Elongation factor Tu is a multifunctional and processed moonlighting protein

Michael Widjaja^{1,†}, Kate Louise Harvey^{1,†}, Lisa Hagemann^{2,†}, Iain James Berry¹, Veronica Maria Jarocki¹, Benjamin Bernard Armando Raymond¹, Jessica Leigh Tacchi¹, Anna Gründel², Joel Ricky Steele¹, Matthew Paul Padula³, Ian George Charles⁴, Roger Dumke^{2¥}, Steven Philip Djordjevic^{1,3,¥*}

¹ The ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.

 ² Technische Universität Dresden, Medizinische Fakultät Carl Gustav Carus, Institut für Medizinische Mikrobiologie und Hygiene, Fetscherstrasse 74, 01307 Dresden, Germany.
 ³ Proteomics Core Facility, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.

⁴ Institute for Food Research, Norwich Research Park, Norwich, NR4 7UA, UK.

† These authors contributed equally to this work¥ These contributors share senior authorship

*Corresponding Author:

Prof. Steven P. Djordjevic

The ithree institute, University of Technology Sydney. PO Box 123, Broadway, NSW, 2007, Australia

Phone: +612 9514 4127

Fax: +612 9514 4143

Email: Steven.Djordjevic@uts.edu.au

1067 Figure S1. Peptides that map to Ef-Tu identified from surface biotinylation and shaving

1068 experiments. The sequence alignment for all three pathogens are shown separated into the three

domains of Ef-Tu. Peptides identified from surface trypsin shaving of whole cells are coloured
green where red text indicate peptides from biotinylated surface proteins. Peptides that were
identified from both experiments are highlighted as black underlined text. Yellow boxes indicate
transmembrane domains for: *M. pneumoniae* adapted from ⁸⁹ and *M. hyopneumoniae* predicted
by TMpred ¹⁴².

Figure S2. Predicted 3D ribbon structures of Mpn_{Ef-Tu}, Mhp_{Ef-Tu} and Sa_{Ef-Tu}. Ef-Tu 1076 molecules are represented as black bars with identified cleavage sites displayed as arrows (blue, 1077 dimethyl labelling and red, semi-tryptic) with numbers to indicate each distinct cleavage site. 1078 1079 Cleavage sites can also be seen in the ribbon structures as blue and red sections for dimethyl labelling and semi-tryptic sites, respectively. Images are reversed sides of each structure. 1080 Structures were predicted by MODELLER⁹⁷ and were based on *E. coli* Ef-Tu homologues: 1081 1082 PDB: 4G5G A (M. pneumoniae), PDB: 1DG1 H (M. hyopneumoniae) and PDB: 1DG1 H (S. aureus). For context, the N-terminus of the protein is shown in yellow, and the C-terminus in 1083 purple. 1084

Figure S3. Predicted 3D space-filling structures for all three pathogens. Full length Ef-Tu are represented as black bars with predicted heparin-binding sites for each pathogen shown in blue boxes and regions in the structures. The two published fibronectin-binding domains for *M*. *pneumoniae* have also been mapped. Structures were predicted by MODELLER and were based on *E. coli* Ef-Tu homologues: PDB: 4G5G_A (*M. pneumoniae*), PDB: 1DG1_H (*M. hyopneumoniae*) and PDB: 1DG1_H (*S. aureus*). The N-terminus of the protein is shown in

yellow, and the C-terminus in purple.

1094

Figure S4. Cleavage map of Mpn_{Ef-Tu}. Peptides (black boxes in coloured bars) identified by mass spectrometry of affinity chromatography of A549 surface proteins (orange bars), fetuin (yellow bars), fibronectin (green bars), actin (teal bars) and plasminogen (purple bars). Circles and triangles fragments indicate amino acid binding sites with either proteins or DNA, respectively. Purple boxes within grey bars are disordered regions within fragments. Red bars indicate peptides identified from surface biotinylation and peptides released from trypsin surface shaving can be seen as the green boxes in the grey bar above the full length protein.

1104

Figure S5. Cleavage map of Mhp_{Ef-Tu}. Peptides (black boxes in coloured bars) identified by mass spectrometry of affinity chromatography of PK-15 surface proteins (orange bars), fibronectin (green bars), actin (teal bars) and plasminogen (purple bars). Circles and triangles fragments indicate amino acid binding sites with either proteins or DNA, respectively. Purple boxes within grey bars are disordered regions within fragments. Red bars indicate peptides

- 1110 identified from surface biotinylation and peptides released from trypsin surface shaving can be
- seen as the green boxes in the grey bar above the full length protein.

