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SUPPLEMENTARY METHODS AND RESULTS 

 

EXPERIMENTAL METHODS AND RESULTS 
 

Design and procedure 

The experimental procedure consisted of three phases: familiarization, 

training, and testing.  

Familiarization phase 

Procedure. During the familiarization phase, which lasted about 10 minutes, 

subjects performed a same-different task on either Laura or Susan to familiarize 

themselves with the basic facial forms and their facial movements. Subjects 

performed two blocks of 60 trials, one for each facial identity, in randomized order. 

Each trial began with 0.5 s fixation period in which a fixation cross was centrally 

presented, followed by two 1 s dynamic face stimuli with a 0.1 s fixation period in 

between stimuli to avoid effects of apparent motion. The first stimulus always showed 

one basic facial identity (e.g., Laura’s facial form and motion; Fig. 1B “old off”), 

followed by a second stimulus that was either the same or morphed by a certain 

amount (i.e., 0.05 morph level steps between 0.05 and 1) into the “old” face (e.g., 

Laura’s “old” facial form and motion; Fig. 1B “old on”). The amount of morph level 

was controlled by a Quest staircase procedure (initial threshold: 0.35), which ensured 

that subjects maintained a performance of 70.7% correct on “different” trials. One 

third of the trials were “same” trials. After the second stimulus, subjects had a 

maximum of 3 s to respond “same” or “different” by a button press (left and right 

arrow, respectively). At the end of each trial, subjects received feedback (“correct”, 

“wrong”, or “too late”) shown for 0.3 s on the screen.  

Results. The estimated threshold (i.e., morph level) to detect a change was 

0.30 (IQR: [0.23, 0.37]) for Laura and 0.30 (IQR: [0.26, 0.42]) for Susan. The 

thresholds did not differ between identities (z = −0.76, p > .250, two-sided Wilcoxon 

signed-ranked test). 

 

Training phase 

Procedure. In the training phase, which also lasted about 10 minutes, subjects 

performed an identity discrimination task on the two previously learned identities 

based on form, motion or both cues combined, tested in three separate blocks. Each 
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block contained 40 trials, half of which showed Laura and half Susan. The order of 

form and motion blocks was randomized across subjects, and the combined block was 

always shown last. At the beginning of each block, subjects were informed about the 

type of the block. In form blocks, subjects were asked to discriminate the face stimuli 

solely based on facial form and they were informed that facial motion is 

uninformative (i.e., the average between both facial motions), and vice versa for 

motion blocks. During combined blocks, subjects had to discriminate the face stimuli 

based on facial form and motion. At the beginning of each trial, a short cue (letter 

“F”, “M”, or “C” for form, motion and combined blocks, respectively) was presented 

for 0.3 s to remind subjects of the block type (i.e., the task to perform), followed by a 

0.2 s fixation cross centred on the screen. Following the fixation period, a face 

stimulus was shown for 1 s showing either Laura or Susan with their basic facial form 

(100% facial form, average facial motion), facial motion (100% facial motion, 

average facial form) or both (100% facial form and motion). A response screen 

(“Laura or Susan?”) appeared after the stimulus either until a response was recorded 

(left or right arrow for Laura or Susan, respectively) or until a maximum duration of 2 

s was reached. Subjects could respond during the stimuli presentation (in which case 

the response screen did not appear) or during the presentation of the response screen. 

At the end of each trial, feedback (“correct”, “wrong”, or “too late”) was shown for 

0.5 s on the screen. Note that in the training phase, we only showed the basic face 

stimuli (i.e., 100%) and subjects were never shown any of the intermediate morph 

stimuli or the “old” morphs. 

Results. Subjects could perfectly discriminate the two facial identities based 

on facial form (0.99, [0.98, 1] (median proportion correct, IQR across subjects)), 

facial motion (0.96, [0.93, 0.98]) and both cues (1.0, [1.0, 1.0]). 

