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SUPPLEMENTARY EXPERIMENTAL PROCEDURES 

 

Antibodies and other reagents 

The antibody against PTPH1 (mouse) was kindly provided by Dr. N. K. Tonks (1). Other 

antibodies used in this study were purchased from Santa Cruz Biotechnology (Santa Cruz, CA). 

These include Anti-GAPDH (sc-47724), anti-β-actin (sc-47778), anti-EGFR (mouse, sc-53274), 

anti- EGFR (rabbit, sc-03) anti-EGFR (goat, sc-03G), anti-p-EGFR/Y1173 (goat, sc-12351), anti-

PTPH1 (goat, sc9789), anti--Actinin (sc-17829), anti-c-Jun (sc-44) and anti-Tubulin (sc-6199). 

Anti-p-EGFR/Y1173 (rabbit, 4407L) was obtained from Cell Signaling and anti-p38 (AF1347) 

was from R&D Systems. The dual EGFR/Her2 inhibitor lapatinib (Lap) and the EGFR inhibitor 

gefitinib (Gef) were obtained Selleckem. Pirfenidone (PFD) for cell culture and animal studies 

was purchased from Sigma and Pirespa (Shionogi & Co.), respectively.  

 

Cell fractionation, immunoprecipitation, immunoblot analysis, and immune-staining 

For cell fractionation analysis, our previously published protocol was used (2,3). For 

immunoprecipitation (IP), equal protein amounts were used for analysis, with aliquots of whole 

cell lysates (WCL) used as input controls. Briefly, cells were washed with cold PBS and lysed in 

modified RIPA buffer (50mM Tris-HCL, pH 7.5, 1mM phenylmethylsulfonyl fluoride, 1mM 

dithiothreitol, 10mM sodium fluoride, 1g/ml aprotinin, 1g/ml leupeptin, 1g/ml pepstatin, and 

1% NP-40) as described (2,3). Cleared lysates were then incubated with the indicated 

antibodies or IgG overnight at 40C. Precipitates were then washed and pellets were re-

suspended in 2X loading buffer. For direct Western blot (WB), cells were directly lysed in 1X 

loading buffer. After heating, samples were separated on SDS-PAGE and the rest of the 

procedure was the same as previously described (4). For immune-staining analysis, cells were 

plated on coverslips and fixed in 3.7% formaldehyde. Cells were then permeabilized in a buffer 

containing 0.5% Triton X-100 and 0.5% NP40, and then incubated with a blocking buffer (PBS 

containing 3% bovine serum) prior to immunostaining. 

 

Primers used for these studies 

shRNA Target Sequences:  

shLuc: GTGCGTTGCTAGTACCAAC;  

shp38#1: CTCATGAAACATGAGAAGCTA; 

shp38#2: GAAGGAGATCATGAAGGTGAC;  

shc-Jun#1:  TTAAGCTGTGCCACCTGTTCC;   

http://www.antibodypedia.com/supplier_details.php?supplier_id=287
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shc-Jun#2:  GGCACAGCTTAAACAGAAAGTC 

shEGFR#1:  GAGAACTCTGAGTGCATACAG 

shEGFR#2:  GCTCTCTTGAGGATCTTGAAG 

 

Primers used in qRT-PCR: 

EGFR rat forward: 5’ CCCACAGCAAGGCTTCTTCA 3’;  

EGFR rat reverse: 5’ CACGGCAGCTCCCATTTCTA 3’;  

EGFR human forward: 5’ CCACCAAATTAGCCTGGACA 3’;   

EGFR human reverse: 5’ CGCGACCCTTAGGTATTCTG 3’;   

GAPDH forward: 5’ GGTGGTCTCCTCTGACTTCAACA 3’;   

GAPDH reverse: 5’ GTTGCTGTAGCCAAATTCGTTGT 3’ 

 

Primers used in the ChIP assay (the EGFR promoter region): 

between -889/-785 containing 2 AP-1 sites,  

EGFR promoter -889/-785 region forward: 5’ AGAGGGTCCCGTAGTGCTG 3’;  

EGFR promoter -889/-785 region reverse: 5’ AGACTGGCCCCTGGCATTTCTCCT 3’ 
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Suppl. Figures 

 

Suppl. Figure S1. Roles of K-Ras mutation and EGFR/Y1173 phosphorylation in 

resistance to TKIs. A. Representative images of colony formation for Figs. 1A/B in K-Ras 

mutant and K-Ras-disrupted sublines (5-9). B. Expression of mutant K-Ras (G12V) in Hke3 

cells confers TKI resistance in Hke3 cells (left, WB and right, relative colony formation over 

DMSO in K-Ras transduced cells, mean + SD, n = 3). C, representative colony images for Fig. 

1E.  

 

Suppl. Figure S2. Roles of c-Jun and EGFR in resistance to TKIs downstream of p38. A-

C. c-Jun and EGFR were stably depleted from cells via lentiviral shRNA infection and 

engineered cells were analyzed for protein expression by WB (A, B), and for colony formation 

(C, mean + SD, n = 3) (10).  

 

Suppl. Figure S3. Nuclear co-localization of p38 and c-Jun in K-Ras mutant cells and 

sensitization of K-Ras mutant cells to TKIs by c-Jun knockdown. A. Immuno-fluorescence 

co-staining was performed as described (4) (scale bar = 100μm). B. Cells were depleted of c-

Jun protein by lentiviral mediated shc-Jun (#1shRNA) delivery and the resultant cells were 

analyzed for growth inhibition by TKIs (the same conditions as Figure 1A). Results of 3 separate 

experiments are shown at left (mean + SD) with representative images of colony formation at 

bottom right. WB results (top, right panel) show c-Jun knockdown by shRNA. 

 

Suppl. Figure S4. p38 and PTPH1 knockdown sensitizes K-Ras mutant cells to TKI-

induced growth inhibition. A, B. Cells were stably depleted of p38 or PTPH1 by lentiviral 

shRNA infection. The resultant cells were assessed for protein expression (left top) and colony 

formation. Results of summarized colony formation are given in the bar graph (Mean + SD, n = 

3) and representative colony images are presented at right.  

 

Suppl. Figure S5. Knockdown of PTPH1 fails to consistently affect the sensitivity of K-

Ras WT cells to TKIs and p38 and PTPH1 collaborate to regulate EGFR expression and 

de-phosphorylation. A, B. PTPH1 stable knockdown cells (from Fig. 5A) were analyzed for 

growth-inhibition by TKIs (the same conditions as in Fig. 1A). Mean + SD of 3 experiments are 

presented in A and representative images of colony formation are shown in B.  
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Suppl. Figure S6. PFD treatment increases the sensitivity of K-Ras mutant cancer cells to 

TKIs and disrupts the EGFR complexes with PTPH1 and p38 proteins in K-Ras mutant 

tumors. A. Cells were treated for about 2 weeks and colonies formed were stained and 

photographed (for Fig. 6A). B. Protein lysates were prepared from tumors growing in nude mice 

treated with PFD + Lap (Fig. 6C), which were then analyzed by WB. Results (left) are from 3 

tumors from 3 separate mice treated with PFD or control DMSO for decreased p38 activity 

(reduced p-PTPH1 levels) (7,8). Equal protein amounts from the indicated tumor lysates were 

immune-precipitated with specific anti-EGFR antibody or control IgG and precipitates were 

analyzed for PTPH1 and p38 by WB. The numbers indicate EGFR-bound PTPH1 or p38 

measured from EGFR precipitates.   
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