top bfGWAS PPs versus sorted top −log10(P-values) of single variant tests.
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0.1068.



Figure S 7: Manhattan plot highlighting AMD GWAS signals with BVSR PP > 0.1068.



Figure S 8: Manhattan plots highlighting AMD GWAS signals by accounting for gene-based
annotations.

(A)

(B)

(A) Highlighting signals with fGWAS posterior association probability (PP) > 0.1068 are
colored; (B) Highlighting signals with bfGWAS PP > 0.1068.



Figure S 9: LocusZoom plots of region CHR19:6218146-7218146.
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denotes the top significant variant by single variant tests rs2230199.



Figure S 10: Enrichment analysis results with varying prior means as well as starting values
(10−6, 5× 10−6, 10−5) for πq, and varying starting values (10, 5, 1) for σ2q .
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Figure S 11: fGWAS enrichment estimates with 95% error bars.
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Figure S 12: Ratios of enrich parameters versus the respective genome-wide averages, along with
95% confidence intervals.
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Figure S 13: Enrichment analysis results for the AMD GWAS data with chromatin states profiled 
with respect to the epigenome of fetal thymus (E093).
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Figure S 14: Manhattan plot highlighting MGI GWAS signals of skin cancer with BVSR PP > 0.1068.



Figure S 15: Manhattan plots highlighting MGI GWAS signals of skin cancer by accounting 
for gene-based annotations.

(A)

(B)

(A) Highlighting signals with with fGWAS PP > 0.1068; (B) Highlighting signals with
bfGWAS PP > 0.1068. Variants with PP > 0.1068 are plotted in different shapes with
respect to gene-based annotations.



Figure S 16: Enrichment analysis results of the MGI GWAS of skin cancer, accounting for gene-
based annotations.
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Figure S 17: LocusZoom plots in the region of CHR16:89686117-90172696.
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(A) P-values by single variant tests; (B) BVSR PPs; (C) fGWAS PPs; (D) bfGWAS PPs. The
purple triangle denotes the variant rs1805007.



 

Supplemental Tables 
 
Table S1: Classification of gene-based functional annotations. 

Native gene-based functional annotations 
Annotation categories considered 

in the analysis 

frameshift, frameshift-near-splice 

Non-synonymous 

splice-acceptor, splice-donor, 

stop-gained, stop-gained-near-splice, stop-lost 

missense, missense-near-splice 

synonymous-near-splice, non-coding-exon-near-splice, 

coding-near-splice, coding-unknown-near-splice, intron-near-splice 

coding, coding-unknown, synonymous, nc-transcript-variant Coding-synonymous 

intronic Intronic 

intergenic, NAs Intergenic 

3-prime-UTR, 5-prime-UTR, 
Other-genomic 

downstream-gene, upstream-gene, non-coding-exon 

 

  



 

Table S2: Compare results by P-value, fGWAS, and bfGWAS in the 34 known AMD loci, accounting for gene-based annotations.  
 

Known 34 Loci  
 Top significant variant by P-value  Bayesian 

Regional-PP 
fGWAS 

Regional-PP 

Locus name Chr Start End dbSNPID Chr:Position MAF P-value Anno   

CFH 1 195,679,832 197,768,053 rs10922109 1:196,704,632 0.329 <9×10!!"# intronic 1.000 1.000 
 

COL4A3 2 227,573,015 228,592,110 rs11884770 2:228,086,920 0.731 5.6×10!! intronic 0.984 0.986 

ADAMTS9-AS 3 64,199,445 65,230,121 rs62247658 3:64,715,155 0.551 1.4×10!!" intronic 0.978 1.000 

COL8A1 3 98,551,114 100,381,567 rs140647181 3:99,180,668 0.019 5.4×10!!" intergenic 1.000 0.999 

CFI 4 110,126,506 111,185,820 rs10033900 4:110,659,067 0.506 7.1×10!!" downstream 1.000 1.000 

C9 5 38,699,134 39,831,894 rs62358361 5:39,327,888 0.012 3.1×10!!" intronic 1.000 1.000 

PRLR/SPEF2 5 34,769,332 36,493,378 rs114092250 5:35,494,448 0.018 2.5×10!! intergenic 0.961 0.987 

C2/CFB/SKIV2L 6 30,505,490 33,238,589 rs116503776 6:31,930,462 0.120 2.1×10!!!" intronic 1.000 1.000 

VEGFA 6 43,305,296 44,329,629 rs943080 6:43,826,627 0.518 2.0×10!!" intergenic 1.000 1.000 

KMT2E/SRPK2 7 104,081,402 105,563,372 rs1142 7:104,756,326 0.357 1.5×10!!" downstream 0.999 0.999 

PILRB/PILRA 7 99,394,940 100,611,776 rs7803454 7:99,991,548 0.199 3.6×10!!" intronic 0.999 0.999 

TNFRSF10B 8 22,582,971 23,588,984 rs79037040 8:23,080,971 0.534 2.9×10!!" nc-transcript 1.000 0.999 

MIR6130/RORB 9 75,935,160 77,189,752 rs10781180 9:76,615,662 0.683 3.0×10!!" intergenic 0.997 0.999 

TRPM3 9 72,938,605 73,946,180 rs7150714 9:73,438,605 0.584 3.2×10!! intronic 0.929 0.999 

TGFBR1 9 101,358,102 102,431,769 rs1626340 9:101,923,372 0.199 2.3×10!!! intergenic 1.000 0.999 

ABCA1 9 107,139,414 108,167,147 rs2740488 9:107,661,742 0.265 1.7×10!! intronic 0.963 0.985 

ARHGAP21 10 24,360,361 25,556,538 rs12357257 10:24,999,593 0.232 4.3×10!! intronic 0.962 0.986 

ARMS2/HTRA1 10 123,702,126 124,735,355 rs3750846 10:124,215,565 0.316 <9×10!!"# intronic 1.000 1.000 

RDH5/CD63 12 55,615,585 56,713,297 rs3138141 12:56,115,778 0.214 4.7×10!!" intronic 0.034 0.999 

ACAD10 12 110,919,995 113,502,935 rs73205633 12:112,357,085 0.019 1.2×10!!" intergenic 0.997 0.999 



 

Known 34 Loci  
 Top significant variant by P-value  Bayesian 

Regional-PP 
fGWAS 

Regional-PP 

Locus name Chr Start End dbSNPID Chr:Position MAF P-value Anno   

B3GALTL 13 31,242,232 32,339,274 rs9564692 13:31,821,240 0.288 3.2×10!!! splice 1.000 0.999 