Figure S6. Cleavage map of Ef-Tu_{Sa}. An expansion of the cleavage maps in Figure 2. Includes
peptides (black boxes in coloured bars) identified by mass spectrometry of Ef-Tu fragments that

1116 don't bind heparin or not on the surface (Fragments 10 - 18). Circles and triangles fragments 1117 indicate amino acid binding sites with either proteins or DNA, respectively. Purple boxes within 1118 grey bars are disordered regions within fragments. Red bars indicate peptides identified from 1119 surface biotinylation and peptides released from trypsin surface shaving can be seen as the green 1120 boxes in the grey bar above the full length protein.

1123 Figure S7: Mpn_{Ef-Tu} resides on the surface of *M. pneumoniae*. A) Anti - rMpn_{Ef-Tu} antibodies

- 1124 recognise *M. pneumoniae* cells in a whole cell ELISA assay; eight replicates. B) Colony blots of
- 1125 *M. pneumoniae* probed with anti rMpn_{Ef-Tu} antibodies, PdhB (positive control) and 1-

- 1126 phosphofructokinase (negative control). C) Immunofluorescence microscopy of *M. pneumoniae*
- 1127 cells probed with antibodies against TX100 insoluble proteins (TRITC; cell control), Ef-Tu,
- 1128 PdhB (positive control) and 1-phosphofructokinase as the negative control (FITC).

Figure S8: Microscale thermophoresis output depicting the interaction of rMpn_{Ef-Tu} with
human molecules. Concentration of rMpn_{Ef-Tu} is plotted against thermophoretic movement of
fluorescent human molecules. Experiments performed in duplicate, each panel representing one
replicate.

Human fibrinogen

Vitronectin

1137	Contrast adjusted (increased	to demonstrate no additional	l bands in full blots.	Corresponding to
------	------------------------------	------------------------------	------------------------	------------------

- 1138 Figure 5B, degradation with plasminogen activated by either urinary plasminogen activator or
- tissue plasminogen activator. Contrast and brightness editing are equal across the blots.

1141 Table S1. Putative heparin-binding motifs identified in Mpn_{Ef-Tu}, Mhp_{Ef-Tu}, and Sa_{Ef-Tu}.

Amino acid range	Sequence
	Mpn _{Ef-Tu} (Uniprot #: P23568)
2 - 13:	aReKfdRsKpHv
19 - 26:	gHidHgKt ⁼
37 - 47:	aKegKsaatRy
51 - 60:	dKapeeKaRg
73 - 80:	dKRHyaHv*
116 - 125:	$tReHillaRq^{=}$
183 - 191:	pKweaKiHd
230 - 239:	gRveRgelKv ⁼
248 - 254:	lRpiRKa
279 - 290:	lRgvdRKeveRg
299 - 307:	iKpH <i>KKfK</i> a
370 - 383:	$eKgsKfsiReggRt^{=}$
	<u>Mhp_{Ef-Tu} (Uniprot #: Q4A9G1)</u>
4 - 19:	vKttgKKdfdRsKeHi
25 - 32:	gHvdHgKt ⁼
79 - 86:	dKRHyaHv*
122 - 131:	tReHillsKq ⁼
237 - 246:	gKveRgqvKl ⁼
255 - 262:	yReepKKt
287 - 298:	lRgvdrKdieRg
302 - 315:	aKpKtiipHtKfKa
327 - 337:	gRHtpffKnyKp
381 - 391:	$tKfsiReggRt^{=}$
	<u>Sa_{Ef-Tu} (Uniprot #: Q2G0N0)</u>
2 - 13:	aKeKfdRsKeHa
19 - 26:	gHvdHgKt ⁼
73 - 80:	dKRHyaHv*
116 - 125:	tReHillsRn ⁼
230 - 239:	gRveRgqiKv ⁼
279 - 290:	lRgvaRedvqRg
373 - 383:	tRfsiReggRt ⁼

1142 Mpn_{Ef-Tu}, Mhp_{Ef-Tu}, and Sa_{Ef-Tu} were searched for patters x-[HKR]-x(0,2)-[HKR]-x(0,2)-[HKR]-x and x-

1143 [HKR]-x(1,4)-[HKR]-x(1,4)-[HKR]-x using ScanProsite¹⁴⁴. * indicates the motif (dKRHyaH) which is

1144 found in all three pathogens. ⁼ indicates the motifs that are highly homologous (up to three non-basic

1145 residues different) in all three pathogens.

