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I. INFERENCE OF PEPTIDOFORMS

IPF is implemented in C++ and Python in the OpenSWATH1 TOPP2 applications as

part of OpenMS3 and PyProphet4 and distributed under the Modified BSD License. It con-

sists of three main components that support sequential steps of the methods (see Figure S1):

A. Step 1: Query parameter generation

The purpose of this step is the generation of spectral libraries representing different

peptidoforms that are subsequently used to query SWATH-MS or DIA data sets. The input

for this step are spectral libraries or transition lists assigned to peptidoforms at low to

high confidence. A low confidence spectrum library can for example be generated by open

modification searching of DDA or DIA data. Alternatively, low confidence transition lists

could be derived from the unmodified peptidoform or entirely in silico based on a hypothe-

sis. Spectral libraries of medium or high confidence sequence assignments could originate

from database search with selected modification types and optional site-localization

post-processing5. The ideal strategy should be selected based on the research question and

availability of suitable data sets, e.g. acquired by DDA mass spectrometry of PTM enriched

samples, with tradeoffs regarding the comprehensiveness and sample representation. Based

on the input, the algorithm generates spectral libraries in TraML6 format consisting of two

different transition types, detection transitions and identification transitions.

Detection transitions are used to detect candidate peptide signals (peak groups) at the

MS2-level as described before for targeted analysis of DIA data sets1,7. They consist of

precursor and product ion m/z values from spectral libraries, the reference relative library

intensities and reference normalized retention time for target chromatogram extraction,

peak group detection and scoring using OpenSWATH1. These transitions are commonly

only peptide sequence-specific8, but with specific transitions, they can favor the detection

of matching peptidoforms9,10. For this reason, multiple peptidoforms in the input spectral

libraries will be represented by multiple independent sets of peptide query parameters.

Identification transitions are generated in silico by the algorithm. Taking into account
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Figure S1: IPF analysis workflow overview. a) Query parameter generation: Based on

a discovery proteomics workflow (DDA or DIA), peptide query parameters consisting of

detection and identification transitions for all peptidoforms are generated. b) Signal

processing: Using a two-tier scoring approach, the detection and identification transitions

are extracted from the SWATH maps. The detection transitions are used to find candidate

peak groups against which the identification transitions are scored. The two-tier scoring

estimates posterior probabilities (PPs) for the candidate peak groups using the detection

transitions. In the step on transition-level, the PPs that individual identification

transitions are originating from the peak group associated peptide are estimated.
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Figure S1: c) Statistical inference: A Bayesian hierarchical model (BHM) integrates the

transition PPs according to residue specificity to peptidoform PPs. In addition to the

peptidoforms, the PP that the signal is a false positive (h0) is being updated. In data sets

with large precursor isolation windows, the BHM is extended by an intermediate layer to

adjust the probabilities using precursor data on MS1 and MS2-level data (see Methods).

either the precursor m/z error tolerance on the MS1-level or the swath acquisition setup on

the MS2-level and modification type residue specificity (default: UniMod & PSI-MOD), the

peptide query parameter generation step will consider in an unbiased manner all potential

peptidoforms and site-localizations for each set of peptide query parameters that fall within

the same precursor isolation window. Importantly, for these peptidoforms, all theoretical

fragment ion spectra are generated and the resulting product ions are annotated with

their associated peptidoforms. In an analogous manner the algorithm generates decoy

identification transitions, which are not used as null distribution for peak group detection,

but for the assessment of individual identification transition confidence in the second step

of peptidoform inference (see below). Additionally, the unfragmented precursor ion m/z

values can be used and added as identification transitions to support precursor detection in

setups with large precursor isolation windows.

The output of this step is a hybrid spectral library, consisting of the different transition

types, annotated with their specific scoring attributes (detection and/or identification, target

or decoy) that can be automatically extracted, scored and integrated to peptidoforms by

the downstream algorithms.

B. Step 2: Signal processing

The purpose of this step is to query and score the targeted peptides from the raw

SWATH-MS data. In DIA mode, the most important parameters to adjust for peptido-

form specificity and sensitivity is the precursor isolation window width and the optional

MS1 acquisition or dwell times. A signal detection and extraction algorithm (Figure S2)

is applied to the input DIA data to score the ion chromatograms on the MS1- and MS2-levels.
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Prior to peak picking and scoring, all ion chromatograms according to the spectral

library are extracted. To boost detectability of the candidate peak groups, for peak picking

and the first scoring tier, only the (previously empirically-observed) detection transitions

are considered. This step is as previously described1. In the second scoring tier, scores1,7

are computed for each individual identification transition characterizing co-elution and

shape-similarity against the detection transitions. Additional scoring values generated

include signal-to-noise, mass deviation, isotope overlap and isotope correlation between

observed and expected fragment ion m/z (see Methods). In addition, precursor ion

chromatograms are extracted from the MS1 and MS2 maps according to the peptide query

parameters11. The precursor chromatograms are scored against the detection transitions

using the mProphet and OpenSWATH peak shape, coelution and mass accuracy scores1,7.

The output of this step are the scores for candidate peak groups and their identification

transition and precursor chromatograms.

C. Step 3: Statistical inference and error-rate control

The purpose of this step is to infer the set of correctly identified peptidoforms at a

particular q-value or FDR. This is accomplished by processing the scored MS1-, MS2-

and transition-level candidate peptide signals by a multi-level, semi-supervised learning

algorithm, followed by peptidoform inference employing a Bayesian hierarchical model

(Figure S1).

Semi-supervised learning: On the MS1, MS2 and transition level, respectively, the set of

scores is combined to a single discriminant score by a semi-supervised learning algorithm

that uses decoy peak groups or transitions as negative and the best scoring target peak

groups or transitions as positive set1,7,12. The distributions on MS1, MS2 or transition-level

scores have properties reflecting their different signal quality and strength (Figure S2):

On the MS1-level, the ratio of false targets versus true targets is commonly higher than

on MS2-level, since the signal is less discriminative. On the transition-level, usually a

larger fraction of false target transitions is included that are caused by the extraction
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Figure S2: Discriminant score histograms on MS1-, MS2- and transition-levels

used for multi-tier scoring on the synthetic phosphopeptide reference data set.