 

Testing phase 

During the testing phase, which lasted about 70 minutes, subjects had to 

categorize face stimuli to Laura or Susan based on form, motion or both cues 

combined in separate blocks (Fig. 1C), similar to the training phase. Subjects 

performed five form blocks, five motion blocks and 14 combined blocks in 

randomized order, and were informed about the type at the beginning of each block. 

In contrast to the training phase, intermediate morph levels and “old” morphs were 

shown in addition to the basic face stimuli. Subjects were explicitly told about the 
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occurrence of intermediate and “old” morphs. The trial sequence was the same as for 

the training phase, except that no feedback was provided at the end of a trial. In form 

and motion blocks (Fig. 1A, “Form”, “Motion”), the basic face stimuli (morph levels 

0 and 1), the nine intermediate morph levels (0.2, 0.3, 0.4, 0.45, 0.5, 0.55, 0.6, 0.7, 

0.8), and the “old” morphs at all 11 morph levels were each presented three times for 

a total of 66 trials per block (11 morph levels x 2 old on/off x 3 repetitions).  

Combined blocks contained 22 “congruent” (Fig. 1A, “Comb”) and 44 

“incongruent” trials (Fig. 1A, “Comb, +Δ”, “Comb, −Δ”). On “congruent” trials, a 

common morph level was chosen for form and motion from one of the 11 values 

listed above. Each face stimulus was presented only once, for a total of 22 

“congruent” trials per block (11 morph levels x 2 old on/off). On “incongruent” trials, 

we showed face stimuli that had different morph levels for form and motion: when the 

original morph level was s, the form morph level was s+Δ/2 and the motion morph 

level was s−Δ/2. In “Comb, +Δ” trials, Δ was 0.15, and in “Comb, −Δ” trials, Δ was 

−0.15. To allow for such incongruence also at the lowest and highest morph levels, 

we replaced, only in the “incongruent” trials, the 0 and 1 morph levels by 0.1 and 0.9, 

respectively. Each face stimulus was presented once, yielding 44 “incongruent” trials 

(11 morph levels x 2 old on/off x 2 values of Δ) per block. Note that subjects were not 

aware of the presence of “incongruent” trials. 

 
DERIVATIONS OF MODEL PREDICTIONS 
 
General model structure 

Each model consists of an encoding stage (generative model) and a decision 

stage. In the decision stage, the observer applies a decision rule to determine their 

response, “Laura” or “Susan”. The models that we tested only differ in that decision 

rule. One of the models we test uses an optimal decision rule. Although this model is 

similar to what has been widely used 1,2, the underlying assumptions are worth 

spelling out, especially because we use a binary categorization task, and because the 

derivation needs to be modified for the suboptimal decision rules.  

 

Encoding stage (generative model) 

The generative model describes the task statistics and the observer’s 

measurement noise.  
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Task statistics. Each trial is characterized by a motion morph parameter sm and 

a form morph parameter sf (both between 0 and 1) (Fig. 1A). Furthermore, each trial 

is characterized by the occurrence of “old” (i.e., old on/off) denoted by a categorical 

variable c taking values 0 and 0.35 (Fig. 1B). As described above, the value of 0.35 

was chosen based on preliminary testing during the familiarization phase so that 

subjects clearly perceived the faces as “old” but were still able to discriminate Laura 

from Susan. In “old on” conditions, form was a mix consisting of 0.65 of sf and 0.35 

of sf of the “old” perceptual average. Since the average “old” face consisted of 0.4 

Laura and 0.6 Susan, the sf of the old average face was 0.6. Generally, we denote the 

form stimulus is 0.6c+(1–c)sf, where c=0 in “old off”, and c=0.35 in “old on”. During 

the experiment, three stimulus types are known to the subject: (1) motion-only, where 

sf=0.5, (2) form-only, where sm=0.5, and (3) combined. However, the subject did not 

know that the combined-cue condition was subdivided into congruent trials, when 

sm=sf, and incongruent trials, when sm and sf differed by an amount Δ of 0.15, with 

either sm=sf+Δ (which we call the +Δ condition) or sm= sf–Δ (the –Δ condition).  