RAD51B 14 68,227,506 69,550,783 rs1956526 14:68,799,787 0.650 1. .0×10!!! intronic 1.000 0.999 

LIPC 15 58,171,721 59,242,418 rs2414577 15:58,680,638 0.365 4.8×10!!" nc-transcript 1.000 1.000 

CETP 16 56,485,514 57,506,829 rs5817082 16:56,997,349 0.248 1.7×10!!" intronic 1.000 1.000 

CTRB2/CTRB1 16 74,732,528 76,017,115 rs72802342 16:75,234,872 0.073 2.8×10!!" downstream 1.000 1.000 

TMEM97/VTN 17 26,092,946 27,240,139 rs11080055 17:26,649,724 0.524 1.5×10!! intronic 0.996 0.998 

NPLOC4/TSPAN10 17 79,015,509 80,186,552 rs6565597 17:79,526,821 0.390 1.0×10!!" intronic 1.000 0.999 

C3 19 5,311,717 7,224,340 rs2230199 19:6,718,387 0.764 1.7×10!!! missense 1.000 1.000 

CNN2 19 523,867 1,533,360 rs10422209 19:1,026,318 0.132 5.5×10!! upstream 0.970 0.993 

APOE 19 44,892,254 46,313,830 rs429358 19:45,411,941 0.118 3.3×10!!" missense 1.000 1.000 

MMP9 20 44,114,991 45,160,699 rs142450006 20:44,614,991 0.132 1.4×10!!! intergenic 1.000 0.999 

C20orf85 20 56,084,276 57,174,034 rs117739907 20:56,652,781 0.062 7.8×10!!" intergenic 1.000 1.000 

SYN3/TIMP3 22 32,546,536 33,613,375 rs5754227 22:33,105,817 0.123 2.0×10!!" intronic 1.000 1.000 

SLC16A8 22 37,795,271 39,003,972 rs8135665 22:38,476,276 0.205 2.9×10!!" intronic 1.000 0.999 

 

  



Table S3: AMD risk variants identified by bfGWAS in the 34 known loci, accounting for gene-based annotations. 

Signal 
number Reside/Nearby Gene dbSNPID Chr:Position Anno MAF bfGWAS 

PP 
Effect-
size P-value 

1.1 CFH rs800292 1:196,642,233 missense 0.183 0.997 -0.312 2.4×10!!"#
1.2 CFH rs10922094 1:196,661,505 intronic 0.530 1.000 -0.214 < 9.0×10!!"#
1.3 CFHR1 rs605082 1:196,801,917 downstream 0.353 0.518 -0.092 7.5×10!!"#
1.4 CFHR4 rs58175074 1:196,820,080 intronic 0.158 0.792 -0.314 < 9.0×10!!"#
1.5 CFHR4 rs149032610 1:196,857,150 5’-UTR 0.015 1.000  0.195 6.6×10!!"
1.6 CFHR4 rs10494745 1:196,887,457 missense 0.134 0.526  0.092 7.4×10!!"#
1.7 CFHR2 rs138579109 1:196,923,955 intronic 0.043 0.893  0.167 8.4×10!!"
1.8 CFHR5 rs35662416 1:196,967,354 missense 0.022 0.889 -0.122 5.8×10!!
2 COL4A3 rs11884770 2:228,086,920 intronic 0.731 0.269  0.052 5.6×10!!
3 ADAMTS9-AS2 rs7428936 3:64,710,850 intronic 0.448 0.167 -0.061 1.5×10!!"
4 COL8A1 rs140647181 3:99,180,668 intergenic 0.019 0.687  0.224 54×10!!"
5 CFI rs10033900 4:110,659,067 downstream 0.506 0.999 -0.067 7.2×10!!"
6 C9 rs34882957 5:39,331,894 missense 0.012 0.998  0.278 4.0×10!!"
7 PRLR/SPEF2 rs114092250 5:35,494,448 intergenic 0.019 0.403 -0.174 2.5×10!!
8.1 C2/CFB rs4151667 6:31,914,024 missense 0.036 0.917 -0.279 1.4×10!!!
8.2 SKIV2L/NELFE rs115270436 6:31,928,306 missense 0.071 0.633 -0.321 2.8×10!!!
8.3 HLA-DQB1 rs3891176 6:32,634,318 missense 0.159 0.726  0.153 1.2×10!!!
9 VEGFA rs943080 6:43,826,627 intergenic 0.518 0.435  0.063 2.0×10!!"
10 KMT2E/SRPK2 rs1142 7:104,756,326 downstream 0.357 0.125 0.052 1.5×10!!"
11 PILRB rs35986051 7:99,956,439 missense 0.139 0.193  0.075 4.0×10!!"
12 TNFRSF10A rs79037040 8:23,082,971 nc-transcript 0.534 0.996  0.053 2.9×10!!"
13 MIR6130/RORB rs10781182 9:76,617,720 intergenic 0.684 0.070 -0.052 3.0×10!!"
14 TRPM3 rs71507014 9:73,438,605 intronic 0.584 0.822 -0.046 3.2×10!!
15 TGFBR1 rs10819635 9:101,864,510 upstream 0.186 0.137 -0.066 2.4×10!!!
16 ABCA1 rs2740488 9:107,661,742 intronic 0.266 0.756 -0.053 1.7×10!!
17 ARHGAP21 rs12357257 10:24,999,593 intronic 0.232 0.318  0.053 4.3×10!!
18 ARMS2 rs10490924 10:124,214,448 missense 0.316 0.996  0.474 < 9.0×10!!"#
19 RDH5/CD63 rs3138142 12:56,115,585 coding-syn 0.213 0.706  0.074 6.1×10!!"
20 MAPKAPK5 rs61941287 12:112,330,305 intronic 0.019 0.309 0.191 1.2×10!!"
21 B3GLCT rs9564692 13:31,821,240 splice 0.288 0.942 -0.056 3.2×10!!!
22 RAD51B rs2842339 14:68,986,999 intronic 0.899 0.243 -0.082 3.1×10!!
23 ALDH1A2 rs2414577 15:58,680,638 intronic 0.366 0.501 -0.067 4.8×10!!"
24 CETP rs1532625 16:57,005,301 splice 0.448 0.358  0.044 7.9×10!!"
25 CTRB2 rs72802342 16:75,234,872 downstream 0.360 0.297 -0.114 2.8×10!!"
26 CTB-96E2.2/VTN rs704 17:26,694,861 missense 0.483 0.325  0.042 3.3×10!!
27 NPLOC4/TSPAN10 rs6420484 17:79,612,397 missense 0.622 0.402 -0.055 4.0×10!!"
28.1 FUT6/NRTN rs17855739 19:5,831,840 missense 0.044 0.681 -0.159 1.5×10!!"
28.2 C3/CTD-3128G10.7 rs147859257 19:6,718,146 missense 0.008 1.000  0.501 4.3×10!!"
28.3 C3/CTD-3128G10.7 rs2230199 19:6,718,387 missense 0.764 1.000 -0.172 1.7×10!!!