1147 Table S2A. Number of binding sites in full length and fragments of Mpn_{Ef-Tu}.

- 1148 Analysis of the Mpn_{Ef-Tu} for the putative protein-protein (P:P) and protein-nucleic acid
- 1149 interaction sites using ISIS 95 .

1150 <u>Mpn_{Ef-Tu} (Uniprot #: P23568)</u>

Fragment number	Full length	3	4	5	6	7	8	10	11	12	13
Range (amino acid)	1-394	1- 110	131- 394	1- 130	218- 394	1- 217	244- 394	111- 242	308- 394	111- 217	218- 307
Exposed P:P	8	15	5	13	10	17	6	12	9	19	11
Buried P:P	6	5	2	7	5	2	5	3	6	2	0
DNA- binding	0	8	0	5	0	6	0	3	2	1	1

1151

1152 Table S2B. Number of binding sites in full length and fragments of Mhp_{Ef-Tu}.

1153 Analysis of the Mhp_{Ef-Tu} for the putative protein-protein (P:P) and protein-nucleic acid 1154 interaction sites using ISIS ⁹⁵.

1155 <u>Mhp_{Ef-Tu} (Uniprot #: Q4A9G1)</u>

Fragment number	Full length	1	4	5	6
Range (amino acid)	Full	1-315	112-402	215-402	1-215
Exposed P:P	10	13	9	10	18
Buried P:P	2	3	1	3	4
DNA-binding	0	3	0	0	4

1156

1157 Table S2C. Number of binding sites in full length and fragments of Sa_{Ef-Tu}.

- 1158 Analysis of the Sa_{Ef-Tu} for the putative protein-protein (P:P) and protein-nucleic acid interaction
- 1159 sites using ISIS 95 .

1160 <u>Sa_{Ef-Tu} (Uniprot #: Q2G0N0)</u>

Fragment number	Full length	3	4	5	6	7	9
Range (amino acid)	Full	1-266	1-192	193-394	104-192	214-394	214-292
Exposed P:P	10	13	10	7	12	5	10
Buried P:P	6	12	6	5	2	5	1
DNA-binding	0	3	4	0	2	0	1

1161

1163 Will be presented as "Supplementary file S9- Bioinformatics"

1164 Supplementary Materials - Bioinformatics

1165 **Conserved/Non-conserved regions:**

1166 Analysis of conservation of amino acids in Mpn_{Ef-Tu}, Mhp_{Ef-Tu}, and Sa_{Ef-Tu}.

Degree of conservation in Mpn_{Ef-Tu} was calculated by The ConSurf server ⁹⁶. Colours indicate 1167 degree of conservation of the amino acid across species. Red diamond sticks indicate predicted 1168 protein binding sites by ISIS 95,149. Grey, yellow and purple circle sticks indicate predicted 1169 nucleotide, DNA and RNA binding regions, respectively by SomeNA^{149,150}. Below the sticks are 1170 three rows: i) Blue and red bars indicate predicted beta-strand and helix secondary structures, 1171 respectively by REPROFSec^{147,149}, ii) Blue and yellow bars indicate predicted regions that are 1172 exposed and buried to solvent accessibilities, respectively by PROFAcc ^{147,149}. iii) Green bars 1173 indicate predicted disordered regions by Meta-Disorder (MD)^{146,149}. Circled amino acids 1174 represent predicted binding sites. Amino acids indicated by a triangle indicate predicted 1175 nucleotide binding sites. 1176

1177 **Legend:**

1178

1179 The conservation scale:

	1	2	3	4	5	6	7	8	9	
V	ariat	ole		Ave	erage			Cons	serve	d

1180 e - An exposed residue according to the neural-network algorithm.

1181 b - A buried residue according to the neural-network algorithm.

1182 **f** - A predicted functional residue (highly conserved and exposed).

1183 s - A predicted structural residue (highly conserved and buried).

1184 \times - Insufficient data - the calculation for this site was performed on less than 10% of 1185 the sequences.