Instead of assuming a normal distribution for false targets and decoys, a non-parametric

model is used on all levels. a) On MS1-level, only a small fraction of the targets can be

detected with confidence. b) MS2-level feature detection enables more sensitive peak

group detection than the MS2-guided MS1 scoring. c) Only a small fraction of the target

transitions can be detected by the transition scoring after MS2 scoring (peptide query

FDR 1%) because the number of theoretical transitions exceeds by far the number of

detectable fragment ions.
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of in silico transitions which have a lower likelihood of being detectable than previously

empirically observed detection transitions. On all levels, independent q-values and posterior

error probabilities for the candidate peak group and transition signals are estimated, using

non-parametrical methods13,14.

Bayesian hierarchical modeling: In this step, the posterior probabilities (PP) are used by

a Bayesian hierarchical model (BHM) to propagate the confidence of detection from peak

group- and transition- to the precursor and peptidoform-levels. A first Bayesian model is

applied to integrate the confidence from the (peptide sequence-specific) peak group-level

and the precursor signals on MS1 and MS2-levels. This updates the peak group-level

posterior probability to the precursor-level. Second, the priors for each peptidoform based

on the user-specified model for modification residue specificity (e.g. STY residue specificity

for phosphorylation and -98 neutral losses) and the precursor-level PP are used and updated

using the detection confidence from the identification transitions. Especially for complex

peptidoforms (e.g. when carrying multiple modifications or modifiable residues), not many

unique ion signature (UIS)15 (also referred to as diagnostic or site-determining) transitions

are detectable. The BHM also makes use of the shared transitions and will attribute them

to the corresponding peptidoforms, enabling partial site-localizations in ambiguous cases.

The resulting local false discovery rate (local fdr) is identical to the posterior error prob-

ability and enables direct interpretation of the confidence for each peptidoform16. For large-

scale experiments, the error rate is commonly controlled using q-values or the global false

discovery rate (global FDR). IPF provides both metrics, which can also be used for transfer

of identification confidence using downstream tools for targeted proteomics like the between-

measurement alignment tool TRIC17.
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II. ALGORITHMIC METHODS

A. Query parameter generation

The main workflow of peptide query parameter generation closely resembles previous

approaches1,18: First, a standard shotgun database search19,20, error-rate control21,22 and

spectral library generation including consensus summarization of peptide spectra23 and RT

normalization24 is conducted. Based on these results, OpenSwathAssayGenerator selects

transitions according to a set of rules18:

Rules for selection of detection transitions:

1. Select empirically observed fragment ion classes and allowed charge states (default: y,

b; 1+ to 4+), with or without neutral losses (default: without).

2. Filter to include only transitions where product m/z does not overlap with the target

SWATH-MS acquisition scheme precursor isolation window.

3. Select N most intense fragment ions (default: N = 6).

4. Require at least M valid fragment ions to include peptide query parameters in library

(default: M = 6).

Peptide query parameters consisting of transitions for detection of peak group candidates

generated according to the algorithm have been shown to be peptide sequence specific even

in complex proteomes8 and portable between different instrument types25 and LC setups24.

Using only a selection of empirically observed intense transitions has the benefit to increase

the signal-to-noise characteristics of the mProphet and OpenSWATH scores1,7, but does

not enable specificity on peptidoform-level.

For this reason, the IPF tool OpenSwathAssayGenerator enables generation of additional

identification transitions that are appended to the standard transitions but are treated

differently than the detection transitions by the signal processing module (see below).

Identification transitions are generated completely in silico according to the following

algorithm:
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Rules for generation of identification transitions:

1. Generate target transition map: For all sets of peptide query parameters of the same

stripped (“naked”) peptide sequence that fall into the same precursor isolation win-

dow (MS1 or swath window), compute all theoretical fragment ions (including the un-

fragmented precursor ion) according to selected ion classes and allowed charge states

(Figure S1a). Further, according to the specified model of modification residue speci-

ficity (OpenMS; default: Unimod & PSI-MOD), all theoretical combinations of PTMs

are computed using for each modification type the binomial coefficient indexed by n

modifiable residues (including C/N-terminal modifications) and K modifications. If

different modification types are present, all permutations are generated as well and

the transitions are appended to the target transition map.

2. Generate target identification transitions: From the set of all theoretical peptidoforms

falling into the same precursor isolation window, a unique set of transitions is gen-

erated. Using a specified product m/z threshold (default: 0.025 Da), overlapping

or interfering transitions are identified and annotated. The unique set of transitions

(commonly N = 50−100), mapping to 1−X peptidoforms, is appended to the spectral

library consisting of detection transitions.

Rules for generation of decoy identification transitions:

1. Generate decoy sequences: A modified target-decoy approach26 based on the previous

algorithm1 is applied. Instead of shuffling the peptide sequence, a random sequence

of the 20 amino acids is used as template with identical length as the target. All

modifiable residues including those carrying the modifications are used to substitute

the decoy sequence at the exact location of the target sequence. This results in peptide

sequences that have the exact properties in terms of modifications but a different

sequence.

2. Generate decoy transition map: Similar as described above, a theoretical decoy transi-

tion map is being generated. The main difference is that the peptidoform permutation

is inferred from the target sequence to derive the exact same PTM properties for de-
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coys as for targets. While the product m/z is computed from the decoy sequence, the

precursor m/z and normalized retention time is used from the target sequence.

3. Generate decoy identification transitions: Identically as above, decoy identification

transitions are being generated. A final additional step ensures that decoy identi-

fication transitions are not overlapping or interfering with the corresponding target

identification transitions by removing the decoy transitions. For phosphorylation on

S, T or Y, this usually removes 5-10% of the decoy transitions.

B. MS2-guided MS1 scoring

Extraction of precursor ion chromatograms from DIA-MS1 maps (MS1 Filtering) has

been shown to enable accurate precursor quantification on both DDA-MS227 and DIA-MS2

/ SWATH-MS11 acquisition methods. Recently, the mProphet7 scoring system has been

extended to the precursor isotope envelope28. For IPF, we extended this scoring approach

to compute the chromatographic coelution and shape scores of the precursor ion against

the fragment ion chromatograms. This results in a set of MS2-guided MS1 scores that can

either be used in addition to the standard OpenSWATH scores to support the MS2-level

peptide query error-rate estimation or to compute a dependent MS1-level confidence: By

only using the MS2-guided MS1 scores of both targets and decoys, a separate PyProphet

analysis iteration was conducted. Using the same assumptions as on MS2-level, the peptide

query FDR represents the q-value that the MS1 signals and the transitions extracted from

the SWATH-MS maps originate from the same peptide.