Measurement noise. We denote the noisy measurements of each feature by xm 

and xf for motion and form, respectively. We assume that these measurements are 

conditionally independent given sm and sf, and follow Gaussian distributions:   

 

 

p xm, xf sm, sf( ) = p xm sm( ) p xf sf( ),

p xm sm( ) = 1
2πσm

2
e
−
xm−sm( )2

2σm
2

,

p x f s f( ) = 1
2πσ f

2
e
−
xf− 0.6c+ 1−c( )sf⎡⎣ ⎤⎦( )2

2σ f
2

.

      (1) 

Decision stage 

Optimal model. Next, we model the observer’s inference process. The optimal 

model is largely identical to the optimal model in earlier cue combination studies 1,2 . 

However, it is worth spelling out the assumptions; moreover, some details are specific 

to our design. The optimal observer computes the probability of a stimulus s given the 

noisy measurements xm and xf. We make the common assumption that the observer 

acts as if they believe that there is only a single s to be inferred; this is somewhat 

plausible since no subject reported noticing a conflict.  

We denote the likelihood ratio over face category as follows:  



	 6 

 
L Susan( )
L Laura( )

=
p xm, xf Susan( )
p xm, xf Laura( )

=
p xm, xf s( ) p s Susan( )ds∫
p xm, xf s( ) p s Laura( )ds∫

 ,  (2) 

where p(s|Susan) or p(s|Laura) is the probability of s under Susan or Laura, 

respectively. We assume that the observer believes these distributions of s to be 

uniform on a large interval from –a to some category boundary b (Laura) and from 

the same b to a (Susan). Then, 

 

p s Laura( ) =
1

a+ b
  if s < b

0        otherwise

⎧

⎨
⎪

⎩⎪

p s Susan( ) =
1

a− b
  if s > b

0        otherwise

⎧

⎨
⎪

⎩⎪

  

We assume a>>b so that we can make the approximation 

 

p s Laura( ) ≈
1
a

    if s < b

0     otherwise

⎧

⎨
⎪

⎩⎪

p s Susan( ) ≈
1
a

    if s > b

0     otherwise

⎧

⎨
⎪

⎩⎪

  

Then, equation (2) simplifies to 

 
L Susan( )
L Laura( )

=
p xm, xf s( )ds

b

∞

∫

p xm, xf s( )ds
−∞

b

∫
 ,  (3) 

The optimal (accuracy-maximizing) observer would report “Susan” when 

L(Susan)>L(Laura). According to equation (3), this is equivalent to  

 p xm,xf s( )ds > p xm,xf s( )ds
−∞

b

∫
b

∞

∫ , 

or in other words, when the median of the (normalized) likelihood function over s, 

which we define as Ls(s)=p(xm,xf|s), exceeds b. We now introduce the notation 

N(y;µ,σ2) for a normal distribution over y with mean µ and variance σ2. We assume 

that the observer knows c is on any trial. Then, the likelihood function Ls(s) can be 

evaluated as 
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Ls= p xm, xf s( )
    = p xm s( ) p xf s( )
    = N xm;s,σm

2( )N xf ;0.6c+ 1− c( )s,σ f
2( )

    = N s; xm,σm
2( )N 0.6c+ 1− c( )s; xf,σ f

2( )
    = N s; xm,σm

2( )N 1− c( )s; xf − 0.6c,σ f
2( )

   ∝  N s; xm,σm
2( )N s; xf − 0.6c

1− c
, σ f

2

1− c( )2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

   ∝N s;

xm

σm
2 +

1− c( ) xf − 0.6c( )
σ f

2

1
σm

2 +
1− c( )2

σ f
2

, 1
1
σm

2 +
1− c( )2

σ f
2

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

    = N s;
Jmxm + 1− c( )Jf xf − 0.6c( )

Jm + 1− c( )2 Jf

, 1
Jm + 1− c( )2 Jf

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟,

 (4) 

where we used the assumption of conditional independence in going from line 1 to 

line 2, absorbed s-independent factors into the proportionality sign in the second-to-

last line, and introduced notation for precision: Jm ≡
1
σm
2   and Jf ≡

1
σ f
2 . In the special 

case that c=0, the likelihood Ls(s) reduces to the common expression for integrated 

likelihoods 3. 

