Supplemental Figures

Dissecting the Role of Myeloid and Mesenchymal Fibroblasts in Age-dependent Cardiac Fibrosis

JoAnn Trial¹, Celia Pena Heredia¹, George E. Taffet¹, Mark L. Entman^{1,2}, Katarzyna A. Cieslik^{1*}

¹Division of Cardiovascular Sciences and the DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, Houston, TX and ² Houston Methodist, Houston, TX

*Corresponding Author:

Katarzyna A. Cieslik, PhD Baylor College of Medicine Department of Medicine Division of Cardiovascular Sciences One Baylor Plaza, M.S. BCM620 Houston, Texas 77030 Phone: 713-798-1952 Fax: 713-796- 6471 Supplemental Table 1. Analysis of the heart function in mice of various genetic backgrounds. Aged denotes 21-124 month-old mice. N = 10 mice per aged B6J, aged MCP-1KO, aged B6N group respectively. Data presented as a mean value \pm SEM. * denotes p<0.05 when compared with B6J group.

Indices	Aged B6J	Aged	Aged B6N
		WICF-INU	
Weight [g]	36.327 ± 1.566	44.353 ± 2.755	45.86 ± 1.937
Heart Rate [bpm]	424.672 ± 15.024	417.946 ± 14.222	424.172 ± 20.205
Systolic Parameters			
LVID;d [mm]	4.658 ± 0.089	4.559 ± 0.118	5.146 ± 0.064*
LVPW;d [mm]	0.731 ± 0.028	0.851 ± 0.033*	0.811 ± 0.034
Volume;d [µl]	104.16 ± 4.043	97.282 ± 5.329	130.875 ± 4.555*
Fractional Shortening [%]	24.421 ± 0.787	25.665 ± 0.725	22.251 ± 0.707
Cardiac Output [ml/min]	21.804 ± 0.923	17.644 ± 0.925 [*]	22.127 ± 1.567
Peak Velocity [cm/s]	89.746 ± 4.929	100.933 ± 10.779	105.012 ± 7.749
Diastolic Parameters			
E-Peak Velocity [cm/s]	72.582 ± 2.711	70.824 ± 3.603	71.096 ± 3.720
E/A Peak Velocity Ratio	1.328 ± 0.057	1.416 ± 0.058	1.623 ± 0.124*
Isovolumic Relaxation Time [ms]	20.811 ± 1.173	21.422 ± 1.139	20.275 ± 0.958
IVRT/RR	0.145 ± 0.006	0.148 ± 0.007	0.140 ± 0.006
LAV [µl]	33.386 ± 2.309	37.668 ± 2.221	38.349 ± 2.416
LA/Weight	0.947 ± 0.089	0.889 ± 0.095	0.842 ± 0.048

Supplemental Table 2. Kovacs analysis of Doppler mitral early flow predicts left ventricular diastolic stiffness. Young denotes 3 month-old and aged denotes 21- 24 month-old mice. N = 6, 7, 4, 5 mice per young B6J, aged B6J, aged MCP-1KO, aged B6N group respectively. C denotes damping constant, k - spring constant and x_0 - initial displacement. Data presented as a mean value ± SEM.

Mice	c [g/s]	k [g/s²]	x _o [cm]
Aged B6J	195.15 ± 14.271	10417 ± 534.38	-0.016 ± 0.0012
Aged MCP-1KO	154.64 ± 6.592	8992.7 ± 411.43	-0.017 ± 0.0012
Aged B6N	204.14 ± 14.973	7935.1 ± 800.13	-0.023 ± 0.0036

Supplemental Figure 1. Flow cytometry gating strategy for a myeloid lineage. A, Ungated events. **B**, Cells positive for calcein (alive) and CD45 were selected. Color coded frames point to CD45^{lo}, CD45^{hi} and CD45⁺ (total) populations. **C**, Fixed and permeabilized cells were gated based on their expression of CD45⁺. **D**, Double positive cells (Col1a⁺CD301⁺) on CD45⁺ gated population. To calculate the number of M2a macrophages/myeloid fibroblasts in all non-myocytes we used the following formula: Col1a⁺CD301⁺CD45⁺ (from D) x CD45⁺calcein⁺ (from B) / 100 = % of Col1a⁺CD301⁺CD45⁺ in all non-myocytes. Same strategy was used to calculate number of Col1a⁺CD301⁺CD45^{lo} and Col1a⁺CD301⁺CD45^{hi}. A and B shows alive cells; C and D depict fixed and permeabilized cells.

Supplemental Figure 2. Flow cytometry gating strategy for the mesenchymal lineage. A, Ungated events. B, Cells of non-myeloid origin selected (CD45⁻). C, Gated on CD45⁻ population, CD44⁺calcein⁺ cells are selected. D, Fixed and permeabilized cells gated based on CD45⁻ population. E, Double positive cells (Col1a⁺CD44⁺) analyzed on CD45⁻ gated population. To calculate the number of mesenchymal fibroblasts in all non-myocytes we used the following formula: Col1a⁺CD44⁺CD45⁻ (from E) x CD44⁺calcein⁺CD45⁻ (from B) / 100 = % of Col1a⁺CD44⁺CD45⁻ in all non-myocytes. A, B and C shows alive cells; D and E depict fixed and permeabilized cells.