
Appendix – Parallel Wright-Fisher Simulation Details

Simulation Initialization

Simulations can be initialized in one of three ways: 1) a blank canvas, 2) from the results
of a previous simulation, and 3) mutation-selection equilibrium. Starting a simulation as a
blank canvas provides the most flexibility in what evolutionary state the simulation
begins and thus any evolutionary scenario can be simulated from the beginning.
However, as the simulation starts with no mutations present, a “burn-in” time is
necessary to reach the point where the simulation of the scenario of interest can begin.
The number of “burn-in” generations may be quite long, particularly to reach any kind of
equilibrium state where selection, mutation, migration, and drift are all in balance and the
number of mutations being fixed and lost is equal to the number of new mutations in the
population(s). To save time, if a starting scenario is shared across multiple simulations,
then the post-burn-in mutation array can be simulated beforehand, stored, and input as
the initial mutation array for the next set of simulations.

Another way to jump start the simulation is by assuming all extant populations are in
mutation-selection balance at the beginning of the simulation. Under general mutation-
selection equilibrium (MSE), the proportion of mutations at every frequency in the
population can be calculated via numerical integration over a continuous frequency
diffusion approximation (see Kimura 1964). While this constrains the starting
evolutionary state to mutation-selection equilibrium, this allows one to then start
simulating the selection and demographic scenario of interest immediately. Due to
current limitations of the MSE model in GO Fish, the mutation-selection equilibrium
scenario does not, as of yet, include migration from other populations or random
fluctuations in selection intensity – nor can the code calculate the number of generations
ago a mutation at frequency x is expected to have arisen at. Instead all mutations in the
initial mutation array said to have arisen at time t = 0. The model is detailed below:

Using the glossary from Table 1, for any given population j at time t = 0:

€

µ = µ(j,0), s(x) = s(j,0,x), etc...

From Kimura p. 220-222 (Kimura 1964):

€

1) λµ (x) =
2µL

NeV(x)G(x)
G(y)dy

x

1
∫
G(y)dy
0

1
∫

€

2)G(x) =
−

2M(x)
V(x)

dx
⌠
⌡
⎮ e

€

3) V(x) = x(1− x) Ne

where Ne = 2N (1+ F)

λµ(x) is the expected (mean) number of mutations at a given frequency, x, in the
population at mutation-selection equilibrium. V(x) and M(x) are the contribution of drift
and selection respectively to the rate of change of a mutation’s frequency at frequency y
in the population. Since this is an allele-based simulation, I use the equilibrium value of
the effective number of chromosomes, Ne, to account for inbreeding amongst N
individuals.

€

4a)M(x) =Mdip (x)(1− F) +Mhap (x)F

€

4b)Mhap (x) = s(x)x(1− x)

€

4c)Mdip (x) = s(x) h + (1− 2h)x{ }x(1− x)

The total rate of frequency change is the average of the rate of change of the effective
haploid proportion of the population and the effective diploid proportion of the population
weighted by F.

€

5) G(x) =
−

2M(x)
V(x)

⌠
⌡
⎮ dxe =

−
2Mdip (x)(1−F)+2Mhap (x)F

V(x)
⌠

⌡
⎮ dxe =

−Nes(x)x 2h+(1−2h)x()(1−F)+2F{ }e

Substituting eq. 3 and 5 into eq. 1 yields:

€

6) λµ (x) =
2µL

x(1− x)e−Nes(x)x 2h+(1−2h)x()(1−F)+2F{ }

e−Nes(y)y 2h+(1−2h)y()(1−F)+2F{ }dy
x

1
∫
e−Nes(y)y 2h+(1−2h)y()(1−F)+2F{ }dy
0

1
∫

More familiar versions of eq. 6 can be derived by assuming neutrality or by assuming no
frequency-dependent selection and either codominance or haploid/completely inbred
individuals.

€

if s(x) = 0 ∀x ∈ 0,1() (neutral) → λµ (x) = 2µL x

if s(x) = s ∀x ∈ 0,1() and (h = 0.5 or F =1) → λµ (x) =
2µL
x(1− x)

1− e−2Nes(1−x)

1− e−2Nes

where if h = 0.5 (codominant) → Ne = 2N (1+ F)
where if F =1 (haploid) → Ne = N

I approximate the integrals in eq. 6 using trapezoidal numerical integration and use the
scan parallel algorithm implemented in CUB 1.6.4 (Merrill 2016) to accelerate the
integration on the GPU*. λµ(x) is the expected (mean) number of mutations. To
determine the actual number of mutations at a given frequency, x, I generate random
numbers from the Inverse Poisson distribution with mean λµ(x) using the following
procedure:

I. Random number generator Philox (Salmon et al. 2011) generates a uniform
random number between 0 and 1.

II. If λµ(x) ≤ 6, then that uniform variable is fed into the exact Inverse Poisson CDF.
III. If λµ(x) > 6, then a Normal approximation to the Poisson is used.

