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SUPPLEMENTARY METHODS 

 

1. Traditional observational analyses 

The association between education and self-reported CHD prevalence was derived from NHANES data using multivariable 

logistic regression adjusting for age and sex (Supplementary Table 1).(1) The association between education and the 

incidence of clinically-verified CHD was derived from two data sources. First, prospective data from the HAPIEE study was 

analysed with a Cox proportional hazard regression adjusting for age, sex, and country.(2) Second, we reanalysed 

published summary-level data from the MORGAM consortium, where the published hazard ratios (HR) were initially 

expressed in terms of country-specific top vs. bottom tertiles of education.(3) Here, we took the log of the hazard ratios 

corresponding to the lowest and highest educational tertiles, and divided it by the number of years of education between 

the lowest and highest tertiles from another publication,(4) and inverted the sign (to express the estimate per 1-year of 

additional education). Results were multiplied by 1-SD (3.6 years of education), and log HRs were back transformed into 

HR of CHD per 1-SD increase in education. Country and sex-specific MORGAM estimates were then pooled using fixed-

effects inverse-variance meta-analysis. HAPIEE and MORGAM estimates were meta-analysed similarly, to derive a 

summary estimate of incidence.  

 

As our MR analyses assumed a linear relationship between education and CHD, we used individual-level data from 

NHANES and HAPIEE to model the dose-response observational association between years of education (as an ordinal 

categorical variable) and risk of CHD (Supplementary Figures 10-11). 

 

 

 

2. Genetic correlation between education and CHD 

To investigate the genetic correlation between education and CHD, we used the “Lookup Center” function of the LD Hub 

platform (http://ldsc.broadinstitute.org).(5) On 28th October 2016, we downloaded an XLS file of genetic correlations, 

based on latest data that has been previously uploaded onto the LD Hub platform. Analyses were done by Linkage 

Disequilibrium Score Regression. 

 

 

 

3. Causal analyses 

3.1. Conventional Mendelian randomization  

To avoid biases due to overlapping datasets (i.e. where data from the gene-education association and gene-CHD 

association are derived from the same samples, and which can lead to bias in the direction of the observational 

association in the presence of a weak instrument),(6) we excluded data from the following studies from the SNP-

education data source: deCODE, WTCCC, KORA, THISEAS, and 23andMe.(7) The SNP-education estimates from this 

restricted dataset (n= 349,306) were highly correlated with the SNP-education estimates from the complete SSGAC 

dataset (Pearson’s r for 162 SNPs=0.96 [p-value<0.001] and Pearson’s r for 72 SNPs=0.92 [p-value<0.001]) 

(Supplementary Figures 5 & 6), and used in subsequent MR analyses. Supplementary Dataset 1 gives details for each SNP 

from both overlapping and nonoverlapping data sources. 

 

Supplementary figures 7 & 8 describe the matching procedure between SNPs retrieved from education GWAS and 

CARDIoGRAMplusC4D for the two sets of 162 and 72 SNPs, respectively. Where necessary, proxies were retrieved using 

the SNP Annotation and Proxy Search online tool (SNAP, http://archive.broadinstitute.org/mpg/snap/ldsearch.php; 

reference panel = 1000 Genomes; LD threshold r2>0.80).(8) 

 

For all MR analyses, alleles from SSGAC and CARDIoGRAMplusC4D datasets were aligned to correspond to an increase in 

educational attainment. Conventional MR analysis was conducted using the inverse-variance weighted (IVW) approach, 

i.e. a linear regression of the SNPs-education estimates on SNPs-CHD estimates, weighted by the minor allele frequencies 

of each SNP and forced to pass through the origin.(9)  

 

We estimated the power for the conventional MR analysis to detect the same magnitude of association reported in the 

observational studies, using a two-sided alpha of 0.05. Power was ≥98% for both sets of genetic instruments 

(Supplementary Table 2).  
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3.2 Sensitivity Mendelian randomization analyses 

 

Sensitivity analyses investigated the potential presence of unbalanced horizontal pleiotropy among the genetic variants 

under analysis. 