Since the median of a normal distribution is the same as its mean, the optimal 

decision rule for an observer is to report “Susan” when 

 
Jmxm + 1− c( )Jf xf − 0.6c( )

Jm + 1− c( )2 Jf

 > b .  (5) 

Optimal model with incorrect beliefs. We now consider a variant of the 

optimal model. The optimal observer possesses and utilizes complete knowledge of 

the task structure. However, at least one aspect of this knowledge is rather unrealistic, 

namely the knowledge that the “old” face is a morph between Laura and Susan. 

Human observers might therefore behave as if they do not have this knowledge and 

instead assume that the “old” version of Laura is pure Laura (instead of being 

morphed into the “old” average of Laura and Susan), and the “old” version of Susan 

is pure Susan. Then, the assumed noise distributions will be 
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passumed xm s( )= 1
2πσm

2
e
−
xm−s( )2

2σm
2

passumed xf s( )= 1
2πσ f

2
e
−
xf−s( )2

2σ f
2

  

which corresponds to assuming that c=0 even though in reality it is not. 

As a consequence, the decision rule, equation (5) simplifies to  

 Jmxm + Jfxf

Jm + Jf

> b   (6)  

Best-cue model.

 

In the best-cue model, the observer only relies on the cue with 

the highest J. Thus, the decision rule Eq. (5) gets replaced by 

 
xm  > b   if σm < σ f

xf   > b   if σm > σ f

  (7) 

Simple-average model. In the simple-average model, the observer responds 

“Susan” when 

 xm + xf

2
 > b .  (8) 

	
Experimental predictions 

Finally, we derive experimental predictions for each of the models, based on 

their respective decision rules. To this end, we need the probability that the decision 

rule returns “Susan” for a given experimental condition (which is characterized by sm, 

sf, and c). These probabilities are obtained by integrating over xm and xf under their 

distributions p(xm|sm) and p(xf|sf).  

Optimal model. In the optimal model, the left-hand side of the decision rule is 

normally distributed with mean 
Jmsm + 1− c( )2 Jfsf

Jm + 1− c( )2 Jf

 , and standard deviation 

1

Jm + 1− c( )2 Jf

. Therefore, the probability of responding “Susan” is:  

 

Pr respond "Susan" sm, sf ,c( )= Φ
Jmsm + 1− c( )2 Jfsf − b

Jm + 1− c( )2 Jf

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟   , 
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where Φ  is the conventional notation for the cumulative standard normal distribution 

(in Matlab: normcdf(…,0,1)). Finally, if the subject guesses randomly with 

probability λ, the probability of responding “Susan” becomes 

 Pr respond "Susan" sm, sf ,c,λ( )= λ
2
+ 1−λ( )Φ

Jm sm − b( )+ 1− c( )2 Jf sf − b( )
Jm + 1− c( )2 Jf

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟  (9) 

Optimal model with incorrect beliefs. We follow the same logic as in the 

optimal model, but now with a different decision rule, equation (6). The left-hand side 

of that equation has mean 
Jmsm + Jf 0.6c+ 1− c( )sf( )

Jm + Jf

 and variance 1
Jm + Jf

. Thus, we 

find for the probability of responding “Susan”,  

 Pr respond "Susan" sm, sf ,c,λ( ) = λ2 + 1−λ( )Φ

Jmsm + Jf 0.6c+ 1− c( )sf( )
Jm + Jf

− b

1
Jm + Jf

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 (10) 

Note that we have used the distributions of xm and xf from the generative 

model, equations (1) to derive this expression.  