We found that MS2-guided MS1 scoring enables particularly in DIA acquisition schemes

with wide precursor isolation window schemes8 assessment of the confidence that a peak

group detected a specific precursor. The reported q-value can be used independently

or together with the MS2-level q-value. Especially when considering closely related

peptidoforms29, this functionality increases specificity and enables additional filtering crite-

ria.
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C. Transition scoring

The transition scoring in IPF is implemented similarly as the MS2-guided MS1 scoring:

Detection transitions are extracted from the SWATH-MS maps and candidate peak groups

and their chromatographic boundaries are being detected as described previously1. In

addition, the identification transitions (and optionally, the unfragmented precursor ions) for

one or multiple closely-related peptidoforms are extracted. These fragment (and precursor)

ion chromatograms are scored individually against the detection transitions, resulting in a

set of dependent coelution and shape scores as the MS2-guided MS1 scoring. In addition,

spectrum dependent scores of OpenSWATH are computed and reported on transition-level.

In a multi-tier scoring approach, detected candidate peptide signals on MS1- or MS2-level

above a confidence threshold are selected and the set of transition target and decoy scores

is used to conduct a global (across all candidate peak groups), separate semi-supervised

learning step. The resulting discriminate score and the q-value are reported on transition-

level, representative of the confidence that an identification transition originates from the

same peptidoform as the candidate peptide signals on MS1- or MS2-level.

D. Posterior error probability estimation

Conversion of discriminant scores or q-values to posterior error probabilities (PEPs) is

non-trivial16,21. Here we employ the non-parametric target-decoy approach13 implemented

in QVALITY14. The QVALITY executable is directly accessed and wrapped from within

PyProphet to compute PEPs using the discriminant score. The density plots of decoy and

false-target transitions indicates that a non-parametric approach is suited for this data type

(Figure S2).

E. Confidence propagation to peptidoform-level

Confidence propagation from peptide-spectrum match (PSM) to protein groups per data

set was originally developed within ProteinProphet30 and has been extended in several

related concepts and methods31. The majority of the methods employ Bayesian statistics

to integrate different evidence from individual peptides to proteins. For IPF, a Bayesian
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hierarchical model is employed to integrate the different types of evidence from peak

group-, precursor- and transition- to peptidoform-level. First, because SWATH-MS data is

commonly acquired with wide precursor isolation windows, precursor-level inference is con-

ducted. Second, identification transitions provide support or oppose a set of peptidoforms

and are associated with a certain confidence.

The following generic assumptions are made:

1. Candidate MS2-level peak groups are independent from each other. While it can be

expected that a peptidoform (co-)elutes in a standard bottom-up proteomics LC setup

as a single chromatographic peak, misidentification, inconsistent peak boundaries,

local saturation of the peak capacity or similar chromatographic effects can result in

multiple peak groups originating from the same peptidoform. The proposed statistical

model treats all candidate peak groups independently and for downstream analysis

only the best scoring candidate peak group is used for further considerations.

The following assumptions are made for precursor-level inference:

1. Precursor signals on MS1 and MS2-level (considering unfragmented precursors due to

insufficient fragmentation) are conditionally independent from each other and were

thus considered as independent evidence for a particular peptide sequence and precur-

sor mass.

2. The priors for correct detection (h) or incorrect detection (h0) of the precursor are

derived from the MS2-level candidate peak group (pg) posterior error probability

(PEPpg) as described above:

P (h) = 1− PEPpg, P (h0) = PEPpg

3. The conditional probability for each precursor signal Bi P (Bi|A) is defined as 1−PEPi

if hypothesis A is A = h and PEPi if A = h0. PEPi is defined as the posterior error

probability of the precursor-level signal Bi as described above.

4. The marginal probability is defined as:

P (B) =
∑
A

(
∏
i

(P (Bi|A)) ∗ P (A))
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5. The posterior probability of hypothesis h for a candidate precursor can thus be defined

as:

P (h|B) =
(
∏
i
P (Bi|h))∗P (h)

P (B)
= P (BMS1|h)∗P (BMS2|h)∗P (h)

P (BMS1|h)∗P (BMS2|h)∗P (h)+P (BMS1|h0)∗P (BMS2|h0)∗P (h0)

The following assumptions are made for peptidoform-level inference:

1. Transitions are conditionally independent from each other and provide independent

evidence for a particular peptidoform; identically to the assumption that PSMs provide

independent evidence for a protein group30,32.

2. The null hypothesis (the signal is not significant or not originating from the peptide

sequence) of the candidate peak group on MS1- and MS2-level is propagated and

annotated as h0 from the above precursor-level posterior probability with:

P (h0) = 1− P (h|B)

3. The priors for each candidate peptidoform F are defined as:

P (F ) = 1−P (h0)
NPeptidoforms

with NPeptidoforms representing the total number of potential peptidoforms (without

h0). A defines the set of hypotheses including all peptidoforms and h0: A = {F, h0}.

4. The conditional probability for each transition Tj P (Tj|A) is defined as 1 − PEPj if

hypothesis A is A = F , e.g. transition Tj can originate from peptidoform F , or as

PEPj otherwise. PEPj is defined as the posterior error probability of the transition-

level signal Tj as described above.

5. The marginal probability is defined as:

P (T ) =
∑
A

(
∏
j

(P (Tj|A)) ∗ P (A))

6. The posterior probability of peptidoform F (or h0) for a candidate peak group is

defined as:

P (F |T ) =
(
∏
j
P (Tj |F ))∗P (F )

P (T )
, P (h0|T ) =

(
∏
j
P (Tj |h0))∗P (h0)

P (T )

For each candidate peak group, the sum of all candidate peptidoform and h0 posterior

probabilities is thus 1.
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F. Estimation of local and global false discovery rate

Identically as previously described, posterior error probabilities can be interpreted as

local false discovery rate (fdr) and a global false discovery rate (FDR) can be derived16,30,33:

qPF =

∑
PPF∈{y|y≥Pt

PF
}
PEPPF

|{y|y≥P t
PF }|

G. Transfer of identification confidence across MS runs

Propagation of detection confidence across several MS runs has recently been developed

for SWATH-MS in a method termed TRIC (TRansfer of Identification Confidence)17. With

the same rationale as in the original publication, the model can be extended to peptidoforms.