Full length protein: 1-394

1	11	21	31	41
Marekfdrsk	<u>PHV</u> NVGTIGH	<u>IDHGKT</u> TLT <mark>A</mark>	AICTVL <u>AKEG</u>	KS <mark>AATRY</mark> DQI
51	61	71	81	91
D <mark>K</mark> APEE <mark>KA</mark> RG	ITI <mark>NSA</mark> HVEY	S <mark>SD<mark>K</mark>RHYAH</mark> V	D <mark>C</mark> PGHADY <mark>I</mark> K	NMITGAAQMD
101	111	121	131	141
<mark>GAILVV</mark> SA <mark>T</mark> D	SVMPQT <u>REH</u> I	LL <mark>AR</mark> OVGVPR	MVV <mark>FL</mark> NKCDI	AT <mark>DEEVQ</mark> ELV
151	161	171	181	191
AEE <mark>VR</mark> DLLTS	<mark>YG</mark> F <mark>DGKNTP</mark> I	I <mark>Y</mark> GSA <mark>LKA</mark> LE	G <mark>DPKWEAK<mark>I</mark>H</mark>	<mark>D<mark>IMN</mark>AV<mark>DEWI</mark></mark>
201	211	221	231	241
PTPEREVDKP	F <mark>llai</mark> edtmt	I <mark>TGRGTV</mark> VT <u>G</u>	RV <mark>ergelkv</mark> g	<mark>QE</mark> IEIV <mark>GLRP</mark>
251	261	271	281	291
<mark>IRKA</mark> VV <mark>TGIE</mark>	<mark>MF</mark> K <mark>KELDS</mark> AM	AGDN <mark>A</mark> G <mark>V</mark> L <mark>L</mark> R	<mark>G<mark>VDRKEVE</mark>RG</mark>	<mark>QVLAKP</mark> GS <u>IK</u>
301	311	321	331	341
<mark>Phkkfka</mark> ei <mark>y</mark>	A <mark>lkk</mark> eeggrh	TG <mark>FLN</mark> GYRPQ	FYF <mark>RTTDVTG</mark>	<mark>SISL</mark> PENTEM
351	361	371	381	391
VLPGD <mark>NTSIT</mark>	VELIAPIACE	K <mark>GSK</mark> FSTREG	<u>Gr</u> tvgagsvt	<mark>EVLE</mark>

Fragment 4: 131-394

131	141	151	161	171
M <mark>VV</mark> FLNKCDI	AT <mark>DEE</mark> VQE <mark>LV</mark>	AEEVRDLLTS	<mark>YG</mark> FD <mark>GKNT</mark> PI	I <mark>YG</mark> SA <mark>LK</mark> ALE
181	191	201	211	221
GD <mark>PKWEAKIH</mark>	<mark>DIMNAVDEWI</mark>	PTPER DKP	F <mark>llai</mark> edtmt	I <mark>TGRGTV</mark> VTG
231	241	251	261	271
R <mark>VER</mark> GELKVG	QEIEIV<mark>GLRP</mark>	I <mark>rka</mark> vv <mark>tgie</mark>	MF <mark>KKELDS</mark> AM	AGDN <mark>AG<mark>V</mark>LLR</mark>
281	291	301	311	321
<mark>G<mark>VDRKE</mark>VE<mark>RG</mark></mark>	<mark>QV<mark>LA</mark>K<mark>PGS<u>IK</u></mark></mark>	<mark>Ph</mark> kkfkaeiy	A <mark>lk</mark> ke <mark>eggrh</mark>	TGF<mark>LN</mark>G<mark>YRPQ</mark>
331	341	351	361	371
FYF <mark>RTTDVTG</mark>	<mark>SISL</mark> PENTEM	<mark>VLPGD<mark>NTSIT</mark></mark>	VELIAPIACE	<mark>Kg K</mark> FS <mark>I</mark> REG
381 <mark>G</mark> RTVGAGSVT	391 E <mark>VLE</mark>			

Fragment 5: 1-130

Fragment 6: 218-394

Fragment 7: 1-217

- **Fragment 10:** 111-242

1217 Fragment 12: 111-217

1220 Fragment 13: 218-307

Full length protein: 1-402

1231

1232

Fragment 1: 1-315

m 1233 11 21 41 21/ V<mark>VKTTGKK</mark> DFDRSKEHIN IGTIGHVDHG KTTLTAAIST VLAKRGLAEA eebeeebbee ebeeeeebb bbbbbbbeeb ebebbbbbe bbbeeeeeb sssss ffs fsfsfsss fffs ssf 71 51 61 81 91 KDYASIDAAP EEKARGITIN TAHIEYSTDK RHYAHVDCPG HADYIKNMIT sf sf ff fssss f fs f fssss s ff fsfs ffsss 121 101 111 131 141 GAAQMDGAIL VVAATDGPMP QTREHILLSK **OVGVPKMVVF LNKIDL**EGE sssssfs s s s ff ff fsffs ss f fs sf sf f f f S 151 161 171 181 191 EEMVDLVEVE IRELLSSYDF DGDNTPIIRG SARGALEGKP EWEAKVLELM f ssfff f ss f ff f SS S 201 211 221 231 241 DAVDSYIDSP VREMOKPFLM AVEDVFTITC RGTVATGKVE RGOVKLNEEV ebbeeebeee eeeeeebbb ebeebbbbbb ebebbebee ebebeeeeeb fs s ff s s fsfs fsf f fs f fff 271 281 251 261 291 EIVGYREEPK KTVITGIEMF NKNLQTAMAG DNAGVLLRGV DRKDIERGQV