Best-cue model. The left-hand side of Eq. (7) has mean sm and variance σm
2 if 

σm<σf, and mean 0.6c + (1-c)sf and variance σf
2 if σm>σf. The response probabilities 

are given by 

Pr respond "Susan" sm, sf ,c,λ( ) =

λ
2
+ 1−λ( )Φ sm − b

σm

⎛

⎝
⎜

⎞

⎠
⎟ if σm <σ f

λ
2
+ 1−λ( )Φ

0.6c+ 1− c( )sf − b
σ f

⎛

⎝
⎜

⎞

⎠
⎟ if σm >σ f

⎧

⎨

⎪
⎪

⎩

⎪
⎪

  (11) 

Simple-average model. The left-hand side of Eq. (8) has mean 

sm + 0.6c+ 1− c( )sf
2

and variance 
σ m
2 +σ f

2

4
, and therefore the probability of 

responding “Susan” is 

 Pr respond "Susan" sm, sf ,c,λ( ) = λ2 + 1−λ( )Φ
sm + 0.6c+ 1− c( )sf − 2b

σm
2 +σ f

2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟  .   (12) 
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MODEL FITTING METHODS AND SUPPLEMENTARY RESULTS 
 
Methods 

In any model, the probability of responding “Susan” within a given trial 

depends on the form morph parameters sf (or sf,old in case of “old on”), the motion 

morph parameter sm, and the model parameters. We denote the set of model 

parameters by θ. All models have the same set of parameters: the standard deviations 

σm, σf (σf,old in case of old off), the category boundary b, and a lapse rate λ (i.e., 

accounting for attentional fluctuations, eye blinks, etc.). The log likelihood of a 

specific combination of parameter values (not to be confused with the likelihoods in 

the observer model) is the probability of the observer’s empirical responses given that 

parameter combination and is obtained as 

 

logLmodel θ( ) = log p data stimuli,θ( )

                   = log p response sf,i,sm,i,θ( )
i=1

ntrials

∏

                   = log log p response sf,i,sm,i,θ( ),
i=1

ntrials

∑

  

 

where ntrials is the total number of trials, sf,i and sm,i are the form and motion morph 

parameters on the ith trial, and responsei is the subject’s response on the ith trial. The 

probabilities p(responsei| sf,i, sm,i, θ) are obtained from equation (9), (10), (11) or (12). 

The maximum-likelihood estimates of the parameters are the combination of 

parameters θ that maximize log Lmodel. We fitted the data in the single-cue and 

combined-cue conditions jointly. 

For maximizing the log likelihood, we used the Matlab function fmincon. We 

constrained the σ parameters to the interval (0,10], the category boundary b to [-

10,10], and the lapse rate λ to [0,1]. To minimize the risk that fmincon finds a global 

instead of a local maximum, we ran the function ten times using different initial 

parameters drawn from Gaussian distributions with mean and standard deviation as 

estimated from preliminary testing. The fit that returned the highest log likelihood 

then served to provide the maximum-likelihood estimates of the parameters.  

 

Parameter recovery 
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To test how well our fitting procedure could recover the model parameters, we 

generated 100 synthetic data sets of the same size as a subject data set. To create a 

synthetic data set, we randomly drew the value of each parameter from a normal 

distribution using the median value and the interquartile range obtained from the joint 

fitting as mean and standard deviation. We then simulated trial-to-trial responses from 

the model’s probabilities of responding “Susan” given those parameter values and the 

same stimuli as used in the experiment. Finally, we fitted the model used to generate 

the data. Given that the number of trials is finite, we expect the log likelihood of the 

estimated parameters to be slightly higher than the true parameters. All parameters 

were well recovered (see Fig. S1) and, as predicted, the log likelihoods of the 

estimated parameters were slightly higher than of the true parameters, for the optimal 

(1.82, [1.11, 3.08] (median difference, IQR across subjects); z = −8.68, p < .001, two-

sided Wilcoxon signed-ranked test), the best-cue (1.80, [0.97, 2.49]; z = −8.68, p < 

.001) and the simple-average model (2.06, [1.11, 2.96]; z = −8.68, p < .001).  