 

3.2.1. Penalized weighted median Mendelian randomization 

A penalized weighted median MR analysis was conducted (implemented in Stata using the mrrobust package; available at: 

https://github.com/remlapmot/mrrobust).(10) This gives more weight to genetic variants close to the median causal 

estimate. Weighted Median methods yield robust and precise results even when up to 50% of the weight in the analysis 

stems from invalid genetic variants.(10) 

 

3.2.2. MR-Egger regression 

MR-Egger regression was applied as described by Bowden et al.(9) Based on the same principles as the Egger test (which 

assesses small study bias in meta-analysis) the method is similar to conventional MR analyses. However, the regression is 

not constrained to pass through the origin. A significant departure of the y-intercept from the origin gives evidence for 

the presence of unbalanced pleiotropy. If the level of pleiotropy is independent of the strength of the association 

between SNPs and the exposure under analysis, the MR-Egger estimate thus represents the true causal effect, even if all 

the genetic variants present pleiotropic effects (as per the InSIDE rule).(9) The standard error (SE) of the causal estimate 

was corrected by dividing the reported SE of the estimate by the residual SE.  

 

 

Additional sensitivity analysis (Supplement only) 

 

3.2.3. MR-Egger +SIMEX 

All MR approaches rely on the fact that the SNP-exposure association is true (NO Measurement Error [NOME] 

assumption), but whenever the SNP-exposure association estimates are spurious (violation of the NOME assumption), 

weak instrument bias can distort the causal effect estimate (specifically diluting it towards the null value).(11) Using the I2 

statistic, we thus quantified the expected dilution in the MR-Egger causal effect estimates due to the variance of the 

estimates of the SNP-education association: I2 was only moderate for the set of 162 SNPs (I2=66%; potential dilution of 

44%), whereas I2 for the set of 72 SNPs indicated a reduced risk of bias (I2=93%; potential dilution of 7%). As described by 

Bowden et al, we applied simulation extrapolation (SIMEX; implemented in R using the simex package) to adjust the MR-

Egger causal estimates to account for violations to the NOME assumption (NO Measurement Error; results based on 

10,000 simulations are presented in Supplementary Table 4).(11)  

 

 

 

3.2.4. Mode Based Methods (assuming Zero Modal Pleiotropy)  

 

It is also possible to assess the potential role of horizontal unbalanced pleiotropy through recently developed methods 

that relax the conventional MR assumptions, and instead form a less stringent assumption of Zero Modal Pleiotropy. This 

postulates that pleiotropic SNPs are unlikely to converge on the same modal (most common) estimate due to pleiotropic 

effects not being identical. In contrast, valid SNPs are more likely to converge on the same, common modal estimate. We 

performed three analyses to exploit this assumption: 

 

3.2.4.1. Mode-Based Estimate 

 

In our first analysis, we used the Mode-Based Estimate (MBE). With an infinite sample (i.e. no measurement error), the 

MBE would use the modal causal estimate (i.e. the most common instrumental variable estimate out of the 162 SNPs, 

where the instrumental variable estimate for each SNP is derived by dividing the SNP to CHD estimate by the SNP to 

education estimate). In finite samples, the MBE uses the mode of the smoothed empirical density function of causal 

estimates (where the instrumental variable estimate for each SNP is upweighted by its relative precision, in comparison to 

other SNPs). A tuning parameter � regulates the bias-variance trade-off. We explored a range of these, following which 

�=0.5 was chosen to best fit the data. The analysis makes the assumption that the most commonly observed causal effect 

estimate comes from valid genetic instruments, and it can provide a consistent causal effect estimate even if the majority 

of (non-modal) genetic instruments are invalid.  

 

One advantage of the Mode-Based Estimate is that it is less influenced by outlying (and possibly pleiotropic) genetic 

instruments without formally removing them from the analyses, thus making full use of the data. However, the 
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uncertainty around the point estimate can sometimes be prohibitively wide. For this reason, we exploited the Zero Modal 

Pleiotropy assumption using another strategy, which involves actually removing some genetic instruments from the 

analysis.  

