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Label in supplementary figures Meanings

ZEO/ZEOLYST Nano H-ZSM-5 zeolites from ZEOLYST
company

COKE Coked sample

SAPO34 H-SAPO-34 zeolite

MESO Mesoporous H-ZSM-5 zeolite

MCM H-MCM-22 zeolite

Ind Industrial samples

46, 60, 160, 25, 20-30, 40-60 The Si/Al ratio of zeolite

2H/5H 2hour/5hour reaction time

TOP/BOT Sample taken from the top/bottom of the
catalyst bed

Supplementary Table 1 | Labels used in the figures and their meanings. Labels are used in the
following Supplementary figures, and their meanings are listed in the Supplementary Table 1. In
this research, we have tested a variety of zeolite types, with changes in the Si/Al ratio, and their
particle size, or porosity. Differently coked samples are obtained by changing the reaction time, or
taking from different positions in the catalyst bed.




ZEQ 46

COKE ZECLYST 46 5H BOTTOM

COKE ZEOLYST 46 SH TOP

ZEQ 60

COKE ZEOLYST 60 5H BOTTOM

COKE ZEOLYST 60 54 TOP

ZEQ 180

COKE ZEOLYST 160 5H BOTTOM

COKE ZEOLYST 160 54 TOP

Dielectric loss (£")

Supplementary Figure 1. Dielectric loss value (¢) of various nano zeolites, including the clean
zeolite bodies, and the samples from the top and bottom parts of the catalyst bed with different
coke depositions, the values were taken as an average of 5 times individual tests.
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Supplementary Figure 2. Dielectric loss value (¢') of various zeolite types, including the clean
zeolite bodies, and their 2h and 5h reacted samples with coke deposition, the values were taken as
an average of 5 times individual tests.
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Supplementary Figure 3. Raman spectra of coked nano-ZSM-5 zeolites, for each sample the top
and bot parts in the catalyst bed are separated.
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Supplementary Figure 4. Laser Raman spectra of various coked zeo-types after the MTH
reaction (for each sample, reaction time varies between 2h and 5h).



25% -

20% -
15% -
10% —
2\"/ 5% =
£ - ZEO46 Deriv.W TOP
‘© 100% =
< . ZEOA46 Deriv.W BOT
95%
el ZEO46 Weight BOT
— ZEO46 Weight TOP
¥ 1 ' 1 £ 1 £ 1 ¥ 1 ¥ 1
0 200 400 600 800 1000 1200

Temperature C

Supplementary Figure 5. Thermogravimetric analysis (TGA) plot of the post-reaction nano
H-ZSM-5 (Si/Al=46) samples (in black and blue colors), and corresponding derivative
thermogravimetry (DTG) curves (in red and purple colors).
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Supplementary Figure 6. Thermogravimetric analysis (TGA) plot of the post-reaction nano
H-ZSM-5 (Si/Al=60) samples (in black and blue colors), and corresponding derivative
thermogravimetry (DTG) curves (in red and purple colors).
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Supplementary Figure 7. Thermogravimetric analysis (TGA) plot of the post-reaction nano
H-ZSM-5 (Si/Al=160) samples (in black and blue colors), and corresponding derivative
thermogravimetry (DTG) curves (in red and purple colors).
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Supplementary Figure 8. Thermogravimetric analysis (TGA) plot of the post-reaction MCM
(Si/Al=20-30) samples (in black and blue colors), and corresponding derivative thermogravimetry

(DTG) curves (in red and purple colors).
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Supplementary Figure 9. Thermogravimetric analysis (TGA) plot of the post-reaction

mesoporous H-ZSM-5 (Si/Al=40-60) samples (in black and blue colors), and corresponding
derivative thermogravimetry (DTG) curves (in red and purple colors).
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Supplementary Figure 10. Thermogravimetric analysis (TGA) plot of the post-reaction SAPO-34
(Si/Al=20-30) samples (in black and blue colors), and corresponding derivative thermogravimetry
(DTG) curves (in red and purple colors).
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Supplementary Figure 11. Thermogravimetric analysis (TGA) plot of the post-reaction Industrial
H-ZSM-5 (Si/Al=25) samples (in black and blue colors), and corresponding derivative
thermogravimetry (DTG) curves (in red and purple colors).
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Supplementary Figure 12. Graph bar charts show normalized dielectric loss values (¢) by TGA
weight loss (wt%) of each sample (coked nano H-ZSM-5 zeolites).
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Supplementary Figure 13. Graph bar charts show normalized dielectric loss values (¢ ) by TGA
weight loss (wt%) of each sample (multiple zeo-types).