Signal 
number Reside/Nearby Gene dbSNPID Chr:Position Anno MAF bfGWAS 

PP 
Effect-
size P-value 

29.1 ABCA7 rs3752237 19:1,047,161 coding-syn 0.644 0.544 -0.065 6.7×10!!
29.2 ABCA7 rs12151021 19:1,050,874 intronic 0.708 1.000  0.091 1.9×10!!

30 APOE/TOMM40/ 
CTB-129P6.7 rs429358 19:45,411,941 missense 0.118 1.000 -0.173 3.3×10!!"

31 MMP9/RP11-465L10.10 rs2274755 20:44,639,692 splice 0.138 0.435 -0.073 5.4×10!!!
32 C20orf85 rs201459901 20:56,653,724 intergenic 0.063 0.078 -0.135 7.9×10!!"
33 SYN3 rs5754227 22:33,105,817 intronic 0.124 0.764 -0.128 2.0×10!!"
34.1 SLC16A8/BAIAP2L2 rs4289289 22:38,477,342 missense 0.485 0.824  0.056 1.1×10!!"
34.2 SLC16A8/BAIAP2L2 rs77968014 22:38,478,666 splice 0.009 0.973  0.212 3.1×10!!

Variants with Bayesian PPs >0.5 or the highest bfGWAS PPs in the loci are listed. Shown are reside/nearby genes, dbSNPIDs, positions, functional 
annotations, MAFs (unfolded, corresponding to the direction of effect-sizes), P-values, and Bayesian PPs/effect-sizes. 



Table S4: AMD risk variants identified by fGWAS in the 34 known loci, accounting for gene-based annotations. 

Signal number Reside/Nearby Gene dbSNPID Chr:Position Anno MAF fGWAS PP P-value 
1 CFH rs10922109 1:196,704,632 intronic 0.329 0.802 < 9.0×10!!"#
2 COL4A3 rs11884770 2:228,086,920 intronic 0.731 0.181 5.7×10!!
3 ADAMTS9-AS2 rs62247658 3:64,715,155 intronic 0.551 0.167 1.5×10!!"
4 COL8A1 rs140647181 3:99,180,668 intergenic 0.019 0.999 5.4×10!!"
5 CFI rs10033900 4:110,659,067 downstream 0.506 0.996 7.2×10!!"
6 C9 rs34882957 5:39,331,894 missense 0.012 0.900 4.0×10!!"
7 PRLR/SPEF2 rs114092250 5:35,494,448 intergenic 0.019 0.626 2.5×10!!
8 NELFE/SKIV2L rs116503776 6:31,930,462 intronic 0.120 0.912 2.1×10!!!"
9 VEGFA rs943080 6:43,826,627 intergenic 0.518 0.437 2.0×10!!"
10 KMT2E/SRPK2 rs1142 7:104,756,326 downstream 0.357 0.182 1.5×10!!"
11 PILRB rs72615157 7:99,956,444 missense 0.139 0.118 4.0×10!!"
12 TNFRSF10A rs79037040 8:23,082,971 nc-transcript 0.534 0.996 2.9×10!!"
13 MIR6130/RORB rs10781180 9:76,615,662 intergenic 0.683 0.068 3.0×10!!"
14 TRPM3 rs71507014 9:73,438,605 intronic 0.584 0.860 3.2×10!!
15 TGFBR1 rs10819635 9:101,864,510 upstream 0.186 0.188 2.4×10!!!
16 ABCA1 rs2740488 9:107,661,742 intronic 0.266 0.760 1.7×10!!
17 ARHGAP21 rs12357257 10:24,999,593 intronic 0.232 0.280 4.3×10!!
18 ARMS2 rs10490924 10:124,214,448 missense 0.316 0.626 < 9.0×10!!"#
19 RDH5/CD63 rs3138142 12:56,115,585 coding-syn 0.213 0.847 6.1×10!!"
20 MAPKAPK5 rs61941287 12:112,330,305 intronic 0.019 0.503 1.2×10!!"
21 B3GALTL rs9564692 13:31,821,240 splice 0.288 0.889 3.2×10!!!

22 RAD51B rs1956526 14:68,799,787 intronic 0.650 0.039 1.0×10!!!
23 ALDH1A2 rs2414577 15:58,680,638 intronic 0.366 0.495 4.8×10!!"
24 CETP rs5817082 16:56,997,349 intronic 0.248 0.193 1.7×10!!"
25 BCAR1 rs72802395 16:75,286,484 intronic 0.068 0.605 2.1×10!!!
26 POLDIP2/TNFAIP1 rs13469 17:26,676,135 coding-syn 0.523 0.168 5.1×10!!
27 NPLOC4/TSPAN10 rs6420484 17:79,612,397 missense 0.622 0.351 4.0×10!!"
28 C3 rs2230199 19:6,718,387 missense 0.764 0.999 1.7×10!!!
29 CNN2 rs10422209 19:1,026,318 upstream 0.132 0.229 5.2×10!!
30 APOE/TOMM40 rs429358 19:45,411,941 missense 0.118 1.000 3.3×10!!"
31 MMP9 rs2274755 20:44,639,692 splice 0.138 0.194 5.4×10!!!
32 C20orf85 rs117739907 20:56,652,781 intergenic 0.063 0.079 7.8×10!!"
33 SYN3 rs5754227 22:33,105,817 intronic 0.124 0.781 2.0×10!!"
34 SLC16A8/PICK1 rs8135665 22:38,476,276 intronic 0.205 0.596 2.9×10!!"

Variants with fGWAS PPs >0.5 or the highest fGWAS PPs in the loci are listed in this table. Shown are reside/nearby genes, dbSNPIDs, positions, 
functional annotations, MAFs (unfolded), fGWAS PPs, and P-values. 



Table S5: Candidate AMD loci identified by bfGWAS, accounting for gene-based annotations. 

