
Appendix – Parallel Wright-Fisher Simulation Details 
 
Simulation Initialization 
 
Simulations can be initialized in one of three ways: 1) a blank canvas, 2) from the results 
of a previous simulation, and 3) mutation-selection equilibrium. Starting a simulation as a 
blank canvas provides the most flexibility in what evolutionary state the simulation 
begins and thus any evolutionary scenario can be simulated from the beginning. 
However, as the simulation starts with no mutations present, a “burn-in” time is 
necessary to reach the point where the simulation of the scenario of interest can begin. 
The number of “burn-in” generations may be quite long, particularly to reach any kind of 
equilibrium state where selection, mutation, migration, and drift are all in balance and the 
number of mutations being fixed and lost is equal to the number of new mutations in the 
population(s). To save time, if a starting scenario is shared across multiple simulations, 
then the post-burn-in mutation array can be simulated beforehand, stored, and input as 
the initial mutation array for the next set of simulations. 
 
Another way to jump start the simulation is by assuming all extant populations are in 
mutation-selection balance at the beginning of the simulation. Under general mutation-
selection equilibrium (MSE), the proportion of mutations at every frequency in the 
population can be calculated via numerical integration over a continuous frequency 
diffusion approximation (see Kimura 1964). While this constrains the starting 
evolutionary state to mutation-selection equilibrium, this allows one to then start 
simulating the selection and demographic scenario of interest immediately. Due to 
current limitations of the MSE model in GO Fish, the mutation-selection equilibrium 
scenario does not, as of yet, include migration from other populations or random 
fluctuations in selection intensity – nor can the code calculate the number of generations 
ago a mutation at frequency x is expected to have arisen at. Instead all mutations in the 
initial mutation array said to have arisen at time t = 0. The model is detailed below:  
 
Using the glossary from Table 1, for any given population j at time t = 0: 
 

€ 

µ = µ( j,0), s(x) = s( j,0,x), etc... 
 
From Kimura p. 220-222 (Kimura 1964): 
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1) λµ (x) =
2µL

NeV(x)G(x)
G(y)dy

x
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2)G(x) =
−

2M(x )
V(x )

dx
⌠ 
⌡ 
⎮ e  
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3) V(x) = x(1− x) Ne

where  Ne = 2N (1+ F)
 

 
λµ(x) is the expected (mean) number of mutations at a given frequency, x, in the 
population at mutation-selection equilibrium. V(x) and M(x) are the contribution of drift 
and selection respectively to the rate of change of a mutation’s frequency at frequency y 
in the population. Since this is an allele-based simulation, I use the equilibrium value of 
the effective number of chromosomes, Ne, to account for inbreeding amongst N 
individuals. 
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4a)M(x) =Mdip (x)(1− F) +Mhap (x)F  

€ 

4b)Mhap (x) = s(x)x(1− x) 

€ 

4c)Mdip (x) = s(x) h + (1− 2h)x{ }x(1− x)  
 
The total rate of frequency change is the average of the rate of change of the effective 
haploid proportion of the population and the effective diploid proportion of the population 
weighted by F. 
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5) G(x) =
−

2M(x )
V(x )

⌠ 
⌡ 
⎮ dxe =

−
2Mdip (x )(1−F )+2Mhap (x )F

V(x )
⌠ 

⌡ 
⎮ dxe =

−Nes(x )x 2h+(1−2h )x( )(1−F )+2F{ }e  
 
Substituting eq. 3 and 5 into eq. 1 yields: 
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6) λµ (x) =
2µL

x(1− x)e−Nes(x )x 2h+(1−2h )x( )(1−F )+2F{ }

e−Nes(y )y 2h+(1−2h )y( )(1−F )+2F{ }dy
x

1
∫
e−Nes(y )y 2h+(1−2h )y( )(1−F )+2F{ }dy
0

1
∫

 

 
More familiar versions of eq. 6 can be derived by assuming neutrality or by assuming no 
frequency-dependent selection and either codominance or haploid/completely inbred 
individuals. 
 