Adding all the new mutations at every frequency to the starting mutation array is an
embarrassingly parallel problem. Thus, combined with the parallel numerical integration
for the definite integral components of eq. 6, initializing the simulation at mutation-
selection equilibrium is overall greatly accelerated on the GPU relative to serial
algorithms on the CPU.

*An Aside About Numerical Precision, GPUs, and Numerical Integration: For a bit
of background, CPUs employ a Floating-point Processor Unit with 80-bits of precision for
serial floating-point computation, which then quickly translates the result into double-
precision (64-bit) for the CPU registers. Thus, CPU programs, including the serial
Wright-Fisher simulation, are often written with double-precision performance in mind. In
contrast, most consumer GPU applications are geared towards single-precision (32-bit)
computation (e.g. graphics) and many consumer GPUs have relatively poor double-
precision performance. More expensive, professional-grade workstation GPUs often
have far better double-precision performance than their consumer counterparts. As the
Wright-Fisher simulation does not actually require 64-bits of precision for its calculations,
GO Fish has been written with 32-bits of precision computation in mind. This is even true
of the MSE Integration step where the naturally pair-wise summation of parallel scanning
mitigates the round-off error when performing large numbers of consecutive sums in 32-
bit (Higham 1993). That said, the mutation frequencies stored in the simulation have only
single-precision floating-point accuracy. Experiments using CPU serial Wright-Fisher
simulations showed consistent results between storing mutation frequencies with 32-bits
vs. 64-bits of precision.

Steps to Calculate New Allele Frequencies

Migration, selection, and drift determine the frequency of an allele in the next generation,
xt+1, based on its current frequency, xt. Migration and selection are deterministic forces
whereas drift introduces binomial random chance. While these three steps can, in
principle, be done in any order, their order in the simulation is as follows:

I. Migration
II. Selection (with Inbreeding)

III. Drift (with Inbreeding)

€

xt, j
I.⎯ → ⎯ xmig

II.⎯ → ⎯ xmig, sel
III.⎯ → ⎯ xmig, sel, drift = xt+1, j

I. Migration

Using the glossary from Table 1, in population j at time t:

€

m(k) = m(k, j, t),
xt,k ≡ freq. of allele in pop. k at time t,
xmig = xmig, j ≡ freq. of allele in pop. j after migration,

€

7) xmig = m(k)xt,k
k
∑

where m(j) =1− m(k)
k≠ j
∑

GO Fish uses a conservative model of migration (Nagylaki 1980). The new allele
frequency in population j is the average of the allele frequency in all the populations
weighted by the migration rate from each population, to population j. And the migration
rate is specified by the proportion of chromosomes from population k in population j.

II. Selection (with Inbreeding)

In population j at time t:

€

xmig = xmig, j ≡ freq. of allele after migration, ymig =1− xmig ,
xmig, sel = xmig, sel, j ≡ freq. of allele after migration and selection,
PAA ,PAa ,Paa ≡ frequency of genotype AA, Aa, and aa,
s(x) = s(j, t,x), h = h(j,t),
w = w j ≡ average pop. j fitness, n = n j ≡ average pop. j fitness of allele A

selection model

PAA PAa Paa
1+s(x) 1+hs(x) 1

€

8) n = PAA 1+ s(xmig)() + PAa 1+ h s(xmig)() 2
9) w = PAA 1+ s(xmig)() + PAa 1+ h s(xmig)() + Paa
10) xmig, sel = n w

Like with M(x) in eq. 4, w and n are a weighted average of the effective haploid (inbred)
and diploid (outbred) portions of the chromosome population. Diploid genotype
frequencies assume random mating and Hardy-Weinberg equilibrium (Hardy 1908,
Weinberg 1908).

€

11a) w = wdip (1− F) + whapF

11b) wdip = xmig
2 1+ s(xmig)() + 2xmig ymig 1+ h s(xmig)() + ymig

2

11c) whap = xmig 1+ s(xmig)() + ymig
11d) w = xmig

2 s(xmig) + xmig (1− xmig)s(xmig)(F + 2h − 2hF) +1

Following the same logic as above:

€

12a) n = ndip (1− F) + nhapF

12b) n = xmig
2 s(xmig) + xmig (1− xmig)s(xmig)(F + h − hF) + xmig

Substituting eq. 11d and 12b into eq. 10 yields:

€

13) xmig, sel =
xmig
2 s(xmig) + xmig (1− xmig)s(xmig)(F + h − hF) + xmig
xmig
2 s(xmig) + xmig (1− xmig)s(xmig)(F + 2h − 2hF) +1

Again, like for eq. 6, more familiar forms of eq. 13 may be derived under certain
assumptions such as neutrality, haploid/inbred individuals, and completely outbred
diploids.