Locus Reside gene dbSNPID Chr:Position Anno MAF P-value Regional-PP bfGWAS PP Effect-size 
1 PPIL3 rs7562391 2:201,736,166 missense 0.127 4.8×10!! 0.989 0.666 -0.061 
2 ZNRD1ASP rs114318558 6:29,966,787 downstream 0.175 2.3×10!! 0.993 0.135  0.058 
3 CPN1 rs61751507 10:101,829,514 missense 0.043 6.7×10!! 0.994 0.598 -0.106 
4 ABHD2 rs6496562 15:89,736,558 splice 0.417 8.4×10!! 0.974 0.517  0.042 
5 LBP rs2232613 20:36,997,655 missense 0.073 4.3×10!! 0.955 0.881 -0.079 

Variants with the highest bfGWAS single variant PP in the candidate loci are listed in this table. Shown are reside genes, dbSNPIDs, positions, functional 
annotations, MAFs, P-values, Bayesian regional-PPs, and Bayesian PPs/effect-sizes. 

Table S6: Candidate AMD loci identified by fGWAS, accounting for gene-based annotations. 

Locus Reside gene dbSNPID Chr:Position   Anno MAF      P-value Regional-PP fGWAS PP Effect-size 
1 PPIL3 rs7562391 2:201,736,166 missense 0.127 4.8×10!! 0.986 0.475 -0.061 
2 HLA-K rs116803720 6:29,889,989 upstream 0.691 9.3×10!!" 0.998 0.101  0.056 
3 CPN1 rs61733667 10:101,802,262 coding-syn 0.036 1.0×10!! 0.994 0.254 -0.118 
4 ABHD2 rs6496562 15:89,736,558 splice 0.417 8.4×10!! 0.978 0.405  0.042 
5 LBP rs2232613 20:36,997,655 missense 0.073 4.3×10!! 0.973 0.796 -0.079 

Variants with the highest fGWAS single variant PP in the candidate loci are listed in this table. Shown are reside genes, dbSNPIDs, positions, functional 
annotations, MAFs, P-values, fGWAS regional-PPs, fGWAS PPs, and Bayesian effect-sizes 



Table S7: AMD risk variants by bfGWAS in the 34 known loci, accounting for summarized regulatory annotations. 

Signal 
number Reside/nearby gene dbSNPID Chr:Position Anno MAF bfGWAS 

PP 
Effect-size P-value 

1.1 KCNT2 rs144520124 1:196,371,908 DHS 0.005 1.000 -0.383 1.9×10!!"
1.2 CFH rs74979069 1:196,588,463 intergenic 0.049 1.000 0.181 8.1×10!!"
1.3 CFH rs1089033 1:196,666,793 intronic 0.412 1.000 -0.117 < 9.0×10!!"#
1.4 CFH rs2133143 1:196,718,099 intergenic 0.165 0.736 -0.358 5.7×10!!"#
1.5 CFH esv2672010 1:196,733,401 others 0.157 1.000 -0.283 3.3×10!!"#
1.6 CFHR3 rs188826801 1:196,762,123 intronic 0.014 0.993  0.176 1.2×10!!"
1.7 CFH rs79251424 1:196,782,416 intergenic 0.030 0.998 0.144 2.1×10!!
1.8 RP4-608O15.3 rs146093852 1:196,811,860 intergenic 0.277 0.994 -0.143 5.7×10!!"#
2 COL4A3 rs11884770 2:228,086,920 intronic 0.731 0.213  0.050 5.6×10!!
3 ADAMTS9-AS2 rs11914351 3:64,723,441 intronic 0.240 0.950 -0.064 8.7×10!!
4 COL8A1 rs140647181 3:99,180,668 intergenic 0.019 0.575  0.221 5.4×10!!"
5 CFI rs10033900 4:110,659,067 intergenic 0.506 0.994 -0.067 7.2×10!!"
6 C9 rs34882957 5:39,331,894 coding 0.012 0.982  0.278 4.0×10!!
7 PRLR/SPEF2 rs114092250 5:35,494,448 intergenic 0.019 0.346 -0.172 2.5×10!!
8.1 C2/CFB rs4151667 6:31,914,024 coding 0.035 0.579 -0.284 1.3×10!!!
8.2 SKIV2/NELFE rs115270436 6:31,928,306 coding 0.071 0.566 -0.321 2.8×10!!!
9 VEGFA rs943080 6:43,826,627 DHS 0.518 0.678  0.063 2.0×10!!"
10 LINC01004/KMT2E-AS1 rs6950894 7:104,652,671 promoter 0.511 0.063 -0.047 9.8×10!!"
11 PILRB rs7783159 7:100,017,454 coding 0.203 0.115 0.059 5.1×10!!"
12 TNFRSF10A rs79037040 8:23,082,971 DHS 0.534 0.995  0.053 2.9×10!!"
13 MIR6130/RORB rs10781180 9:76,615,662 intergenic 0.684 0.070 -0.052 3.0×10!!"
14 TRPM3 rs71507014 9:73,438,605 intronic 0.584 0.763 -0.046 3.2×10!!
15 TGFBR1 rs401186 9:101,925,077 promoter 0.200 0.109 -0.063 2.5×10!!!
16 ABCA1 rs2740488 9:107,661,742 intronic 0.266 0.727 -0.053 1.7×10!!
17 ARHGAP21 rs12357257 10:24,999,593 intronic 0.232 0.297  0.053 4.3×10!!
18.1 ARMS2 rs7068411 10:124,202,878 intergenic 0.621 1.000 0.252 2.4×10!!"!
18.2 ARMS2 rs7898343 10:124,212,887 promoter 0.083 0.868 -0.311 2.0×10!!"
18.3 ARMS2 rs10490923 10:124,214,251 coding 0.109 0.962 -0.272 1.7×10!!"
18.4 ARMS2 rs2736911 10:124,214,355 coding 0.137 0.781 -0.350 1.8×10!!"
18.5 HTRA1 rs2672601 10:124,220,023 promoter 0.136 0.524 -0.321 4.8×10!!"
18.6 HTRA1 rs74895474 10:124,230,397 intronic 0.094 1.000 -0.199 1.3×10!!"
18.7 HTRA1 rs12252027 10:124,234,988 intronic 0.099 1.000 -0.189 1.4×10!!"
18.8 HTRA1 rs2672589 10:124,234988 DHS 0.653 1.000 0.220 8.9×10!!"#
19 RDH5/CD63 rs143673140 12:56,514,414 coding 0.009 0.001 -0.096 1.3×10!!
20 MAPKAPK5 rs61941287 12:112,330,305 intronic 0.019 0.318  0.199 1.2×10!!"
21 B3GALTL rs9564692 13:31,821,240 DHS 0.288 0.429 -0.056 3.2×10!!!
22 RAD51B rs2842344 14:68,976,971 DHS 0.899 0.215 -0.082 3.7×10!!
23 ALDH1A2 rs2414577 15:58,680,638 DHS 0.366 0.508 -0.067 1.5×10!!
24 CETP rs5883 16:57,007,353 promoter 0.060 0.415 0.085 1.4×10!!"