€ 

if s(x) = 0 ∀x ∈ 0,1( ) (neutral) → λµ (x) = 2µL x

if s(x) = s ∀x ∈ 0,1( ) and (h = 0.5 or F =1) → λµ (x) =
2µL
x(1− x)

1− e−2Nes(1−x )

1− e−2Nes

where if h = 0.5 (codominant) → Ne = 2N (1+ F)  
where if F =1 (haploid) → Ne = N

 

 
I approximate the integrals in eq. 6 using trapezoidal numerical integration and use the 
scan parallel algorithm implemented in CUB 1.6.4 (Merrill 2016) to accelerate the 
integration on the GPU*. λµ(x) is the expected (mean) number of mutations. To 
determine the actual number of mutations at a given frequency, x, I generate random 
numbers from the Inverse Poisson distribution with mean λµ(x) using the following 
procedure: 
 

I. Random number generator Philox (Salmon et al. 2011) generates a uniform 
random number between 0 and 1. 

II. If λµ(x) ≤ 6, then that uniform variable is fed into the exact Inverse Poisson CDF.  
III. If λµ(x) > 6, then a Normal approximation to the Poisson is used. 

 
Adding all the new mutations at every frequency to the starting mutation array is an 
embarrassingly parallel problem. Thus, combined with the parallel numerical integration 
for the definite integral components of eq. 6, initializing the simulation at mutation-
selection equilibrium is overall greatly accelerated on the GPU relative to serial 
algorithms on the CPU.  
 



*An Aside About Numerical Precision, GPUs, and Numerical Integration: For a bit 
of background, CPUs employ a Floating-point Processor Unit with 80-bits of precision for 
serial floating-point computation, which then quickly translates the result into double-
precision (64-bit) for the CPU registers. Thus, CPU programs, including the serial 
Wright-Fisher simulation, are often written with double-precision performance in mind. In 
contrast, most consumer GPU applications are geared towards single-precision (32-bit) 
computation (e.g. graphics) and many consumer GPUs have relatively poor double-
precision performance. More expensive, professional-grade workstation GPUs often 
have far better double-precision performance than their consumer counterparts. As the 
Wright-Fisher simulation does not actually require 64-bits of precision for its calculations, 
GO Fish has been written with 32-bits of precision computation in mind. This is even true 
of the MSE Integration step where the naturally pair-wise summation of parallel scanning 
mitigates the round-off error when performing large numbers of consecutive sums in 32-
bit (Higham 1993). That said, the mutation frequencies stored in the simulation have only 
single-precision floating-point accuracy. Experiments using CPU serial Wright-Fisher 
simulations showed consistent results between storing mutation frequencies with 32-bits 
vs. 64-bits of precision. 
 
Steps to Calculate New Allele Frequencies 
 
Migration, selection, and drift determine the frequency of an allele in the next generation, 
xt+1, based on its current frequency, xt. Migration and selection are deterministic forces 
whereas drift introduces binomial random chance. While these three steps can, in 
principle, be done in any order, their order in the simulation is as follows: 
 

I. Migration  
II. Selection (with Inbreeding) 

III. Drift (with Inbreeding) 
 

€ 

xt, j
I.⎯ → ⎯ xmig

II.⎯ → ⎯ xmig, sel
III.⎯ → ⎯ xmig, sel, drift = xt+1, j  

 
I. Migration 
 
Using the glossary from Table 1, in population j at time t: 
 

€ 

m(k) = m(k, j, t),
xt,k ≡  freq. of allele in pop. k at time t,
xmig = xmig, j ≡  freq. of allele in pop. j after migration,

 

 

€ 

7) xmig = m(k)xt,k
k
∑

where m( j) =1− m(k)
k≠ j
∑

 

GO Fish uses a conservative model of migration (Nagylaki 1980). The new allele 
frequency in population j is the average of the allele frequency in all the populations 
weighted by the migration rate from each population, to population j. And the migration 
rate is specified by the proportion of chromosomes from population k in population j. 
 



II. Selection (with Inbreeding) 
 
In population j at time t: 
 

€ 

xmig = xmig, j ≡ freq. of allele after migration, ymig =1− xmig ,
xmig, sel = xmig, sel, j ≡ freq. of allele after migration and selection,
PAA ,PAa ,Paa ≡ frequency of genotype AA,  Aa,  and aa,
s(x) = s( j, t,x), h = h( j,t),    
w = w j ≡  average pop. j fitness, n = n j ≡  average pop. j fitness of allele A

 

 
selection model  

PAA PAa Paa 
1+s(x) 1+hs(x) 1 
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8) n = PAA 1+ s(xmig )( ) + PAa 1+ h s(xmig )( ) 2
9) w = PAA 1+ s(xmig )( ) + PAa 1+ h s(xmig )( ) + Paa
10) xmig, sel = n w