€

if s(xmig) = 0∀x ∈ 0,1() (neutral) → xmig, sel = xmig

if F =1 (haploid) → xmig, sel =
xmig s(xmig) + xmig
xmig s(xmig) +1

if F = 0 (diploid) → xmig, sel =
xmig

2 s(xmig)(1− h) + xmig (h s(xmig) +1)
xmig

2 s(xmig)(1− 2h) + 2xmigh s(xmig) +1

III. Drift (with Inbreeding)

For population j in generation t:

€

xt, j
I.⎯ → ⎯ xmig

II.⎯ → ⎯ xmig, sel
III.⎯ → ⎯ xmig, sel, drift = xt+1, j

The variable xmig,sel represents the expected frequency of the allele in generation t+1.
Drift is the random deviation of the actual frequency of the allele from this expectation.
To determine the actual frequency of the allele in the next generation, xt+1,j, I generate
random numbers from the Inverse Binomial distribution with mean Nexmig,sel and variance
Nexmig,sel(1-xmig,sel) using the following procedure:

I. Random number generator Philox (Salmon et al. 2011) generates a uniform
random number between 0 and 1.

II. If Nexmig,sel ≤ 6, then that uniform variable is fed into the exact Inverse Poisson CDF
as an approximation to the Binomial.

III. If Nexmig,sel > 6, then a Normal approximation to the Binomial is used.

As Ne = 2N/(1+F), inbreeding affects drift as well as selection.

Adding New Mutations

Using the glossary from Table 1, for population j in generation t:

€

µ = µ(j, t), Ne = 2N(j,t) (1+ F)

€

14) λµ = NeµL
starting frequency, x =1 Ne

The Poisson Random Field shares an important assumption with Watterson’s infinite
sites model in that regardless of how many sites are currently polymorphic, mutations
will never strike a currently polymorphic site and the number of monomorphic sites that a
mutation can occur at is always the total number of sites, L (Watterson 1975, Sawyer
and Hartl 1992). Eq. 14 defines the expected number of mutations in population j for
generation t+1. The actual number of new mutations is drawn from the Inverse Poisson
distribution using the same procedure detailed in Simulation Initialization. New mutations
can be added to generation t+1 in parallel and simultaneously with the new frequency

calculations. Each new mutation is given a 4-part unique ID consisting of the thread and
compute device that birthed it (if more than one graphics card is used) as well as the
generation and population in which it first arose.

Compact

The general compact algorithm is outlined in Figure 2C). GO Fish’s version uses a more
advanced variant to speed up compaction and lower its memory requirement as
discussed in (Billeter et al. 2009) and adapted from (Bakunas-Milanowski et al. 2015).

References

Bakunas-Milanowski D, Rego V, Sang J, Yu C. (2015) A fast parallel selection algorithm
on GPUs. IEEE 2015 International Conference on Computational Science and
Computational Intelligence (CSCI): 609-614.

Billeter M, Olsson O, Assarsson U. (2009) Efficient stream compaction on wide SIMD
many-core architectures. ACM Proceedings of the conference on high performance
graphics 2009: 159-166.

Hardy GH. (1908) Mendelian proportions in a mixed population. Science 28(706): 49-50.

Higham NJ. (1993) The accuracy of floating point summation. SIAM Journal on Scientific
Computing 14(4): 783-799.

Kimura M. (1964) Diffusion models in population genetics. J. Appl. Prob. 1(2): 177-232.

Merrill D. (2016) CUB. v. 1.6.4 [ONLINE] Available at: https://nvlabs.github.io/cub/.
Accessed on Aug. 12, 2017.

Nagylaki T. (1980) The strong-migration limit in geographically structured populations. J.
Math. Biol. 9(2): 101-114.

Salmon JK, Moraes M, Dror RO, Shaw DE. (2011) Parallel random numbers: As easy as
1, 2, 3. IEEE High Performance Computing, Networking, Storage and Analysis (SC),
2011 International Conference for: 1-12.

Sawyer SA, Hartl DL. (1992) Population genetics of polymorphism and divergence.
Genetics 132(4): 1161-1176.

Watterson G. (1975) On the number of segregating sites in genetical models without
recombination. Theor. Popul. Biol. 7(2): 256-276.

Weinberg W. (1908) Über den nachweis der vererbung beim menschen. Jahresh Wuertt
Ver Vaterl Natkd 64: 369-382.