Alignment of candidate peak groups is conducted using the same chromatographic similarity,

but instead of the peak group detection confidence, the peptidoform identification confidence

is used.
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III. BENCHMARKING USING THE SYNTHETIC PHOSPHOPEPTIDE REFER-

ENCE DATA SET

A. Using IPF with a DIA-Umpire spectral library

Figure S3 depicts the results of the benchmark analysis of the synthetic phosphopeptide

reference data set using the DIA-Umpire library. In comparison to the same analysis using

the DDA-based spectral library, IPF achieves very similar performance results, i.e. receiver-

operating characteristics, error-rate estimation and quantification. The main difference is

the number of peptide queries.
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Figure S3: Benchmarking on the synthetic phosphopeptide reference data set

using the DIA-Umpire library. Spiked-in synthetic yeast phosphopeptides34 were

measured in a 13-step dilution series with a human cell line background.
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Figure S3: IPF was applied using peptide query parameters generated from a combined

spectral library based on the DIA-Umpire analysis of the 13 runs. a) The receiver

operating characteristic (ROC) indicates high sensitivity at commonly used confidence

thresholds with 73.1% recovery at 5% (grey dotted line) false positive rate. b) The

estimated global false discovery rate (FDR) or q-values are plotted against the true FDR,

computed using the ground truth. The dashed diagonal line indicates the optimum. The

estimated local false discovery rate (fdr) or posterior error probability (PEP) is plotted

against the actual fdr, approximated using the ground truth as described previously35 with

a window size of 500. IPF enables accurate estimation in the commonly used ranges of

1-5% fdr/FDR, with a small overestimation of the error in the higher ranges. c) The

dilution series of synthetic spiked-in standard peptides against the constant human cell line

and the detected true (green) and false (red) peptidoforms at 5% FDR are depicted. The

light colors (OSW) represent the detectable peptide sequence-specific peptide query-level

MS2 signals. The dark colors (IPF) represent the corrected, peptidoform-specific signals.

A high gain in selectivity with a small drop in sensitivity can be observed. d) The

quantification of the peak groups (normalized against 1:0) is compared against the ground

truth (red line). Until dilution step 1:15 the quantification is accurate, with a slight bias

for overestimation at lower abundance dilution steps. The numbers above the boxplots

indicate the number of peptides per dilution steps that are also present in the 1:0 step. e)

The boxplots depict the intensities of correct peptidoforms and background (BG) peptides

at 5% FDR. To achieve high confidence on peptidoform-level, IPF requires slightly higher

signal intensities than OpenSWATH on peptide-level.

B. Comparison of false localization rates estimated by IPF and DIA-

Umpire/LuciPHOr

The comparison of IPF with spectrum-centric or hybrid approaches for the iden-

tification of modified peptides, including tools like DIA-Umpire29, MSPLIT-DIA36 or

SWATHProphetPTM37 is not trivial, because those algorithms do not directly provide

confidence metrics on the peptidoform-level. However, spectrum-centric site-localization

is either supported directly or by using downstream tools38. We therefore compared the
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site-localization component of IPF to a representative spectrum-centric site-localization

workflow for DIA data.

LuciPHOr39,40 is one of the newest and most sophisticated tools for site-localization,

which can also provide confidence estimates in the form of a false localization rate (FLR).

While LuciPHOr was developed for DDA spectra, it can in principle also be applied to DIA

pseudo spectra. For this purpose and to make it compatible with the DIA-Umpire analysis

workflow, we built a custom version of LuciPHOr 2 making use of iProphet22 instead of

PeptideProphet21 posterior probabilities (see Methods).

For IPF, we implemented a limited model which only uses the second layer of the

Bayesian hierarchical model and thus does not take into account the first layer, which is

not supported by LuciPHOr 2. Confidence metrics based on these posterior probabilities

can be interpreted as false localization rates, directly comparable with the spectrum-centric

results reported by LuciPHOr.

To make the comparison as fair as possible, LuciPHOr used DIA-Umpire pseudo

spectra and IPF used the spectral library based on the same DIA-Umpire results (without

site-localization, as described above). Importantly, because not all identified spectra

could be used for spectral library generation, only the intersection of peptides that both

LuciPHOr and IPF could site-localize in theory was assessed. Only identified or detected

peptides with an iProphet or mProphet FDR of 1% were used, respectively.

Figure S4 depicts the results of the benchmark analysis between IPF and DIA-

Umpire/LuciPHOr. Both tools provide specific site-localization on the synthetic phospho-

peptide reference data set and accurate estimation of the false localization rate. False pos-

itive site-localizations identified by DIA-Umpire/LuciPHOr at a high confidence threshold

of 1% false positive rate (FPR) resulted in a true positive rate (TPR) of 15.5% compared

to 48.5% achieved by IPF. The spike in actual FLR between 0− 1% estimated FLR in Fig-

ure S4b illustrates this limited specificity at the highest level of confidence. In general, IPF

achieved a higher level of correct site-localizations, with a recall of 66.7% (73.5%) compared

to a recall of 55.3% (59.0%) of DIA-Umpire/LuciPHOr at 5% (10%) FLR.
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Figure S4: Comparison of false localization rates estimated by IPF and

DIA-Umpire/LuciPHOr. The synthetic phosphopeptide reference data set analysed

with DIA-Umpire was benchmarked using IPF and DIA-Umpire/LuciPHOr39,40. The IPF

analysis was conducted using the DIA-Umpire spectral library and using a simplified

Bayesian hierarchical model which estimated a false localization rate comparable to the

metric reported by LuciPHOr.
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Figure S4: a) The pseudo receiver operating characteristics (ROC) for both IPF (red) and

DIA-Umpire/LuciPHOr (cyan) indicate high sensitivity and specificity at 5% (grey dotted

line) false positive rate (FPR) with IPF achieving a higher true positive rate (TPR).