- **Fragment 4:** 112-402

112	122	132	142	152
VAATDGPMPQ	TREHILLSKO	VGVPKMVVFL	NKIDLLECEE	EMVDLVEVEI
f f ffffff	s fs ss f	s sf s	sf f f f	f ssf f
162	172	182	192	202
RELLSSYDFD	GD <mark>NT</mark> PII <mark>R</mark> GS	ARGALECKPE	WEAKVLEIMD	AVDSYIDSPV
eebbeeeebe	eeebebbebb	bbebbeeeee	beeebeebbe	bbeeebeeee
f ss	ff f s	s s	S	fff
212	222	232	242	252
REMDKPFLMA	VEDVFTITGR	GTVAT <u>GKVER</u>	<u>COVKLNE VE</u>	IVGYREEPK
f fs s	ffs s sf	sfs fsf ff	s f	s
262	272	282	292	302
TVITGIEMFN	K <mark>N</mark> LQ <mark>TAM</mark> AGD	N <mark>A</mark> G <mark>V</mark> L <u>LRG</u> VD	RKDIERGQVI	AKPKTIIPHT
eebebbebbe	ebbeebeeee	ebbbbbebbe	eeebeebebb	eeeeeeeee
f fss	f sf fff	f s ssfs	f fs s	f ff
312	322	332	342	352
KEKAAIYALK	KEEGGRETPE	FKNYKPQFYF	RITIDVIGGIE	FEPGREMVIP
s s s	f ffffffff	ffffs	fsffffs	s fs sf
362	372	382	392	402
GD <mark>NVDLT</mark> VEL	IAPIAVEQCT	K <mark>FS</mark> IREGG <mark>R</mark> T	VG <mark>AG</mark> TVT <mark>EII</mark>	ĸ
eeebebebeb	bbbbbbbeebb	ebbbeeeeb	bbbbebbebe	е
fff s	SS	s sffff s	SS S	

Fragment 6: 1-215

		sf s	sf	ff	fs	sss	f	fs	f	fsss	s s	ff	fsfs	ffsss
	101			111			121		~	131			141	•
	GAAQM	(IDG <mark>A</mark>]	[L	VVA	ATI)G <mark>P</mark> MP	QT <mark>R</mark> I	SH I)	III <mark>sk</mark>	O V G V	P <mark>KM</mark>	VVF	LNK I	D <mark>I</mark> EEE
	bbbbb	bebb	b	bbb	bbe	eeee	ebe	ebbl	bbbe	ebeb	ebbl	bbb	bbeb	eeĕeee
	SSSSS	sfs s	5	S	s f	f ff	fsf:	fs :	SS	fs s		S	sf	f f ff
	151			161			171		•	18		\frown	191	
	E EMVI	DLVE	7 <mark>E</mark>	IRE	LLS	S <mark>Y</mark> DF	DGD	NTP	IIRG	SARG	AL 🛛	GKP	E EA	KV <mark>L</mark> ELM
	eebbe	bbee	e	bee	bbe	eeeb	eee	ebel	bbeb	bbbe	bbe	eee	ebee	ebeebb
	f	ssf	f	f	SS	f	ff	f		SS				S
	201			211										
	DAVDS	YID:	5P	VRE	:M									
	ebbee	bbee	e	eee	e									
	f	f	f	f										
1243														
1244														
1245														
1246														