Signal 
number Reside/nearby gene dbSNPID Chr:Position Anno MAF bfGWAS 

PP 
Effect-size P-value 

25 CTRB2 rs55993634 16:75,236,763 promoter 0.082 0.321 -0.104 4.6×10!!
26 POLDIP2/TNFAIP1 rs13469 17:26,676,135 coding 0.524 0.280  0.044 5.2×10!!
27 NPLOC4/TSPAN10 rs9894429 17:79,596,811 coding 0.441 0.261 -0.045 4.0×10!!"
28.1 FUT6/NRTN rs17855739 19:5,831,840 coding 0.044 0.549 -0.159 1.5×10!!"
28.2 C3/CTD-3128G10.7 rs147859257 19:6,718,146 coding 0.008 1.000  0.501 4.3×10!!"
28.3 C3/CTD-3128G10.7 rs2230199 19:6,718,387 coding 0.764 0.999 -0.173 1.7×10!!!
29 ABCA7 rs3752241 19:1,053,524 coding 0.160 0.268 0.055 3.2×10!!
30 APOE(EXOC3L2/MARK4) rs429358 19:45,411,941 coding 0.118 1.000 -0.173 3.3×10!!"
31 MMP9/RP11-465L10.10 rs17577 20:44,643,111 coding 0.138 0.377 -0.072 6.8×10!!!
32 RP13-379L11.1 rs7266392 20:56,651,542 DHS 0.063 0.115 -0.134 9.2×10!!"
33 SYN3 rs5754227 22:33,105,817 intronic 0.124 0.524 -0.129 2.0×10!!"
34 SLC16A8/BAIAP2L2 rs77968014 22:38,478,666 coding 0.009 0.842  0.207 3.1×10!!

Variants with Bayesian PPs >0.5 or the highest bfGWAS PPs in the loci are listed (horizontal lines separate loci). Shown are reside/nearby genes, 
dbSNPIDs, positions, functional annotations, MAFs (unfolded, corresponding to the direction of effect-sizes), Bayesian PPs/effect-sizes, and P-values. 



Table S8: AMD risk variants by fGWAS in the 34 known loci, accounting for summarized regulatory annotations. 

Signal number Reside/nearby gene dbSNPID Chr:Position Anno MAF fGWAS PP P-value 
1 CFH rs1089033 1:196,666,793 Intronic 0.412 0.522 < 9.0×10!!"#
2 COL4A3 rs112103000 2:228,072,336 intronic 0.163 0.135 2.0×10!!
3 ADAMTS9-AS2 rs6793431 3:64,729,510 intronic 0.891 0.001 6.4×10!!

4 Intergenic rs115407994 3:99,268,860 intergenic 0.018 0.367 9.4×10!!"
5 CFI rs10033900 4:110,659,067 intergenic 0.506 0.996 7.2×10!!"
6 C9 rs34882957 5:39,331,894 coding 0.012 0.757 4.0×10!!"
7 Intergenic rs114092250 5:35,494,448 intergenic 0.019 0.617 2.5×10!!
8 NELFE/SKIV2L rs116503776 6:31,930,462 intronic 0.120 0.789 2.1×10!!!"
9 Intergenic rs943080 6:43,826,627 DHS 0.518 0.557 2.0×10!!"
10 KMT2E/SRPK2 rs1142 7:104,756,326 UTR 0.357 0.215 1.5×10!!"
11 ZCWPW1 rs7783159 7:100,017,454 coding 0.203 0.047 5.1×10!!"
12 TNFRSF10A rs79037040 8:23,082,971 DHS 0.534 0.995 2.9×10!!"
13 Intergenic rs10781180 9:76,615,662 intergenic 0.683 0.067 3.0×10!!"
14 TRPM3 rs71507014 9:73,438,605 intronic 0.584 0.837 3.2×10!!
15 TGFBR1 rs10760667 9:101,864,607 DHS 0.105 0.186 2.5×10!!!
16 ABCA1 rs2740488 9:107,661,742 intronic 0.266 0.667 1.7×10!!
17 ARHGAP21 rs142336524 10:24,879,784 intronic 0.215 0.255 3.2×10!!
18 ATE1-AS1 rs11594070 10:123,702,736 nc-transcript 0.334 0.003 1.7×10!!
19 RDH5/CD63 rs3138136 12:56,117,570 intronic 0.098 0.001 3.9×10!!
20 MAPKAPK5 rs61941287 12:112,330,305 nc-transcript 0.019 0.153 1.2×10!!"
21 B3GALTL rs9564692 13:31,821,240 DHS 0.288 0.543 3.2×10!!!

22 RAD51B rs11158728 14:68,762,205 DHS 0.641 0.040 1.2×10!!!
23 ALDH1A2 rs2414577 15:58,680,638 DHS 0.366 0.500 4.8×10!!"
24 CETP rs7499892 16:57,006,590 intronic 0.169 0.182 5.3×10!!"
25 BCAR1 rs72802395 16:75,286,484 intronic 0.068 0.623 2.1×10!!!
26 POLDIP2/NFAIP1 rs13469 17:26,676,135 coding 0.523 0.134 5.1×10!!"
27 NPLOC4 rs8070929 17:79,530,993 intronic 0.378 0.176 1.1×10!!"
28 C3 rs2230199 19:6,718,387 coding 0.764 0.999 1.7×10!!!
29 CNN2/ABCA7 rs58369307 19:1,038,290 UTR 0.109 0.207 8.5×10!!
30 APOE/TOMM40 rs429358 19:45,411,941 coding 0.118 1.000 3.3×10!!"
31 MMP9 rs17577 20:44,643,111 coding 0.138 0.131 6.8×10!!!
32 RP13-379L11.1 rs141945849 20:56,650,604 DHS 0.063 0.092 9.3×10!!"
33 SYN3 rs5754227 22:33,105,817 intronic 0.124 0.681 2.0×10!!"
34 SLC16A8/PICK1 rs8135665 22:38,476,276 intronic 0.205 0.607 2.9×10!!"

Variants with fGWAS PPs >0.5 or the highest fGWAS PPs in the loci or are listed (horizontal lines separate loci). Shown are reside/nearby genes, 
dbSNPIDs, positions, annotations, MAFs (unfolded, corresponding to the direction of effect-sizes), fGWAS PPs, and P-values. 