Because neither IPF nor DIA-Umpire/LuciPHOr can identify all peptide site-localizations

in all samples, they do not reach a true positive rate (TPR) of 1.0. While the TPR of

LuciPHOr saturates at above 0.6, for IPF the TPR goes above 0.8, indicating higher

sensitivity at the same FPR. b) Both IPF (red) and DIA-Umpire/LuciPHOr (cyan)

accurately estimate global (FLR) and local (flr) false localization rates. However, the

FLR/flr estimates of DIA-Umpire/LuciPHOr are impaired by false positive identifications

at high confidence thresholds below 1% FLR/flr. c-d) The dilution series of synthetic

spiked-in standard peptides against the constant human cell line and the detected true

(solid) and false (dashed) peptide site-localizations at 5% and 10% FLR are depicted. In

general, IPF (red) enables higher numbers of correct site-localizations across the dilution

series than DIA-Umpire/LuciPHOr (cyan), with the effect being more pronounced at 10%

FLR.
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IV. COMPARISON OF IPF WITH ESTABLISHED DDA-BASED WORKFLOWS

FOR IDENTIFICATION AND QUANTIFICATION OF PHOSPHOPEPTIDES

A. Scope and limitations of the comparison

Objectively comparing algorithms based on different concepts is very difficult, especially

when they require different types of input data. Here we compared IPF, which conducts

peptide-centric analysis of DIA data with MaxQuant41, an established workflow conducting

spectrum-centric analysis of DDA data. While we took several precautions to avoid potential

bias, some inherent limitations and challenges remain in all complex comparisons:

1. Performance differences between instrument generations and types

Both MaxQuant and IPF support the analysis of data acquired on DDA- and DIA-

capable QTOF and Orbitrap instruments. In our study, we analyzed data acquired on two

different QTOF instrument generations, the SCIEX TripleTOF 5600 and 6600 systems. We

found that the improvements of the newer 6600 series instrument translated to improved

performance profiles for both DDA and DIA analysis.

Our comparison does not assess the performance of the algorithms for DDA and DIA data

acquired on Orbitrap instruments. Different properties and algorithmic optimizations could

potentially shift the characteristics of a DDA vs DIA comparison. However, a recently pub-

lished study42 assessed data from a latest generation Orbitrap instrument acquired in both

DDA and DIA modes and suggested similar improvements for DIA over DDA acquisition,

albeit for the analysis of non-modified peptides.

2. Optimal analysis strategies and parameters for MaxQuant and IPF

Both MaxQuant and IPF are part of complex workflows. MaxQuant41 integrates

Andromeda43 for database searching and site-localization and employs the MaxLFQ44

(match-between-run) algorithm for label-free quantification and alignment. On the other

hand, IPF requires a spectral library from DDA or DIA-based spectrum-centric analyses

and builds on top of OpenSWATH1, PyProphet4,7 and TRIC17 for detection, quantification
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and alignment. Both workflows can be optimized by tweaking parameters for specific data

sets.

For MaxQuant, we used the default TOF parameters with enabled MS1 precursor-level

quantification and match-between-run settings as suggested by the developers45 (see Meth-

ods for further details and exact parameters). To our best knowledge, this resulted in an

appropriate and successful analysis for both data sets, however potential optimizations that

would go beyond the scope of our study could potentially further improve the performance.

To maintain the comparability between the tools, we used a MaxQuant-derived spectral

library for IPF. Because we could not use our standard workflow18 to generate consensus

spectral libraries, the selection of best replicate spectra resulted in a loss of peptides and

associated spectra (enriched phosphopeptide data set: 20.3%; 14-3-3 data set: 17.0%) that

did not fulfill our requirements for peptide query parameters, i.e. it was not possible to

derive at least six suitable transitions. We thus believe that the spectral libraries for IPF

could be further optimized by applying our standard workflow to increase coverage and

sensitivity. For the presented comparisons, we decided to focus on either the intersection

(enriched phosphopeptide data set) or to discuss the differences in terms of covered peptides

in detail (14-3-3 data set).

3. IPF and MaxQuant report results differently

The results of MaxQuant and IPF are not directly comparable, because they follow dif-

ferent concepts for interpretation. Andromeda filters PSMs to 1% FDR and then conducts

site-localization, deriving a posterior error probability for each potential phospho-site. The

results are aggregated per phospho-site and MS1-level quantification is conducted using the

MaxLFQ algorithm and alignment without requiring direct spectral evidence in each run.

Conversely, IPF propagates the confidence across all levels of evidence (MS2 peak group,

MS1/MS2 precursors, transitions) and derives a confidence for each candidate peptide

signal. Subsequent alignment by TRIC17 is only conducted within the specified boundaries

of detection confidence for each peptidoform.
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We therefore conducted the comparison between IPF and MaxQuant on the level that

we believe users would assess the results, namely the final quantitative matrices reported by

both tools that satisfy a global confidence per peptide (see Methods for more details).

B. Benchmarking using phosphopeptide-enriched samples

To assess the scalability of IPF in comparison to established workflows for the analysis

of phosphopeptide-enriched samples, we generated a data set of phosphopeptide-enriched

samples of human U2OS cells. Cells were either treated with nocodazole or left untreated

(control) and the resulting patterns were comparatively analyzed by IPF. Nocodazole arrests

cells at the mitotic stage and thus has a substantial effect on signaling pathways involving

phosphorylation46. We acquired ten biological replicates, processed in parallel, each for

nocodazole-treated and control samples, both in DDA and DIA modes (see Methods).

We then analyzed the 20 DDA runs with MaxQuant41,43,44, which provides an integrated

workflow for database search, phosphopeptide site-localization and MS1 precursor-level

quantification. Based on these results, we constructed a spectral library for quantitative

analysis by IPF on the corresponding 20 DIA runs. In order to provide a fair comparison

between the results of MaxQuant and IPF, we restricted our comparative analysis to the

intersection of phosphorylated peptides detected or identified and site-localized by both

algorithms with confidence in at least one run (IPF: 1% peptidoform FDR; MaxQuant: 1%

site-localization FDR), reducing the number of phosphopeptides detected by IPF to 6,260

or identified by MaxQuant to 7,136 (1,184 of which were not present in the spectral library

for IPF, see Methods) with an intersection of 4,298 phosphopeptides.

We next analyzed the quantitative data matrices produced by IPF and MaxQuant across

all ten replicates of each condition, considering only peak groups (IPF) or peptide precursors

(MaxQuant) with at least one confident identification/detection or quantification per bio-

logical condition (Fig. S5). For the nocodazole treated and the control samples, MaxQuant

achieved consistent identification and quantification among all replicates for 20.8% (22.9%

after quantification) and 17.4% (16.5% after quantification, lower due to alignment with

nocodazole treated runs) of all phosphopeptides. In contrast, IPF achieved both consistent

detection and quantification for 62.6% (nocodazole) and 47.5% (control) of all phospho-
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peptides (Fig. S5a-b). To investigate the effect that consistency of quantification has in

dependency of the number of replicates, we conducted differential expression analysis us-

ing mapDIA47 on variable numbers of sampled replicates. Depending on the number of

replicates, more than 400 differentially expressed peptide precursors or peak groups were

detected (Fig. S5c, significance thresholds: FDR < 0.01 & log2(FC) > 2). IPF achieved

more significant results at low numbers of replicates (3 replicates: MaxQuant: 86, IPF: 134).