16047
S0t NCh 22
R

e \Tippe 2090076 0

-

Dale At 12N
Pote TRise
Spectumukes VMRS

Covrve Cr3
Froqueency 100 562 Nk
Soechad warth 208 3 Ak
Ferpotation e © ¥ e
Rerpein 10 oo

No irpedbors Ale0

CP b rop o0 #

Confact v 100 ==

TPPM octuplog ac 60,0 M-

TG SaeDITE saggresEan by
TOSs

S rate £000 Mz

Conswnan tromterergg 0 OO wec
FT stoe 16384
Aerbaint Nergwraboe

Supplementary Figure 14. *C NMR spectra of 5h reacted MCM-22 (Si/Al=20-30) showing coke
composition.
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Supplementary Figure 15. **C NMR spectra of 2h reacted MCM-22 (Si/Al=20-30) showing coke
composition.
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Supplementary Figure 16. *C NMR spectra of 5h reacted mesoporous ZSM-5 (Si/Al=40-60)

showing coke composition.
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Supplementary Figure 17. *C NMR spectra of 2h reacted mesoporous ZSM-5 (Si/Al=40-60)
showing coke composition.
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Supplementary Figure 18. *C NMR spectra of 5h reacted SAPO-34 (Si/Al=20-30) showing
coke composition.
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Supplementary Figure 19. *C NMR spectra of 2h reacted SAPO-34 (Si/Al=20-30) showing
coke composition.
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Supplementary Figure 20. **C NMR spectra of 5h reacted industrial ZSM-5 (Si/Al=25) showing
coke composition
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Supplementary Figure 21. *C NMR spectra of 2h reacted industrial ZSM-5 (Si/Al=25) showing
coke composition
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Supplementary Figure 22. **C NMR spectra of top-catalyst-bed coked nano ZSM-5 (Si/Al=160)
showing coke composition.
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Supplementary Figure 23. 3C NMR spectra of bottom-catalyst-bed coked nano ZSM-5
(Si/Al=160) showing coke composition.
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Supplementary Figure 24. *C NMR spectra of top-catalyst-bed coked nano ZSM-5 (Si/Al=60)
showing coke composition.
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Supplementary Figure 25. 3C NMR spectra of bottom-catalyst-bed coked nano ZSM-5
(Si/AI=60) showing coke composition.
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Supplementary Figure 26. *C NMR spectra of top-catalyst-bed coked nano ZSM-5 (Si/Al=46)
showing coke composition.
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Supplementary Figure 27. 3C NMR spectra of bottom-catalyst-bed coked nano ZSM-5
(Si/Al=46) showing coke composition.
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Supplementary Figure 28. Experimental system employed in the coking MTH reactions.
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Supplementary Note 1. Here the measured ¢” is an effective value affected by each sample
constituent material (it is majorly but not all from the cokes, and not a simple adding up of the ¢”
values of each sample component as there are also interactions and other possible effects). The
employed €”/wt% value therefore reflects how unit weight cokes would affect the obtained,
integral dielectric loss value of a coked sample, and it is not the &” value of unit weight cokes.

Supplementary Note 2. It should be noted that the exact &£”/wt% values for most of the
lightly-coked samples (e.g. the bottom or 2h reacted samples) should be lower than the currently
presented data, as their TGA weight losses before 200 °C have not been taken into the calculation
(this is because TGA weight loss due to moisture is also included in this temperature range), and
there must have been a certain portion of coke weight accordingly missed due to the light organic
deposits of lower volatile points (it seems that this is not the case for the heavily-coked samples
with polyaromatics dominating in coke). Therefore, we would imagine that the real difference in
signal response or the microwave absorption efficiency (i.e. €”/wt%) between the heavily-coked
samples (polyaromatics dominate) and lightly-coked samples (polyaromatics are not predominant)
would be much more obvious than the current results.