Table S9: Candidate AMD loci identified by bfGWAS, accounting for summarized regulatory annotations. 

Locus Reside gene dbSNPID Chr:Position Anno MAF P-value Regional-PP bfGWAS PP Effect-size 
1 PPIL3 rs7562391 2:201,736,166 coding 0.127 𝟒.𝟖×𝟏𝟎!𝟕 0.967 0.475 -0.061 
2 ZNRD1-AS1 rs114357644 6:29,924,728 intergenic 0.669 𝟐.𝟑×𝟏𝟎!𝟕 0.999 0.609  0.051 
3 CPN1 rs61733667 10:101,829,514 coding 0.036 𝟏.𝟎×𝟏𝟎!𝟕 0.994 0.463 -0.118 

Variants with the highest bfGWAS PP in the candidate loci are listed in this table. Shown are reside genes, dbSNPIDs, positions, functional annotations, MAFs, P-
values, Bayesian regional-PPs, and Bayesian PPs/effect-sizes. 

Table S10: Candidate AMD loci identified by fGWAS, accounting for summarized regulatory annotations. 

Locus Reside gene dbSNPID Chr:Position   Anno MAF      P-value Regional-PP fGWAS PP Effect-size 
1 PPIL3 rs7562391 2:201,736,166 coding 0.127 𝟒.𝟖×𝟏𝟎!𝟕 0.976 0.322 -0.061 
2 Intergenic rs115754868 6:29,884,646 intergenic 0.653 𝟗.𝟔×𝟏𝟎!𝟏𝟎 0.998 0.101  0.053 
3 CPN1 rs61733667 10:101,802,262 coding 0.036 𝟏.𝟎×𝟏𝟎!𝟕 0.994 0.253 -0.118 
4 ABHD2 rs8042649 15:89,740,469 UTR 0.417 𝟏.𝟐×𝟏𝟎!𝟕 0.973 0.093  0.049 

Variants with the highest fGWAS PP in the candidate loci are listed in this table. Shown are reside genes, dbSNPIDs, positions, functional annotations, 
MAFs, P-values, fGWAS regional-PPs, fGWAS PPs, and Bayesian effect-sizes. 



Table S11: AMD risk variants by bfGWAS in the 34 known loci, accounting for chromatin states profiled with the epigenome of fetal thymus. 

Signal 
number Reside/nearby gene dbSNPID Chr:Position Anno MAF bfGWAS 

PP 
Effect-size P-value 

1.1 KCNT2 rs144520124 1:196,371,908 Quies 0.005 1.000 -0.389 𝟏.𝟗×𝟏𝟎!𝟐𝟑
1.2 KCNT2 rs10754198 1:196,573,505 Quies 0.258 1.000 -0.078 𝟏.𝟒×𝟏𝟎!𝟐𝟐𝟖
1.3 Intergenic rs74979069 1:196,588,463 Quies 0.049 1.000 0.160 𝟖.𝟏×𝟏𝟎!𝟗𝟐
1.4 CFH rs72734340 1:196,681,376 Quies 0.037 1.000 -0.189 𝟏.𝟏×𝟏𝟎!𝟏 
1.5 Intergenic rs200467660 1:196,721,770 Quies 0.161 1.000 -0.405 𝟏.𝟏×𝟏𝟎!𝟐𝟒𝟗
1.6 Intergenic rs113632891 1:196,731,186 Quies 0.155 1.000 -0.173 𝟐.𝟖×𝟏𝟎!𝟐𝟗𝟔
1.7 ZNF675 rs146093952 1:196,811,860 Quies 0.277 1.000 -0.207 𝟐.𝟐×𝟏𝟎!𝟑𝟏𝟎
1.8 CFHR4 rs76258418 1:196,815,863 Quies 0.130 1.000 -0.199 𝟐.𝟕×𝟏𝟎!𝟐𝟗𝟑
2 COL4A3 rs112103000 2:228,072,336 Quies 0.064 0.072  0.064 𝟐.𝟎×𝟏𝟎!𝟖
3.1 ADAMTS9-AS2 rs57305229 3:64,720,574 Quies 0.304 0.572 -0.057 𝟐.𝟑×𝟏𝟎!𝟓
3.2 ADAMTS9-AS2 rs11914351 3:64,723,441 Quies 0.240 0.968 -0.064 𝟖.𝟕×𝟏𝟎!𝟕
4 Intergenic rs140647181 3:99,180,668 Quies 0.019 0.703  0.222 𝟓.𝟑×𝟏𝟎!𝟏𝟑
5 CFI rs10033900 4:110,659,067 Quies 0.506 0.999 -0.067 𝟕.𝟐×𝟏𝟎!𝟏𝟗
6 C9 rs62358361 5:39,327,888 Quies 0.012 0.551  0.271 𝟑.𝟏×𝟏𝟎!𝟏𝟔
7 Intergenic rs114092250 5:35,494,448 Quies 0.019 0.213 -0.171 𝟐.𝟓×𝟏𝟎!𝟗
8.1 SKIV2L rs116503776 6:31,930,462 Tx 0.120 1.000 -0.307 𝟐.𝟏×𝟏𝟎!𝟏𝟏𝟒
8.2 STK19/C4A rs144629244 6:31,946,792 Enh 0.014 0.536 0.435 𝟒.𝟒×𝟏𝟎!𝟕
8.3 PBX2/AGER/GPSM3 rs114254831 6:32,155,581 EnhG 0.271 0.693 0.080 𝟖.𝟏×𝟏𝟎!𝟏𝟑
9 Intergenic rs943080 6:43,826,627 Quies 0.518 0.422  0.063 𝟐.𝟎×𝟏𝟎!𝟏𝟔
10 KMT2E/SRPK2 rs1142 7:104,756,326 Tx 0.357 0.197  0.051 𝟏.𝟓×𝟏𝟎!𝟏𝟎
11 NYAP1 rs67040465 7:100,083,078 ReprPCWk 0.200 0.040 0.059 𝟓.𝟕×𝟏𝟎!𝟏𝟎
12 TNFRSF10A rs79037040 8:23,082,971 BivFlnk 0.534 0.967  0.053 𝟐.𝟗×𝟏𝟎!𝟏𝟐
13 Intergenic rs10781180 9:76,615,662 Quies 0.684 0.090 -0.052 𝟑.𝟎×𝟏𝟎!𝟏𝟎
14 TRPM3 rs71507014 9:73,438,605 Quies 0.585 0.819 -0.046 𝟑.𝟐×𝟏𝟎!𝟗
15 TGFBR1 rs10819635 9:10,819,635 TxWk 0.186 0.084 -0.066 𝟐.𝟓×𝟏𝟎!𝟏𝟏
16 ABCA1 rs2740488 9:107,661,742 TxWk 0.266 0.759 -0.053 𝟏.𝟕×𝟏𝟎!𝟗
17 ARHGAP21 rs12357257 10:24,999,593 Quies 0.232 0.308  0.053 𝟒.𝟑×𝟏𝟎!𝟗
18.1 Intergenic rs7068411 10:124,202,878 Quies 0.621 1.000 0.198 𝟐.𝟒×𝟏𝟎!𝟐𝟏𝟐
18.2 HTRA1 rs2672595 10:124,227,288 ReprePCWk 0.213 0.844 -0.466 𝟖.𝟕×𝟏𝟎!𝟏𝟏𝟏
18.3 HTRA1 rs74895474 10:124,230,397 ReprePCWk 0.094 0.578 -0.181 𝟏.𝟑×𝟏𝟎!𝟒𝟐
18.4 HTRA1 rs4752699 10:124,234,320 ReprePCWk 0.128 1.000 -0.292 𝟐.𝟏×𝟏𝟎!𝟓𝟏
18.5 HTRA1 rs2672589 10:124,234,988 ReprePCWk 0.653 1.000 0.274 𝟖.𝟗×𝟏𝟎!𝟏𝟖𝟎
19 CDK2/PMEL rs2069389 12:56,359,642 Enh 0.044 0.001 0.042 𝟓.𝟑×𝟏𝟎!𝟐
20 CUX2 rs142641895 12:111,786,202 Het 0.019 0.635 0.249 𝟏.𝟔×𝟏𝟎!𝟗
21 B3GALTL rs9564692 13:31,821,240 Quies 0.288 0.411 -0.056 𝟑.𝟐×𝟏𝟎!𝟏𝟏
22 RAD51B rs2842339 14:68,986,999 TxWk 0.899 0.206 -0.082 𝟑.𝟏×𝟏𝟎!𝟕
23 ALDH1A2 rs2414577 15:58,680,638 Quies 0.366 0.525 -0.067 𝟒.𝟖×𝟏𝟎!𝟏𝟕
24 CETP rs11076175 16:57,006,378 TxWk 0.67 0.203 -0.072 𝟓.𝟎×𝟏𝟎!𝟐𝟏