These results demonstrate that IPF can achieve improved results on enriched phosphopep-

tide data sets compared to the currently employed approaches. Especially across multiple

replicates, IPF achieved better consistency of detection and quantification, which lowers the

number of required replicates for quantitative comparisons of different samples.

C. Quantification of phosphorylation dynamics in the 14-3-3 system

To compare the performance of IPF for the consistent quantification of phosphopeptides

in a complex sample with the performance of DDA-based workflows, we analyzed the

data of our previously published study of the 14-3-3 scaffold protein interactome in this

context48. The data set consists of 6 time points measured in biological triplicates before

and after stimulation by IGF1 and the samples were generated by affinity enrichment of

14-3-3 associated proteins using an affinity tagged 14-3-3 protein expressed in HEK-293 cells.

First, we conducted the DDA analysis as described above using MaxQuant (see Meth-

ods). Across the 18 runs, MaxQuant identified and quantified 535 unique phosphopeptides

(site-localization FDR < 0.01), whereas IPF achieved a recovery of 314 phosphopeptides

(peptidoform-level FDR < 0.01). The main difference between MaxQuant and IPF origi-

nated from 109 peptides site-localized and aligned by MaxQuant from two phospho-enriched

runs, as well as 106 peptides that were not contained in the spectral library used by IPF.

The enriched runs were included in the MaxQuant analysis to enable cross-run peptide iden-

tification. When comparing the consistency of quantification between the two data sets and

algorithms, IPF achieved quantification across the six time points in two or more replicates

for 137 phosphopeptides, whereas MaxQuant achieved the same consistency for 51 phospho-

peptides (Fig. S6a). Next, we assessed the correlation of phosphopeptides, located in the

14-3-3 binding motif or outside the motif, with their associated prey proteins (Fig. S6b-c).
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Figure S5: Benchmarking using phosphopeptide-enriched samples. Enriched

phosphopeptide samples of a human U2OS cell line treated with nocodazole and without

treatment (control) were measured in both DDA and DIA modes in each 10 replicates.
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Figure S5: a) 200 peptides were randomly selected and the corresponding detected peak

groups and peptide precursors for IPF and MaxQuant (MQ) are visualized in a heatmap

(sorted by a hierarchical dendrogram for identification/detection by rows) for

detectability/identification confidence (blue) and quantification (red-yellow; including

alignment). IPF achieved a higher level of completeness for quantification in individual

experimental conditions (Nocodazole N01-N10: 62.6%; Controls C01-C10: 47.5%) in

comparison to MaxQuant (Nocodazole N01-N10: 22.9%; Controls C01-C10: 16.5%). b)

The consistency of quantification for all intersecting peptides is depicted, where IPF

provided more complete detection in replicates than MaxQuant. c) Differential expression

analysis was conducted using mapDIA (significance thresholds: FDR < 0.01 & log2(FC) >

2). For both MaxQuant and IPF on MS2 peak group (IPF-MS2) and MS1 (IPF-MS1)

precursor levels, the same peptide/precursor-level model and parameters were used.

We conducted differential expression analysis and relative quantification using mapDIA as

described above and assessed the distribution of the absolute Pearson correlation for consis-

tently quantified peptides and proteins across all time points. In comparison to MaxQuant,

IPF achieved a higher correlation for both motif- and other phosphopeptides, indicating

more reliable profiling results. While phosphorylation in the binding motif is expected to

correlate well with the protein, phosphorylation outside the motifs may also be well cor-

related if these sites themselves are not regulated by the stimulation. In combination, the

above results suggest that the IPF analysis on the DIA data set compares favorably to

established DDA-based workflows using the same amount of instrumentation time.
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Figure S6: Quantification of phosphorylation dynamics in the 14-3-3 system. a)

Across the full time series, IPF detected and quantified a higher number of

phosphopeptides (43.6%) in two or more replicates than MaxQuant (9.5%). b-c)

Phosphopeptides associated with the 14-3-3 binding motif are expected to correlate in

abundance with their associated prey proteins. The correlation of the quantitative profiles

across the full time series of consistently measured phosphopeptides (in or outside the

motif) was computed and is depicted as boxplots. The number within the boxes indicate

the number of data points. IPF achieves a higher absolute correlation than MaxQuant.
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V. ASSESSMENT OF VARIANCE COMPONENTS OF POST-

TRANSLATIONAL MODIFICATIONS IN HUMAN BLOOD PLASMA

A. Coverage of peptidoform dynamic range

Peptidoforms carrying post-translational modifications were detected and quantified

over the full dynamic range across the whole twin blood plasma data set. Figure S7

depicts the distribution of modified peptidoforms for generally higher abundant proteins

(top 100 proteins, selected according to summed peak group intensities) and Figure S8 vi-

sualizes the same distributions for the inverse set containing mainly lower abundant proteins.

While peptidoform abundance and coverage strongly correlates with proteoform abun-

dance as illustrated by albumin (Figure S11), many peptidoforms carrying PTMs are de-

tectable over the full dynamic range, also for the lower abundant proteins (Figure S8).
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Figure S7: Peptidoform dynamic range of top 100 most abundant proteins. The

smoothed scatter plot of peptidoform quantile normalized intensity (detected with q-value

< 0.01) over all samples is depicted.
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Figure S8: Peptidoform dynamic range of lower abundant proteins. The smoothed

scatter plot of peptidoform quantile normalized intensity (detected with q-value < 0.01)

over all samples is depicted.
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B. Reproducibility across technical replicates

Figure S9 depicts the detectability and quantification performance across technical repli-

cates, Figure S10 depicts the same characteristics for whole-process replicates. In general,

both categories of replicates support that peptidoforms can be detected and quantified con-

sistently.