Supplementary Note 3. The material should be dielectric, we consider the delimited electron
distribution is crucial for effective electron frictions.
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Supplementary Discussion

Measured all samples’ £”, €”’/wt% and explanations. Supplementary Fig. 1 and 2 list the
dielectric loss values (g”) of all coked samples and their parent zeolites. Corresponding coke
compositions are illustrated in the obtained Laser-Raman spectra (Supplementary Fig. 3 and 4),
where special attention has been paid to the bands at approximately 1605 cm™ representing the
polyaromatics in the coke contents (the exact assignment may vary in a very small range in
different studies)'. The total coke contents are measured as weight loss in the Thermogravimetric
analysis (TGA) of coked samples, as Supplementary Fig. 5-11 show (here the curves directly
reflect the weight loss of sample in terms of wt%).

We further normalized the obtained dielectric loss value (¢ ) by weight of cokes for different
post-run samples. Notably, the obtained result is not the & value of unit weight cokes
(explanations in Supplementary Note 1), in fact, it indicates the contribution of unit weight cokes
to the integral dielectric loss value of a coked sample, which is characteristic of the sample’s coke
composition. Data are presented in the form of & /wt%, as shown in Supplementary Fig. 12 and 13.
Particularly, we directly employed the concentration (wt%) of coke contents in the post-run
sample obtained from TGA measurement instead of a calculated coke weight in the sample tube.
The total sample weight loaded in the tube and measured in the cavity changes in a quite small
range between different samples by very careful loading operations; thus, the wt% value can be
directly employed to represent the real coke weight measured, with negligible errors. The special
format at the current stage, as we considered, makes the MW absorption data better combine with
the TGA data (wt% of sample taken by cokes is directly readable form the TGA curves); on the
other hand, the presented data also reflect how coke concentration in sample affects MW
absorption at different coking levels, which possesses unique research significance for next-step
studies (for instance, cokes taking 1wt% of the post-run sample contribute discrepantly to the
integral sample dielectric loss value, between the cases that there are 10wt% and 20wt% of the
post-run sample are cokes, respectively).

It should be noted that the exact €”/wt% values of most of the lightly-coked samples (e.g. the
bottom or 2h reacted samples, where polyaromatics are not predominant in total coke contents)
should be lower than the currently presented data, as their TGA weight losses before 200 °C have
not been taken into the calculation (explanations in Supplementary Note 2)'. All coked samples
are protected in the N, flow after the reaction, and directly measured in TGA after very quick
unloading at room temperature, so as the contamination by moisture in air can be reduced to the
minimal level.

Discussion on *C NMR and other results. Coke compositions are further analyzed by *C NMR
(Supplementary Fig. 14-27) with Cross Polarization (CP) and Direct Excitation (DE). The spectra
of heavily-coked, polyaromatics rich samples (e.g. coked top-catalyst-bed nano H-ZSM-5 samples)
show outstandingly poor **CP NMR signal, which indicates the over graphitized (dehydrogenated
with more aromatic SP? carbons formed) status of these samples. This is a common problem of CP
3C NMR when applied to measure samples containing a higher level of graphite-like carbons (the
dissipation of hydrogen greatly limits the CP signals)’. Lightly-coked samples (e.g. coked
bottom-catalyst-bed nano H-ZSM-5 samples) with poor aromatics in cokes and/or much less total
coke amounts (these samples are visually shown in light black or grey colors), have shown

somewhat more observable aromatic signals, at about 130ppm in the NMR spectra, in stark
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contrast to their Raman and TGA results. The enhanced aromatic NMR signal here does not mean
a rich abundance of aromatic cokes, however, it is as a result of a less-dehydrogenated sample
status (hydrogen helps to improve the carbon signals) with in fact really poor amount of aromatics
in total cokes.