 

OPT

σf
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AVG

0
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0.5
0.75

1
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tim

ate
d

0
0.25
0.5
0.75

1
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tim

ate
d

0
0.25
0.5
0.75

1

es
tim

ate
d

true true truetrue
0 0.05 0.1 0.15 0.2

true

σf,old σm b λ

0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
 

Fig. S1. Parameter recovery. The results of the parameter recovery for all five fitted 

parameters (σf, σf,old, σm, b, λ; columns from left to right) for the optimal (OPT; upper 

row), the best-cue (BEST; middle row) and the simple-average model (AVG; lower 

row). Each plot shows the estimated against the true parameter value in 100 synthetic 

data sets. 
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Single-cue fitting 

We fitted all parameters based on the single-cue conditions using maximum-

likelihood estimation. We assumed that the bias b and the lapse rate λ are shared 

across single-cue conditions. The standard deviations σf and σf,old were estimated 

from the form-only condition, σm from the motion-only condition. We implemented 

this fitting using nested fmincon functions in Matlab. We report the parameter 

estimates in Table S1.  

Table S1. Single-cue fitting. Median and IQR across subjects (n = 22) of the 

maximum-likelihood parameter estimates obtained from the single-cue fitting. 

Parameter Median IQR 

σf 0.18 [0.14, 0.30] 

σf,old 0.21 [0.19, 0.27] 

σm 0.23 [0.14, 0.29] 

b 0.51 [0.45, 0.57] 

λ 0.02 [0.00, 0.06] 

 

The “old on” form manipulation reduced form reliability, as confirmed by a 

smaller estimated standard deviation for form in the “old off” than in the “old on” 

condition (-0.03, [-0.06, 0.01] (median difference, IQR)), although only marginally 

significant (z = −1.33, p = .092; one-sided Wilcoxon signed-rank test). To validate 

that the “old on” condition did not affect the motion discriminability, we further fitted 

σm, b and λ in the motion-only condition separately for “old on” and “old off” faces. 

There was no significant difference between estimated standard deviations for “old 

on” and “old off” (0.01, [-0.09, 0.05]; z = −0.60, p > .250, two-sided Wilcoxon 

signed-ranked test). We thus collapsed “old on” and “old off” in the motion-only 

condition for later analyses. 

 

MODEL COMPARISON METHODS AND SUPPLEMENTARY RESULTS 
 
Methods 

For each subject and each model, we calculated the maximum of the 

parameter log likelihood. We used non-parametric Wilcoxon signed-rank tests on 
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these maximum log likelihoods to test for differences between models. In addition, 

we used a random-effects method for Bayesian model selection at the group level 4.  

 

Model recovery 

To validate our model comparison process, we used the same synthetic data 

sets as for the parameter recovery but also fitted the models other than the one used to 

generate the data. For the data sets generated from the optimal model, the best-cue 

model fitted worse by 5.94, [1.58, 10.69] (median difference, IQR across subjects) of 

log likelihood, and the simple-average model by 10.43, [2.96, 20.05]. For the data sets 

generated from the best-cue model, the optimal model fitted worse by 5.68, [1.21, 

10.37] of log likelihood, and the simple-average model by 19.37, [11.98, 31.55]. For 

the data sets generated from the simple-average model, the optimal model fitted worse 

by 5, [0, 13] of log likelihood, and the best-cue model by 14.70, [9.83, 24.14]. We 

further applied the random-effects method 4 to the log likelihoods obtained from 

fitting the synthetic data generated by one model to itself and the two other models. 

The model used to generate the synthetic data always reached a maximal protected 

exceedance probability of 1. This shows that our model comparison process recovers 

the correct model well if the true model is among the three models tested. 