C. Quantitative peptidoform variability of human serum albumin (ALBU)

Human serum albumin (ALBU) is the most abundant protein in the circulatory system,

constituting about 55% of plasma protein mass49. ALBU is known to bind proteins, lipids

and small molecules and it was reported that albumin and its interactors could be used as

promising tool in biomarker discovery50. Different PTMs of ALBU (e.g. oxidation) have

been reported to be involved in various of human diseases, such as cardiac ischemia51, renal

disease52 or pulmonary hypertension53. We also found the variability and the dominance of

ALBU in blood plasma reflected in our dataset: 440 peptidoforms (74 unmodified peptido-

forms) represented by 173 backbone peptide sequences were quantified across the twin sam-

ples (see Supplementary Figure S11). They contained 426 Carbamidomethyl, 104 Formyl,

69 Carbamyl, 62 Oxidation, 31 Methyl, 21 Carboxy, 19 Deamidated, 18 GG, 16 Acetyl, 13

Nitro and 8 Phospho modifications. The variance decomposition for ALBU peptidoforms

indicates for all modification types similar component levels (h2r: 4.4%, h2id: 4.2%, h2w:

15.4%, c2: 3.2%, e2: 72.8%). Compared to the original protein-level report where the unex-

plained effect dominated ALBU variation (e2: 87.2%), the average e2 on peptidoform-level

is slightly smaller with 72.8%. Notably, the unexplained variance of ALBU peptidoforms

is higher than the average level of all the other proteins, suggesting ALBU peptidoform

abundances can be associated with variance not reflected by the experimental design (e.g.

short-term protein concentration fluctuations, diet effects, etc.), as well as more experi-

mental or technical variations. We found the longitudinal effect to be the most important

component for ALBU variation in our data with several affected peptidoforms, indicating

that ALBU abundance variability is controlled on protein-level. Declining ALBU abundance

levels have been correlated with increasing age in previous studies54. We assessed the fold

change of peptidoform quantile normalized intensity over the two time points and found
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Figure S9: Detectability and quantification of modified peptides in technical

replicates of human blood plasma. The detectability in number of technical replicates

across different modification types and the coefficient of variation (CV; computed only if

the peptidoform was detected in at least 2 runs) of the quantile normalized peak group

intensities across different modification types is depicted. Most modified peptidoforms

could consistently be detected in the majority of the technical replicates. The coefficient of

variation of the intensities is commonly within the expected range (10-20%) of

SWATH-MS.
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Figure S10: Detectability and quantification of modified peptides in

whole-process replicates of human blood plasma. The detectability in number of

whole-process replicates across different modification types and the coefficient of variation

(CV; computed only if the peptidoform was detected in at least 2 runs) of the quantile

normalized peak group intensities across different modification types is depicted. Most

modified peptidoforms could consistently be detected in the majority of the whole-process

replicates. The coefficient of variation of the peak group intensity is higher than for the

technical replicates, representing the additional introduced variability of the sample

preparation and processing steps.
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only a very slight decrease in peptidoform abundance (see Supplementary Figure S12).
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Figure S11: ALBU modification type and peptidoform intensities distribution.

The quantitative variability (mean±sd) of peptidoform quantile normalized intensity

(detected with q-value < 0.01) over all samples is depicted.
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Figure S11: While the peptidoform intensity cannot be used for absolute label-free

quantification, peptidoforms carrying modifications are in general distributed over the

whole intensity range, which might indicate that post-translationally modified ALBU

proteoforms are substantial components of the total ALBU protein mass.

D. Heritable components of ApoE isoforms E2 and E3

To demonstrate the heritable component of different peptidoforms that can be efficiently

dissected using the data, we investigated ApoE, a protein associated with the high density

lipoprotein (HDL) class. The three main alleles (E2, E3 & E4) of APOE only differ in one

or two amino acids, and are commonly targeted for serotyping because of their involvement

in e.g., Alzheimers disease (AD) risk55. The E4 allele is associated with increased AD risk,

whereas the E2 allele is considered to protect against late-onset AD55. We assessed the vari-

ance components for the Cys158 peptidoforms of the E2 allele (UniProtKB: VAR_000664)

and the more frequent Arg158 form of E3/E4 alleles. We found a heritable component of

56.2% (c2: 13.5% h2id: 8.1%, h2w: 3.7%, e2: 18.5%) for the E2 isoform and 17.6% (c2:

34.9% h2id: 19.2%, h2w: 1.5%, e2: 26.8%) for the E3/E4 isoform (see Supplementary Fig-

ure S13). Because for genetic analyses the sample size in this study is limited, it is very

difficult to differentiate between heritable and common environment effects. For this rea-

son, as shown previously56, the summed heritable and common environment effects can be

interpreted more robustly as family effect57,58. Also the e2 component can be removed to

calculate the percentage of biological variability explained by different factors. Therefore, we

determined 85.5% and 71.7% of the explained biological variation of APOE2 and APOE3/E4

to be associated to the family effect. It is important to notice that these components do not

only indicate whether or not the peptidoforms could be detected, but also the peptidoform

abundance. Taken together, our data suggests that the APOE2 allele isoform has a strong

familial effect impacting both its existence and abundance in the population, suggesting that

diseases related to APOE2 proteoform could have emerged with genetic or familial pattern.
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Figure S12: Longitudinal ALBU abundance fold change. The boxplot depicts the

peptidoform abundance fold changes of all ALBU peptidoforms between time points 2

(later) and 1 (log2(NI_2/NI_1); NI: quantile normalized intensity) for all individuals. The

relative ALBU peptidoform abundances remain similar over time with only a slow decrease.
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Figure S13: Dissection of the plasma peptidoform-level variability. The relative

variance components (RVC) are plotted in a scatterplot against the -log10(q-value) per

peptidoform peak group. The black dashed lines indicate significance thresholds (q-value

< 0.01). The RVC of an individual peptidoform is affected by several different factors,

most importantly the protein abundance and proteoform variability as well as technical

effects. a-b) Peptides of ApoE allele variants E2 (green circles) and E3/E4 (red circles)

(wild-type) were detected and quantified in the samples (Supplementary Note V.D). The

heritable and common environment effects are often accounted together as “family” effects

because discrimination of the two is difficult.
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Figure S13: For the E2 allele, the heritable component was found to amount for 56.2% of

the variance (c2: 13.5% h2id: 8.1%, h2w: 3.7%, e2: 18.5%). For the E3/E4 allele, the

heritable component was found to amount for 17.6% of the variance (c2: 34.9% h2id:

19.2%, h2w: 1.5%, e2: 26.8%). c) The longitudinal component was found to be the major

contributor to ApoA1 tryptophan oxidation (orange circles) abundance variance.
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Figure S14: oxMet86 peptidoform abundance fold changes. The boxplots depict the

peptidoform abundance fold changes between time points 2 (later) and 1

(log2(NI_2/NI_1); NI: quantile normalized intensity) for all individuals. The methionine

oxidized peptidoforms (oxMet86) show a decrease, which might be induced by the longer

time of sample storage and thus spontaneous methionine oxidation for the samples at the

first visits.