Signal 
number Reside/nearby gene dbSNPID Chr:Position Anno MAF bfGWAS 

PP 
Effect-size P-value 

25 CTRB2 rs72802342 16:75,234,872 Enh 0.074 0.478 -0.114 𝟐.𝟖×𝟏𝟎!𝟏𝟑
26 SARM1/SLC46A1 rs4795433 17:26,716,821 ReprPCWk 0.524 0.138 0.045 𝟏.𝟔×𝟏𝟎!𝟗
27 NPLOC4 rs8070929 17:79,530,993 Tx 0.378 0.226 0.058 𝟏.𝟏×𝟏𝟎!!𝟐
28.1 FUT6 rs12019136 19:5,835,677 Quies 0.042 0.639 -0.160 𝟑.𝟕×𝟏𝟎!𝟏𝟕
28.2 C3 rs147859257 19:6,718,146 Het 0.008 1.000  0.504 𝟒.𝟑×𝟏𝟎!𝟑𝟏
28.3 C3 rs2230199 19:6,718,387 Het 0.764 0.996 -0.172 𝟏.𝟕×𝟏𝟎!𝟕𝟕
29 CNN2/ABCA7 rs3087680 19:1,038,289 TxFlnk 0.109 0.208  0.072 𝟖.𝟔×𝟏𝟎!𝟗
30 APOE/TOMM40 rs429358 19:45,411,941 ReprPCWk 0.118 1.000 -0.186 𝟑.𝟑×𝟏𝟎!𝟒𝟔
31 MMP9 rs142450006 20:44,614,991 ReprPCWk 0.132 0.251 -0.079 𝟏.𝟒×𝟏𝟎!𝟏𝟏
32 Intergenic rs140611615 20:56,653,111 Quies 0.062 0.080 -0.135 𝟖.𝟐×𝟏𝟎!𝟏𝟖
33 SYN3 rs5754227 22:33,105,817 Quies 0.124 0.896 -0.128 2.0×10!!"

34 SLC16A8/PICK1/ 
BAIAP2L2 rs8135665 22:38,476,276 ReprPC 0.206 0.624 0.066 2.9×10!!"

Variants with Bayesian PPs >0.5 or the highest bfGWAS PPs in the loci are listed in this table. Shown are reside/nearby genes, dbSNPIDs, positions, 
annotations, MAFs (unfolded, corresponding to the direction of effect-sizes), P-values, and Bayesian PPs/effect-sizes. 



Table S12: AMD risk variants by fGWAS in the 34 known loci, accounting for chromatin states profiled with the epigenome of fetal thymus. 