 

 
Like with M(x) in eq. 4, w and n are a weighted average of the effective haploid (inbred) 
and diploid (outbred) portions of the chromosome population. Diploid genotype 
frequencies assume random mating and Hardy-Weinberg equilibrium (Hardy 1908, 
Weinberg 1908). 
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11a) w = wdip (1− F) + whapF

11b) wdip = xmig
2 1+ s(xmig )( ) + 2xmig ymig 1+ h s(xmig )( ) + ymig

2

11c) whap = xmig 1+ s(xmig )( ) + ymig
11d) w = xmig

2 s(xmig ) + xmig (1− xmig )s(xmig )(F + 2h − 2hF) +1

 

 
Following the same logic as above: 
 

€ 

12a) n = ndip (1− F) + nhapF

12b) n = xmig
2 s(xmig ) + xmig (1− xmig )s(xmig )(F + h − hF) + xmig

 

 
Substituting eq. 11d and 12b into eq. 10 yields: 
 

€ 

13) xmig, sel =
xmig
2 s(xmig ) + xmig (1− xmig )s(xmig )(F + h − hF) + xmig
xmig
2 s(xmig ) + xmig (1− xmig )s(xmig )(F + 2h − 2hF) +1

 

 
Again, like for eq. 6, more familiar forms of eq. 13 may be derived under certain 
assumptions such as neutrality, haploid/inbred individuals, and completely outbred 
diploids. 



 

€ 

if s(xmig ) = 0∀x ∈ 0,1( ) (neutral) → xmig, sel = xmig

if F =1 (haploid) → xmig, sel =
xmig s(xmig ) + xmig
xmig s(xmig ) +1

if F = 0 (diploid) → xmig, sel =
xmig

2 s(xmig )(1− h) + xmig (h s(xmig ) +1)
xmig

2 s(xmig )(1− 2h) + 2xmigh s(xmig ) +1

 

 
III. Drift (with Inbreeding) 
 
For population j in generation t: 
 

€ 

xt, j
I.⎯ → ⎯ xmig

II.⎯ → ⎯ xmig, sel
III.⎯ → ⎯ xmig, sel, drift = xt+1, j  

 
The variable xmig,sel represents the expected frequency of the allele in generation t+1. 
Drift is the random deviation of the actual frequency of the allele from this expectation. 
To determine the actual frequency of the allele in the next generation, xt+1,j, I generate 
random numbers from the Inverse Binomial distribution with mean Nexmig,sel and variance 
Nexmig,sel(1-xmig,sel) using the following procedure: 
 

I. Random number generator Philox (Salmon et al. 2011) generates a uniform 
random number between 0 and 1. 

II. If Nexmig,sel ≤ 6, then that uniform variable is fed into the exact Inverse Poisson CDF 
as an approximation to the Binomial.  

III. If Nexmig,sel > 6, then a Normal approximation to the Binomial is used. 
 
As Ne = 2N/(1+F), inbreeding affects drift as well as selection.  
 
Adding New Mutations 
 
Using the glossary from Table 1, for population j in generation t: 
 

€ 

µ = µ( j, t), Ne = 2N( j,t) (1+ F) 
 

€ 

14) λµ = NeµL
starting frequency, x =1 Ne

 

 
The Poisson Random Field shares an important assumption with Watterson’s infinite 
sites model in that regardless of how many sites are currently polymorphic, mutations 
will never strike a currently polymorphic site and the number of monomorphic sites that a 
mutation can occur at is always the total number of sites, L (Watterson 1975, Sawyer 
and Hartl 1992). Eq. 14 defines the expected number of mutations in population j for 
generation t+1. The actual number of new mutations is drawn from the Inverse Poisson 
distribution using the same procedure detailed in Simulation Initialization. New mutations 
can be added to generation t+1 in parallel and simultaneously with the new frequency 



calculations. Each new mutation is given a 4-part unique ID consisting of the thread and 
compute device that birthed it (if more than one graphics card is used) as well as the 
generation and population in which it first arose.  
 
Compact 
 
The general compact algorithm is outlined in Figure 2C). GO Fish’s version uses a more 
advanced variant to speed up compaction and lower its memory requirement as 
discussed in (Billeter et al. 2009) and adapted from (Bakunas-Milanowski et al. 2015). 
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