E. Longitudinal abundance fold change of ApoA1 oxidized peptidoforms

Figure S14 depicts the oxMet86 peptidoform abundance fold change between time points

2 and 1 for each individual.
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VI. IPF SOURCE CODE AND INSTRUMENT DATA

IPF is available as platform-independent open source software under the Modified

BSD License and distributed as part of OpenMS59 (https://github.com/OpenMS) and

PyProphet4 (https://github.com/PyProphet). Further documentation and instructions

for usage can be found on the OpenSWATH website (http://www.openswath.org).

The synthetic phosphopeptide reference mass spectrometry proteomics data have been

deposited to the ProteomeXchange Consortium via the PRIDE60 partner repository

http://www.ebi.ac.uk/pride/archive/ with the dataset identifier PXD004573. The run

filenames are listed in Table I (DDA) and Table II (DIA).

The enriched U2OS phosphopeptide mass spectrometry proteomics data have been

deposited to the ProteomeXchange Consortium via the PRIDE60 partner repository

http://www.ebi.ac.uk/pride/archive/ with the dataset identifier PXD006056. The run

filenames are listed in Table III (DDA) and Table IV (DIA).

The 14-3-3 phosphopeptide interactomics mass spectrometry proteomics data have

been deposited to the ProteomeXchange Consortium via the PRIDE60 partner repository

http://www.ebi.ac.uk/pride/archive/ with the dataset identifier PXD006057.

The twin study mass spectrometry proteomics data have been deposited to the Pro-

teomeXchange Consortium via the PRIDE60 partner repository http://www.ebi.ac.uk/

pride/archive/ with the dataset identifier PXD004574.
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Type Filename

Replicate 1 chludwig_K141203_001_IDA

Replicate 2 chludwig_K141203_002_IDA

Replicate 3 chludwig_K141203_003_IDA

Table I: Synthetic phosphopeptide reference DDA runs.

Dilution Filename

Dilution 1:0 chludwig_K150309_013_SW

Dilution 1:1 chludwig_K150309_012_SW

Dilution 1:3 chludwig_K150309_010_SW

Dilution 1:4 chludwig_K150309_011_SW

Dilution 1:7 chludwig_K150309_008_SW

Dilution 1:9 chludwig_K150309_009_SW

Dilution 1:15 chludwig_K150309_006b_SW

Dilution 1:19 chludwig_K150309_007b_SW

Dilution 1:31 chludwig_K150309_004b_SW

Dilution 1:39 chludwig_K150309_005b_SW

Dilution 1:63 chludwig_K150309_002b_SW

Dilution 1:79 chludwig_K150309_003b_SW

Dilution 1:127 chludwig_K150309_001b_SW

Table II: Synthetic phosphopeptide reference DIA runs.
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Treatment Replicate Filename

Control 1 yanliu_I170114_001_PhosCyc1_shotgun

Control 2 yanliu_I170114_005_PhosCyc2_shotgun

Control 3 yanliu_I170114_009_PhosCyc3_shotgun

Control 4 yanliu_I170114_013_PhosCyc4_shotgun

Control 5 yanliu_I170114_017_PhosCyc5_shotgun

Control 6 yanliu_I170114_021_PhosCyc6_shotgun

Control 7 yanliu_I170114_025_PhosCyc7_shotgun

Control 8 yanliu_I170114_029_PhosCyc8_shotgun

Control 9 yanliu_I170114_033_PhosCyc9_shotgun

Control 10 yanliu_I170114_037_PhosCyc10_shotgun

Nocodazole 1 yanliu_I170114_002_PhosNoco1_shotgun

Nocodazole 2 yanliu_I170114_007_PhosNoco2_shotgun

Nocodazole 3 yanliu_I170114_011_PhosNoco3_shotgun

Nocodazole 4 yanliu_I170114_015_PhosNoco4_shotgun

Nocodazole 5 yanliu_I170114_019_PhosNoco5_shotgun

Nocodazole 6 yanliu_I170114_023_PhosNoco6_shotgun

Nocodazole 7 yanliu_I170114_027_PhosNoco7_shotgun

Nocodazole 8 yanliu_I170114_031_PhosNoco8_shotgun

Nocodazole 9 yanliu_I170114_035_PhosNoco9_shotgun

Nocodazole 10 yanliu_I170114_039_PhosNoco10_shotgun

Table III: Enriched U2OS phosphopeptide DDA runs.
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Treatment Replicate Filename

Control 1 yanliu_I170114_003_PhosCyc1_SW

Control 2 yanliu_I170114_006_PhosCyc2_SW

Control 3 yanliu_I170114_010_PhosCyc3_SW

Control 4 yanliu_I170114_014_PhosCyc4_SW

Control 5 yanliu_I170114_018_PhosCyc5_SW

Control 6 yanliu_I170114_022_PhosCyc6_SW

Control 7 yanliu_I170114_026_PhosCyc7_SW

Control 8 yanliu_I170114_041_PhosCyc8_SW_rep

Control 9 yanliu_I170114_034_PhosCyc9_SW

Control 10 yanliu_I170114_038_PhosCyc10_SW

Nocodazole 1 yanliu_I170114_004_PhosNoco1_SW

Nocodazole 2 yanliu_I170114_008_PhosNoco2_SW

Nocodazole 3 yanliu_I170114_012_PhosNoco3_SW

Nocodazole 4 yanliu_I170114_016_PhosNoco4_SW

Nocodazole 5 yanliu_I170114_020_PhosNoco5_SW

Nocodazole 6 yanliu_I170114_024_PhosNoco6_SW

Nocodazole 7 yanliu_I170114_028_PhosNoco7_SW

Nocodazole 8 yanliu_I170114_032_PhosNoco8_SW

Nocodazole 9 yanliu_I170114_036_PhosNoco9_SW

Nocodazole 10 yanliu_I170114_040_PhosNoco10_SW

Table IV: Enriched U2OS phosphopeptide DIA runs.
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