Signal number Reside/Nearby Gene dbSNPID Chr:Position Anno MAF fGWAS 
PP P-value 

1 CFH rs1089033 1:196,666,793 Quies 0.412 1.000 < 9.0×10!!"#
2 COL4A3 rs11884770 2:228,086,920 Quies 0.731 0.731 5.7×10!!
3 ADAMTS9-AS2 rs66793786 3:64,707,880 Quies 0.243 0.050 2.0×10!!
4 COL8A1 rs140647181 3:99,180,668 Quies 0.019 0.307 5.4×10!!"
5 CFI rs10033900 4:110,659,067 Quies 0.506 0.994 7.2×10!!"
6 C9 rs62358361 5:39,327,888 Quies 0.012 0.559 3.1×10!!"
7 PRLR/SPEF2 rs114092250 5:35,494,448 Quies 0.019 0.468 2.5×10!!
8 NELFE/SKIV2L rs116503776 6:31,930,462 Tx 0.120 0.967 2.1×10!!!"
9 VEGFA rs943080 6:43,826,627 Quies 0.518 0.437 2.0×10!!"
10 KMT2E/SRPK2 rs1142 7:104,756,326 Tx 0.357 0.141 1.5×10!!"
11 ZKSCAN1 rs2406255 7:100,053,690 EnhG 0.200 0.026 5.9×10!!"
12 TNFRSF10A rs79037040 8:23,082,971 BivFlnk 0.534 0.998 2.9×10!!"
13 Intergenic rs10781180 9:76,615,662 Quies 0.684 0.068 3.0×10!!"
14 TRPM3 rs71507014 9:73,438,605 Quies 0.584 0.776 3.2×10!!
15 TGFBR1 rs6478972 9:101,869,278 Enh 0.200 0.103 3.5×10!!!
16 ABCA1 rs2740488 9:107,661,742 TxWk 0.266 0.746 1.7×10!!
17 ARHGAP21 rs12357257 10:24,999,593 Quies 0.232 0.269 4.3×10!!
18 ARMS2 rs2672599 10:124,211,875 Quies 0.641 1.000 2.7×10!!"#
19 RDH5/CD63 rs3138136 12:56,117,570 EnhG 0.099 0.001 3.9×10!!
20 MAPKAPK5 rs61941287 12:112,330,305 Tx 0.019 0.205 1.2×10!!"
21 B3GALTL rs9564692 13:31,821,240 Quies 0.288 0.388 3.2×10!!!
22 RAD51B rs11158728 14:68,762,205 Enh 0.640 0.066 1.0×10!!!
23 ALDH1A2 rs2414577 15:58,680,638 Quies 0.366 0.495 4.8×10!!"
24 CETP rs5817082 16:56,997,349 TxWk 0.248 0.254 1.7×10!!"
25 CTRB2 rs72802342 16:75,234,872 Enh 0.073 0.656 2.8×10!!"
26 TNFAIP1/POLDIP2 rs733914 17:26,671,196 EnhG 0.526 0.156 3.5×10!!
27 NPLOC4 rs8070929 17:79,530,993 Tx 0.378 0.221 1.1×10!!"
28 C3 rs2230199 19:6,718,387 Het 0.764 0.992 1.7×10!!!
29 CNN2/ABCA7 rs58369307 19:1,038,290 TxFlnk 0.109 0.369 8.5×10!!
30 APOE/TOMM40 rs429358 19:45,411,941 ReprPCWk 0.118 1.000 3.3×10!!"
31 MMP9 rs1888235 20:44,623,967 Enh 0.133 0.281 1.4×10!!!
32 C20orf85 rs117739907 20:56,652,781 Quies 0.062 0.079 7.8×10!!"
33 SYN3 rs5754227 22:33,105,817 Quies 0.124 0.791 2.0×10!!"
34 SLC16A8/PICK1 rs8135665 22:38,476,276 ReprPC 0.205 0.773 2.9×10!!"

Variants with either the highest fGWAS PP per locus or fGWAS PP > 0.5 are listed (horizontal lines separate loci). Shown are reside/nearby genes, 
dbSNPIDs, positions, functional annotations, MAFs (unfolded, corresponding to the direction of effect-sizes), fGWAS PPs, and P-values. 



 

Table S13: Candidate AMD loci identified by bfGWAS, accounting for chromatin states profiled with the epigenome of fetal thymus.  
 

Locus Reside gene dbSNPID Chr:Position Anno MAF P-value Regional-PP bfGWAS PP Effect-size  
1 HLA-W rs114357644 6:29,924,728 TxWk 0.669 2.3×10!! 0.988 0.877  0.051  
2 CPN1 rs111563092 10:101,808,993 ReprPCWk 0.045 7.2×10!! 0.998 0.171 -0.106  

Variants with the highest bfGWAS PPs in the candidate loci are listed in this table. Shown are reside genes, dbSNPIDs, positions, functional annotations, MAFs, P-
values, Bayesian regional-PPs, and Bayesian PPs/effect-sizes. 
 
 
 
Table S14: Candidate AMD loci identified by fGWAS, accounting for chromatin states profiled with the epigenome of fetal thymus.  

Locus Reside gene dbSNPID Chr:Position   Anno MAF      P-value Regional-PP fGWAS PP Effect-size     1 PPIL3 rs7562391 2:201,736,166 Tx 0.127 6.5×10!! 0.969 0.088 -0.061  
2 Intergenic rs140766203 6:29,883,869 Quies 0.652 8.5×10!!" 0.998 0.044  0.053  
3 CPN1 rs113582392 10:101,804,258 Enh 0.045 1.4×10!! 0.993 0.154 -0.106  
4 ABHD2 rs4932480 15:89,723,858 EnhG 0.501 7.2×10!! 0.971 0.138 -0.043  

Variants with the highest fGWAS PPs in the candidate loci are listed in this table. Shown are reside genes, dbSNPIDs, positions, functional annotations, 
MAFs, P-values, fGWAS regional-PPs, fGWAS PPs, and Bayesian effect-sizes. 
 
 
 
  



 

Table S15: Haplotype analysis in locus C2/CFB/SKIV2L. 
 

Region Haplotype   Haplotype 
Frequency (%) 

 P-value OR (95% CI)   

 
SKIV2L intronic 
(rs116503776) 

CFB missense 
(rs4151667) 

CFB missense 
(rs115270436) 

Cases Controls     
C2/CFB/SKIV2L 1 1 1 1.5×10!! 4.2×10!! 8.9×10!!! 0.364 (0.265,  0.501)   
 1 0 1 0.046 0.085 1.5×10!!" 0.522 (0.490,  0.557)    1 1 0 0.023 0.041 5.0×10!!" 0.561 (0.513,  0.613)   
 0 0 1 8.9×10!! 1.5×10!! 0.024 0.586 (0.375,  0.917)   
 1 0 0 0.018 0.017 0.092 1.102 (0.983,  1.236)   
 0 0 0 0.909 0.850 - Reference Haplotype   
 0 1 0 6.1×10!! 2.8×10!! 0.306 1.840 (0.243, 13.938)   

Considered the haplotype consisting with the top significant intronic variant found by single variant test P-values  (rs116503776 with p-value=2.1×10!!!"), 
the top two significant missense variants (in the ±20KB region around rs116503776) found by bfGWAS (rs4151667 with Bayesian PP=0.903, 
rs115270436 with Bayesian PP= 0.638). 
 

 
 
Table S16: Model comparison.  

Region (C2/CFB/SKIV2L) SKIV2L intronic (rs116503776) & 
PBX2 intronic (rs114254831) 

CFB missense (rs4151667)  & 
SKIV2L missense (rs115270436) Differences (col2-col3) 

 
Akaike information criterion 

(AIC) 
95857.36 95752.63 104.73 

 
Bayesian information 

criterion (BIC) 
 

95891.1 95786.36 104.74 

Log Likelihood 
 -47924.68 -47872.31 -52.37 

Compared the linear regression model with the top two independent significant variants (rs116503776, rs114254831) found by conditional analysis, versus the 
linear regression model with the top two significant variants (rs4151667, rs115270436) found by bfGWAS accounting for gene-based annotations. 
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