 

 

3.2.4.2. Largest Homogeneous Subset-MR 

 

In our second analysis, SNPs were removed, one-by-one, until the final set of SNPs contained only sufficiently similar 

(according to some criteria) effect estimates. As such this final set of SNPs can be thought of as a relatively 

“homogeneous subset”. The steps we took are: 

1. Begin with the set of 162 SNPs. Evaluate the heterogeneity among each of the 162 causal estimates, using 

Cochran’s Q statistic.(12) 

2. Remove the SNP which contributes most to heterogeneity. 

3. Repeat the proves, until a P-value threshold of heterogeneity is reached (e.g. P>0.05). Smaller P-values denote 

more heterogeneity (close to the original set of 162 SNPs) while larger P values include fewer SNPs and are 

hence more stringent. 
 

3.2.4.3. Largest Homogeneous Subset-MR: removing most causal variants 

 

Our third analysis was similar to the second one described above. This time, instead of removing any SNP (either at the 

left- or right-hand tail of the causal effect distribution) we only removed those SNPs that provided the strongest causal 

estimates (on one side of the tail), until the heterogeneity P value was attained as above. This method is unlikely to 

provide a valid causal estimate, as its result will be biased towards the null. However, it is an extreme example of a very 

stringent sensitivity check which asks the question “What if the most outlying SNPs, all of which produce the strongest 

causal estimates, were deemed as invalid (due to having suspected horizontal, unbalanced pleiotropic effects on CHD)?”  

 

Results from all three Mode Based Methods are presented in Supplementary Table 4. To summarize these findings, the 

first Mode-Based Estimate yielded directionally concordant point estimates. However, this test was grossly 

underpowered to detect a causal effect. The Largest Heterogeneous Subset analyses, by contrast, were better powered. 

The vast majority of SNPs (i.e. 90%) were highly homogeneous in their causal effect estimates. Removing these 0-10% 

heterogeneous SNPs made little difference to the point estimates, and furthermore all overall MR estimates retained 

conventional levels of statistical significance, so were unlikely to have been observed by chance alone. Altogether, 

findings from the three mode based analyses were consistent with those from the main IVW analyses, and with the 

hypothesis of limited confounding from unbalanced horizontal pleiotropy. 

 

3.2.4. Causal association between genetic liabilities for CHD and education 

Since genetic liabilities for CHD may also influence educational attainment already at earlier ages, we tested whether the 

genetic risk of CHD was associated with educational attainment. We used data from the CARDIoGRAMplusC4D 

Consortium to extract SNP-CHD estimates for 53 independent SNPs (at r2<0.02) that were GWAS significant (P<5x10-

8).(13-16) We directly matched these with the corresponding SNPs from the SSGAC GWAS, involving 328,917 individuals 

(Supplementary Dataset 3).(7) The analyses were conducted similar to the analyses described above. This analysis was 

performed using data where the underlying participants overlapped slightly between the SNP-exposure and SNP-outcome 

estimates. However, as such overlap biases results away from the null,(17) and since our finding was quite definitively 

null, we did not purse seeking non-overlapping data in this instance, for this particular sensitivity analysis  

 

 

 

3.3. Causal relationships from education to 10 cardiovascular risk factors, from 6 GWAS consortia 

 

The conventional MR approach was used to identify associations between genetic predisposition towards higher 

educational attainment and cardiovascular risk factors that could be potential mediators. Outcome data were taken from 

various publicly available datasets: ever smokers vs. never smokers (from the Tobacco and Genetics Consortium);(18) 

blood pressure (International Consortium for Blood Pressure);(19) LDL-cholesterol, HDL-cholesterol and triglycerides 

(Global Lipids Genetic Consortium);(20) type 2 diabetes (DIAbetes Genetics Replication And Metaanalysis, stage 1 GWAS, 

version 3/2012Dec17);(21) glucose (Meta-Analyses of Glucose and Insulin-related traits Consortium);(22) body mass index 

(BMI) and height (Genetic Investigation of ANthropometric Traits).(23, 24) 

 

Statistical analyses were conducted using Stata v.13. Simulation extrapolation analyses were conducted using R v3.3.1. 



 6

 Supplementary Table 1 Description of observational studies 

 

Study 
The National Health and Nutrition 

Examination Survey (NHANES)(1) 

Health, Alcohol and Psychosocial factors 

In Eastern Europe (HAPIEE)(2) 

MOnica Risk, Genetics, Archiving and 

Monograph (MORGAM)(3) 

Access policy 
Public domain, with all required data 

instantly downloadable  

Access upon application to principal 

investigators.  