1247 <u>Sa_{Ef-Tu} (Uniprot #: Q2G0N0)</u>

Full length protein: 1-394

	bbbbbbbbee	eeeeebeebb	bbbeebebeb	bbbbbbebee	eeeebbebb
	sss sf	f f fsffs	ss ffs s	s sf f	fff f ss
	151	161	171	181	191
	EMEVRDLLSE	Y <mark>D</mark> FPGD <mark>DV</mark> PV	I <mark>AG</mark> SA <mark>LK</mark> ALE	GDAQYEEKI L	ELMEAVDTYI
	eeebeebbee	eebeeeebeb	bebbbbebbe	eeeeeeebe	ebbeebeeeb
	f f f ss	f ff f	SS		s f
	201	211	221	231	241
	PTPERDSDKP	FMMPVEDVFS	ITGRGTVATG	RV <mark>ERG<mark>QI</mark>KVG</mark>	EEVEIIG HD
	eeeeeeeee	bbbebeebbb	bbběbebbeb	ebeebebebe	eebebbbbee
	fff f	s ff	s sfsfs fs	ffs	fs
	251	261			
	T <mark>S</mark> KTTV <mark>TG</mark> V	MFCKLL			
	eeeebebbě	bbeeee			
	ff	ssff f			
1253					
1254					
1255	Engament 4. 1	102			
1256	rragment 4: 1	1-192 22 49 84	90 08	112 128 144	180 178
	1				
	• •	 	¢	• •	***
		<u>_</u> ↓ <u>↓</u> _ <u>_</u> ↓			
1257					
1258	1	11	21	31	41
1259	MAK <mark>EKFD</mark> RSK	EHANIGTI <u>GH</u>	V <mark>DHGKT</mark> TLTA	AI <mark>ATVLAKN</mark> G	DSVAQ <mark>S</mark> YDMI
1260	eeeeeeeee	eebbbbbbbb	beebebebeb	bbbebbbeee	eeebeĕbeeb
1261	ff ff	f s sssss	ffsfsfsfs	SS	s 51
1262	6	1 7:	1 8	1 93	
1263	DNAPEEKERG	TTTNTSHITEY	QUDKRHYAHV	DCPGHADYVK	NMITGAAQMD
1264	eebeeeeeb	bbbbbbbebeb	eeeeebbbbb	bbeeebebbe	
1265	I SIII IS	SSS I IS	I ISSSS	S IIISIS I	ISSSSSSSILUL
1266					
1267	GGILVVSAAD	GPMPQTREHT	hhheeheheh		
1268		fffaffa			f f f gg151
1209	בא מממ 16	1 17	33 1315 1 10	B BL L 1 10') T T T 22131
1270					ET.
1272	eeebeebbee	eebeeeebeb	bebbbbebbe		<u></u>
1273	f f f ss	f ff f	SS		

	20 KI el	54 LDYA beee sf	EAGD eeee fff	27 NI eb f	4 GALI bbbk s s	RG <mark>VA</mark> pebbe fs	284 REDVO	RG V eeeee ffff
1304 1305								
1306								
1307								
1308								
1309								

1310 Will be presented as "Supplementary file S10- Experimental section"

1311 S10. Supplementary Materials 3: Experimental Section

1312 S10.1. Host and human proteins used in binding assays

Host proteins used for affinity chromatography include: purified fibronectin (Code: 341635) and plasminogen (Code: 528175) from human plasma supplied by Merck Millipore; plasminogen from human plasma (Code: P7999) bovine actin (Code: A3653) and fetuin (Code: F3004) supplied by Sigma.

Human proteins used for ELISA include: plasminogen (Code: P7999), lactoferrin (Code:
L1294), laminin (Code: L6274), vitronectin (Code: SRP3186), plasma fibrinogen (Code: F3879)
and plasma fibronectin (Code: 11051407001) supplied by Sigma.

1320 S10.2. Peptide search parameters

Files were searched against the MSPnr100 database¹⁵¹ with the following parameters. Fixed 1321 modifications: none. Variable modifications: propionamide, oxidized methionine, deamidation. 1322 Enzyme: semi-trypsin. Number of allowed missed cleavages: 3. Peptide mass tolerance: 100 1323 ppm. MS/MS mass tolerance: 0.2 Da. Charge state: 2+, 3+ and 4+. For samples collected from 1324 1325 the 'Biotinylation enrichment of surface proteins', 'Avidin purification of A549 interacting 1326 proteins' and 'Avidin purification of PK-15 interacting proteins', variable modifications also 1327 included NHS-LC-Biotin (K) and NHS-LC-Biotin (N-term). 'Avidin purification of A549 1328 interacting proteins' was also searched against homo sapiens entries in MSPnr100 to identify 1329 biotinylated surface A549 proteins. 'Avidin purification of PK-15 interacting proteins' was also searched against sus scrofa entries in MSPnr100 to identify biotinylated surface PK-15 proteins. 1330

1331 *S. aureus* proteins were also searched against a *S. aureus* NCTC 8325 database derived from the1332 published genome.