 

OPTIMAL MODEL WITH INCORRECT BELIEFS 
 

We examined whether the optimal model with incorrect beliefs can better 

explain observers’ behaviour than the optimal model. In particular, we fitted the 

parameters for this model using maximum likelihood estimation. The maximum-

likelihood estimates of the parameters were 0.18, [0.15, 0.23] (median, IQR) for σf, 

0.29, [0.21, 0.35] for σf,old, 0.28, [0.21, 0.33] for σm, 0.51, [0.47, 0.56] for b, and 0.04, 

[0.01, 0.05] for λ. Figure S2 shows the fit of the optimal model with incorrect beliefs 

to the psychometric curves.  
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SINGLE-CUE COMBINED-CUE
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Fig. S2. Optimal model with incorrect beliefs. Mean percentage of “Susan” reports 

are shown for single cues (“Form” in blue, “Motion” in green; note that the 

combined-cue condition “Comb” in red is also shown for comparison) and for 

combined cues (“Comb” in red, “Comb, +Δ” in orange, and “Comb, −Δ” in purple), 

each separated for “old off” (first column) and “old on” (second column). Error bars 

and shaded areas represent ± 1 s.e.m. across subjects (n = 22), for data and model fit, 

respectively. 

 

REACTION TIME ANALYSIS 

 
Form and motion cues differ in how the available information develops over 

time (static form information is available from the beginning, while motion 

information evolves over time). To investigate how these inherent properties 

influence subjects’ decision making in our task, subjects could freely choose when to 

make an identity choice, even during the presentation of the stimulus. Recent 

evidence has demonstrated that standard cue-integration models might be insufficient 

to explain cue integration behaviour in reaction-time tasks 5. Thus, we examined 

reaction times in our experiment (Fig. S3). Visual inspection reveals that average 

reaction times depended on experimental condition, morph level and form reliability 

(i.e., old on/off). For all conditions, we can further see the typical inverse “U-shape” 

suggesting larger reaction times for intermediate morph levels than for morph levels 

at the outer bounds. To test for differences in reaction time for the experimental 

conditions, we performed multiple two-way (Condition x Morph level) repeated 

measures ANOVAs. In the single-cue conditions, we found a main effect of Morph 

level (“old off”: F(10,10) = 12.23, p < .001, ηp
2 = .21; “old on”: F(10,10) = 6.49, p < 

.001, ηp
2 = .13) supporting the inverse “U-shape” of reaction times. Furthermore, we 

found a significant effect of condition (“old off”: F(1,10) = 293.93, p < .001, ηp
2 = 
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.39; “old on”: F(1,10) = 128.03, p = .003, ηp
2 = .22). During “old off”, the estimated 

values of the standard deviation parameter for facial form were larger than for facial 

motion (see “Single-cue fitting”) while reaction times were shorter, indicating a 

potential speed-accuracy trade-off. 

Reaction times in the combined-congruent condition (“Comb” in red, left 

panels) significantly differed from those in the facial form condition in “old off” 

(F(1,10) = 5.63, p = .018, ηp
2 = .01) but not in “old on” (F(1,10) = 2.14, p = .145, ηp

2 

= .00). 

Next we analysed both the congruent and incongruent combined conditions. 

We did not consider the most extreme morph levels, as incongruent and congruent 

conditions differed at these morph levels (see Experimental Methods and Results 

above). As for single-cue conditions, we found a main effect of Morph level (“old 

off”: F(8,8) = 36.23, p < .001, ηp
2 = .34; “old on”: F(8,8) = 10.28, p < .001, ηp

2 = .13) 

indicating the inverse “U-shape” of reaction times. In contrast, reaction times did not 

differ between congruent and incongruent combined conditions (“Comb” in red, 

“Comb, +Δ” in orange, “Comb –Δ” in purple; right panels) for either “old off” (F(2,8) 

= 0.56, p > .250, ηp
2 = .00) or “old on” (F(2,8) = 1.01, p > .250, ηp

2 = .00). Thus we 

have no evidence that subjects treated these conditions differently, consistent with 

subjects’ reports during debriefing. 
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Fig. S3. Reaction time analysis. Mean reaction times are shown for single cues 

(“Form” in blue, “Motion” in green; note that the combined-cue condition “Comb” in 

red is also shown for comparison) and for combined cues (“Comb” in red, “Comb, 

+Δ” in orange, and “Comb, −Δ” in purple), each separated for “old off” (first column) 

and “old on” (second column). Error bars represent ± 1 s.e.m. across subjects (n = 

22). 
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