Our analysis has not been previously 

published. 

Access upon application to principal 

investigators.  

Our analysis is based on previously published 

work. 

Design Cross-sectional Longitudinal Longitudinal 

Country United States of America Russia, Czech Republic, Poland, Lithuania 

9 European countries (Sweden, Finland, 

Denmark, Northern Ireland, Scotland, 

France, Germany, Italy, Lithuania) 

Baseline 1999-2014 (8 waves) 2002-2008 1983-2004 

Age at baseline 20-85 43-74 35-64 

Initial sample 43,611 34,876 unknown 

Exclusion criteria Not applicable 

Self-reported hospitalization/diagnosis 

with AMI, stroke, coronary heart disease 

or angina. Or positive score on the Rose 

Angina Questionnaire 

Documented or self-reported history of 

myocardial infarction or unstable angina 

pectoris 

Analytic sample 43,611 23,511 97,048 

Incident/Prevalent CHD cases Prevalent  Incident Incident 

Case ascertainment 

Self-reported history (hence non-fatal only) 

as per “Has a doctor ever said you had a 

heart attack?” or “…coronary artery 

disease?”. 

Sensitivity analyses further restricted to 

“heart attack” only (See Supplementary 

Figure 2) 

National MI and mortality registries  National MI and mortality registries  

Cases (n) 1,933 309 (fatal) + 323 (non-fatal) = 623 total 6 522 

Follow-up (median) - 6.9 years 10.0 years 

Statistical model Logistic Regression Cox Proportional Hazards Regression 

Cox Proportional Hazards Regression within 

each country & gender, followed by meta-

analysis (detailed in the “methods” section). 

Weighting/adjustment 

Adjusted for age, sex. 

Weighted to account for non-random 

sampling, response bias and geographical 

clustering 

Adjusted for age, sex, country Adjusted for age 

SD, standard deviation. CHD, coronary heart disease. MI, myocardial infarction.  



 7

Supplementary Table 2 Power for conventional Mendelian randomization analysis (two-sided α=0·05) 

Exposure/genetic 

instrument 

R-squared (of variance 

in educational 

phenotype) 

Actual N 

(CARDIoGRAMplusC4D) 
Proportion of cases 

(CARDIoGRAMplusC4D) 
Observational OR 

N required for 

80% power 
Power at actual N 

Education/1
st

 set of 

SNPs (162 SNPs) 
0.018 194,427 0.327 0.8* 42,832 >0.99 

Education/2
nd

 set of 

SNPs (72 SNPs) 
0.008 194,427 0.327 0.8* 96,372 0.98 

* based on traditional observational estimate of education and risk of incident CHD from meta-analysis of HAPIEE and MORGAM studies (see Figure 2) 

Power calculation was based on the method developed by Brion et al.(25) 

  



 8

 

Supplementary Table 3 Sensitivity analyses for observational estimates  

 

Study Case definition/ sub-analysis Cases (n) 
Controls 

(n) 

Mean age 

at first 

event 

Odds ratio (OR) /  

hazard ratio (HR) of CHD,  

per 1-SD higher education 

Result taken forward into 

main results  

(presented in figure 1)? 

PREVALENCE  

NHANES
*
  

 
Nonfatal CHD 

    
 

  
All ages 2,846 40,823 55.1 OR = 0.73 (0.68; 0.78) Yes 

  
All ages (no missing data, to compare 

              with SES-adjusted estimate below) 
1,234 16,790 55.1 OR = 0.75 (0.67; 0.83) 

 

  All ages, fully SES-adjusted† 1,234 16,790 55.1 OR = 0.73 (0.62; 0.85)  

  Age of first event <66y 1,907 40,823 48.7 OR = 0.72 (0.66; 0.78)  

 Nonfatal AMI only  

  All ages 1,933 41,678 54.7 OR = 0.71 (0.65; 0.77)  

INCIDENCE  

HAPIEE‡  

 Fatal / nonfatal CHD event 632 22,879 65.0 HR = 0.75 (0.69; 0.81) Yes (meta-analysed) 

 Nonfatal CHD event only 338 23,138 64.1 HR = 0.81 (0.72; 0.91)  

 
Fatal CHD event only 309 23,202 67.2 HR = 0.71 (0.64; 0.79)  

 Fatal CVD event  621 22,890 67.4 HR = 0.75 (0.70; 0.82)  

MORGAM‡  

 Fatal / nonfatal CHD event 6 522 90 526 63.2 HR = 0.83 (0.80; 0.86) Yes (meta-analysed) 

* Adjusted for age and sex (additionally weighted to account for oversampled design, response rate, and geographical clustering). 