1333 S10.3. Expression and purification of rMpn_{Ef-Tu}

1334 Expression and purification of rMpn_{Ef-Tu} was performed in one of two methods.

The first method was performed as described in ¹⁰⁰. In brief, the *M. pneumoniae tuf* gene 1335 (MPN 665) was amplified and cloned with a N-terminal hexahistadine tail into the plasmid 1336 1337 vector pET30 (Merck Millipore) containing a kanamycin resistance gene. The recombinant construct was transformed in to BL21-DE3 competent E. coli cells (Merck Millipore), induced 1338 with 1 mM isopropyl-β-D-thiogalactosidase (IPTG, Roth) and purified under denaturing 1339 conditions with immobilized metal affinity chromatography Ni²⁺-charged resin (Oiagen, Hilden, 1340 Germany) as described by the manufacturer. Elutions were concentrated using a 30 kDa 1341 Vivaspin centrifugal device (Sartorius, Göttingen, Germany). Recombinant protein was assayed 1342 and stored at -20°C. rMpn_{Ef-Tu} was used to produce guinea pig antiserum as reported ¹⁰⁰. 1343

The second method was performed as described in 88 with modifications. In brief, the M. 1344 1345 pneumoniae tuf gene (MPN_665) was synthesized with an N-terminal hexahistadine tail and cloned by Blue Heron Biotech (WA, USA) into a plasmid vector (PS100030) with an ampicillin 1346 resistance gene. The recombinant construct was transformed in to BL21-DE3 competent E. coli 1347 cells (Bioline, Eveleigh, Australia), induced with 1 mM isopropyl-β-D-thiogalactosidase (IPTG, 1348 Bioline) and purified under denaturing conditions with Profinity immobilized metal affinity 1349 chromatography Ni²⁺-charged resin (Bio-Rad, Gladesville, Australia). BL21cells were lysed in 8 1350 M Urea, 100 mM Na₂HCO₃, 10 mM Tris-HCl, pH 8 with 6 rounds of sonication for 30 seconds 1351 on ice. Following centrifugation, the supernatant was added to Ni2+ resin overnight at 4°C. The 1352

resin was then loaded onto a column, washed four times with 5 ml 8 M Urea, 100 mM Na₂HCO₃, 10 mM Tris-HCl, pH 6.3 and a 2-step elution: three times with 5 ml 8 M Urea, 100 mM Na₂HCO₃, 10 mM Tris-HCl, pH 5.9 and twice with 10 ml 8 M Urea, 100 mM Na₂HCO₃, 10 mM Tris-HCl, pH 4.5. Washes and elutions were monitored by SDS-PAGE. Elutions were concentrated using a 10 kDa MicrosepTM centrifugal device (Pall, Port Washington, NY) and dialysed into PBS, 0.5% Tween 20 with 10,000 MWCO SnakeSkin® Dialysis Tubing (Thermo Fisher Scientific) at 4°C. Recombinant protein was assayed and stored at 4°C.

1360 S10.4 LC-MS/MS of dimethyl labelled proteins

1361 S10.4.1. LC-MS/MS (Sciex 5600) of dimethyl labelled proteins

Peptides from dimethyl labelled proteins described in section 1.16.1 were separated by nanoLC 1362 using an Ultimate nanoRSLC UPLC and autosampler system (Dionex, Amsterdam, 1363 Netherlands). Samples (2.5 µl) were concentrated and desalted onto a micro C18 precolumn (300 1364 µm x 5 mm, Dionex) with H₂O:CH₃CN (98:2, 0.1 % TFA) at 15 µl/min. After a 4 min wash the 1365 pre-column was switched (Valco 10 port UPLC valve, Valco, Houston, TX) into line with a 1366 fritless nano column (75µ x ~15cm) containing C18AQ media (1.9µ, 120 Å Dr Maisch, 1367 1368 Ammerbuch-Entringen Germany). Peptides were eluted using a linear gradient of H₂O:CH₃CN 1369 (98:2, 0.1 % formic acid) to H₂O:CH₃CN (64:36, 0.1 % formic acid) at 200 nl/min over 240 min. High voltage 2000 V was applied to low volume Titanium union (Valco) with the tip positioned 1370 ~ 0.5 cm from the curtain plate (T=150°C) of a 5600⁺ mass spectrometer (Sciex, Toronto, 1371 Canada). Positive ions were generated by electrospray and the 5600^+ operated in information 1372 dependent acquisition mode (IDA). 1373

A survey scan m/z 350-1750 was acquired (PWHH resolution ~30,000, 0.25 sec acquisition time) with autocalibration enabled (at ~6 hr intervals). Up to the 10 most abundant ions (>300 counts) with charge states > +2 and <+5 were sequentially isolated (width m/z ~3) and fragmented by CID with an optimal CE chosen based on m/z (product ion spectra were acquired at a resolution ~20,000 PWHH in 0.15 sec). M/z ratios selected for MS/MS were dynamically excluded for 30 or 45 seconds.