The deeper graphitized status of those polyaromatics rich coked samples, as we proposed, is the
most important reason for an enhanced & /wt% value. As is discussed in the main body of the
paper, removal of hydrogen (a major effect in the coke formation) forms more aromatic sp
carbons in the coke structure. These sp’ carbon centres possess further delocalized, and highly
mobile z electrons which are able to undergo Maxwell-Wagner polarization to a greater extent and
lead to the enhanced dielectric loss”.

It should be noted that the pure zeolite body also possesses somewhat dielectric loss, and the
obtained results in Supplementary Fig. 2 indicate that this dielectric loss property may be even
stronger than the case that lightly-dehydrogenated coke species (aromatic cokes are not
dominating) are deposited, as has been particularly observed on the samples of SAPO-34 and
MCM-22. Although these samples possess somewhat more readable *C NMR signals from the
aromatics (~130ppm), aromatics are still the rare components in total coke contents (the aromatic
cokes will prohibit their CP **C NMR signals when their concentration increases, which happens
to be a weakness of the *C NMR measurement without an *C exchange). On the other hand,
these lightly-coked samples do not show any clear sign of polyaromatics in the corresponding
Laser-Raman data, as shown in Supplementary Fig. 4, therefore we could imagine that their major
coke contents are mainly non-aromatic based, might be some olefinic, or other paraffinic species
deposited.

Here the discussion comes back to the question if we should subtract the dielectric loss value of
pure zeolite body from the value of corresponding coked sample before the calculation of & /wt%,
as part of the ¢ value should be given by the pure zeolite body. However, the measured
permittivity of the sample is an effective value composed of complex contributions from each
constituent material. The obtained data herein is not a simple adding up of ¢ values of each
component, which is obviously not scientific. For instance, signals of NMR measurement which is
a similar way also in sample-in-field mode are highly dependent on the surrounding environment
of the nuclei (interactions and other effects caused by the sample composition also work on the
final signal response), and therefore the results are not a simple adding up of responses from each
sample component. In our microwave based measurement, there could also be potential
interactions between the coke contents and the zeolite body, which affects the integral sample
dielectric loss value.

Here the case of industrial H-ZSM-5 sample is even more complex. Its micro-sized, higher acid
concentration (Si/Al=25) features often lead to rapid, bulky, and more complicated coke
deposition. The 5h coked sample possesses some other condensed coke species represented by the
bands extending towards to 3000 cm™ in the Laser-Raman spectra, most possibly assigned to the
poly-olefinic species (these are also hydrogen-loss carbonaceous species, therefore the 5h sample
exhibits weak *C NMR signal)®. Accordingly, polyaromatics are not predominant in coke
contents, and the corresponding dielectric loss value of this sample (5h coked industrial H-ZSM-5)
is a bit smaller than the 2h coked sample which shows a dominating sign of polyaromatics in the
Raman spectra. The special case of industrial H-ZSM-5 happens to present that, at the current
stage, polyaromatics (a further graphitized structure than the condensed poly-olefinic species) in
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coke contribute to the most effective microwave absorption (dielectric loss) compared with other
species /coke precursors, most possibly owing to the higher abundance of sp? carbons in their
structure, and particularly a further delocalized = electrons distribution (this is more efficient than
olefins for Maxwell-Wagner Polarization). It seems that it is the evolution of carbon atoms from
sp® hybridization (hydrogen saturated status) to a further electron delocalized sp? hybridization
(dehydrogenated to graphite or graphite like status) allows us to monitor and assess the
progressive catalyst coking. Such a process is just the nature of catalytic coke formation based on
continuous, thermodynamically driven dehydrogenations. Particularly, this indeed arises our
interests for a future, further exploration, with a final target on establishing a data base that
combines the chemical feature of coke species with their particular MW absorption efficiencies
(¢ Wt%).

Reactor settings and design of experiments. Supplementary Fig. 28 illustrates the
fixed-bed-reactor system employed for Methanol-to-hydrocarbon reactions, with the experimental
sets included in the main body of the paper (methods). The observed coke depositions are mainly
attributed to the characteristic properties of different zeolites; however, the separated coking levels
achieved by the same catalyst via different MTH reactions/conditions are based on series of
long-term pre-explorations which helped to finally confirm the proper reaction approaches.
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