Peak lists were generated using Mascot Daemon/Mascot Distiller (Matrix Science, London, England) or ProteinPilot (Sciex, v4.5) using default parameters, and submitted to the database search program Mascot (version 2.5.1, Matrix Science). Search parameters were: Precursor tolerance 10 ppm and product ion tolerances ± 0.05 Da; oxidation (M), deamidation (NQ), propionamide (C), Dimethyl (K), Dimethyl (N-term) specified as variable modifications; enzyme specificity was semi-ArgC; 1 missed cleavage was possible and the non-redundant protein database from NCBI (Jan 2015) searched.

1387 S10.4.2. LC-MS/MS (Thermo Scientific Q ExactiveTM) of dimethyl labelled proteins

Peptides from dimethyl labelled proteins described in section 1.18.1 were separated by nanoLC 1388 using an Ultimate nanoRSLC UPLC and autosampler system (Dionex, Amsterdam, 1389 Netherlands). Samples (2.5 µl) were concentrated and desalted onto a micro C18 precolumn (300 1390 µm x 5 mm, Dionex) with H₂O:CH₃CN (98:2, 0.1 % TFA) at 15 µl/min. After a 4 min wash the 1391 pre-column was switched (Valco 10 port UPLC valve, Valco, Houston, TX) into line with a 1392 fritless nano column (75µ x ~35cm) containing C18AQ media (1.9µ, 120 Å Dr Maisch, 1393 1394 Ammerbuch-Entringen Germany). Peptides were eluted using a linear gradient of H₂O:CH₃CN (98:2, 0.1 % formic acid) to H₂O:CH₃CN (64:36, 0.1 % formic acid) at 200 nl/min over 30 or 1395

1396 240 min. High voltage 2000 V was applied to low volume Titanium union (Valco) with the 1397 column oven heated to 45° C (Sonation, Biberach, Germany) and the tip positioned ~ 0.5 cm 1398 from the heated capillary (T=300°C) of a QExactive Plus mass spectrometer (Thermo Fisher 1399 Scientific, Bremen, Germany). Positive ions were generated by electrospray and the QExactive 1400 operated in data dependent acquisition mode (DDA).

A survey scan m/z 350-1750 was acquired (resolution = 70,000 at m/z 200, with an AGC target value of 10^6 ions) and lockmass was enabled (m/z 445.12003) Up to the 10 most abundant ions (>80,000 counts, underfill ratio 10%) with charge states > +2 and <+7 were sequentially isolated (width m/z 2.5) and fragmented by HCD (NCE = 30) with a AGC target of 10^5 ions (resolution = 17,500 at m/z 200). M/z ratios selected for MS/MS were dynamically excluded for 30 or 45 seconds.

Peak lists were generated using Mascot Daemon/Mascot Distiller (Matrix Science, London, England) or Proteome Discoverer (Thermo Fisher Scientific, v1.4) using default parameters, and submitted to the database search program Mascot (version 2.5.1, Matrix Science). Search parameters were: Precursor tolerance 4 ppm and product ion tolerances \pm 0.05 Da; oxidation (M), deamidation (NQ), propionamide (C), Dimethyl (K), Dimethyl (N-term) specified as variable modifications; enzyme specificity was semi-ArgC; 1 missed cleavage was possible and the non-redundant protein database from NCBI (Jan 2015) searched.

1414 **References**

- 1415 149 Yachdav, G. et al. PredictProtein--an open resource for online prediction of protein structural and
 1416 functional features. Nucleic acids research 42, W337-343, doi:10.1093/nar/gku366 (2014).
- 1417 150 Hönigschmid, P. Improvement of DNA- and RNA protein binding prediction., Technische
 1418 Universität München, (2012).
- 1419 151 Perkins, D. N., Pappin, D. J. C., Creasy, D. M. & Cottrell, J. S. Probability-based protein
- 1420 identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551-
- 1421 3567, doi:10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2 (1999).