† Adjusted for age, sex, ethnicity, citizenship, country of birth, military service, marital status, household size, family income: poverty threshold ratio. 

‡ Adjusted for age, sex, and country of survey. 

SD, standard deviation. CHD, coronary heart disease. AMI, acute myocardial infarction. 
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Supplementary Table 4 Sensitivity analyses of Mendelian Randomization estimates. 

 

Analysis Causal effect (OR) 

estimate for risk of 

CHD (95% CI) 

Causal effect  

P-value 

MR-Egger constant 

(Log OR) (95% CI) 

Egger test for 

pleiotropy  

(P-value) 

Set of 162 SNPs (I
2
 statistic=0.661)     

  Conventional MR (IVW) 0.67 (0.59 to 0.77)  2.9 x 10
-8

 - - 

  Weighted-Median MR 0.70 (0.58 to 0.85) 1.8 x 10
-4

 - - 

  Standard MR-Egger  0.54 (0.31 to 0.93)  0.029 0.004 (-0.056 to 0.013) 0.417 

  Adjusted MR-Egger (+SIMEX) 0.41 (0.19 to 0.87)  0.022 - - 

  Mode-Based Estimate 0.84 (0.44 to 1.60) 0.255   

  Largest Homogeneous Subset-MR (3 tests below):     

      Minus 2 most heterogeneous SNPs = 160 SNPs (Heterogeneity P≥0.05) 0.68 (0.59 to 0.77) 1.8 × 10
-8

 - - 

      Minus 4 most heterogeneous SNPs = 158 SNPs (Heterogeneity P≥0.20) 0.66 (0.59 to 0.75) 8.8 × 10
-10

 - - 

      Minus 12 most heterogeneous causal SNPs = 150 SNPs (Heterogeneity P≥0.20) 0.75 (0.67 to 0.86) 1.8 × 10
-5

   

Minus (47 proxies) = 115 SNPs. Conventional MR estimate (IVW):   0.62 (0.52 to 0.73)  1.3 x 10
-7

 - - 

Minus (21 with >10% missing data) = 141 SNPs. Conventional MR estimate (IVW): 0.70 (0.60 to 0.80) 1.4 x 10
-6

 - - 
     

Set of 72 SNPs (I
2
 statistic=0.934)     

  Conventional MR (IVW) 0.60 (0.49 to 0.74)  6.2 x 10
-6

 - - 

  Weighted-Median MR 0.71 (0.54 to 0.93) 0.014   

  Standard MR-Egger  0.54 (0.26 to 1.11)  0.099 0.002 (-0.010 to 0.014) 0.764 

  Adjusted MR-Egger (+SIMEX) 0.43 (0.17 to 1.12)  0.088 - - 

  Mode-Based Estimate 0.78 (0.40 to 1.54) 0.490   

  Largest Homogeneous Subset-MR (3 tests below):     

       Minus 2 most heterogeneous SNPs = 70 SNPs  (Heterogeneity P≥0.05) 0.65 (0.53 to 0.79) 5.8 x 10
-5

   

       Minus 4 most heterogeneous SNPs = 68 SNPs  (Heterogeneity P≥0.20) 0.64 (0.53 to 0.78) 9.4 x 10
-5

   

       Minus 5 most heterogeneous causal SNPs = 67 SNPs  (Heterogeneity P≥0.20) 0.67 (0.55 to 0.81) 7.6 x 10
-5

 - - 

 

All causal effects are expressed as change in Odds Ratio of coronary heart disease (CHD), per 3.6 years (1-SD) of longer education.  

The adjusted MR-Egger regression estimates are the results of 10,000 simulations. 

Section 3.2 (on page 4) of this Supplement file provides further methodological details. 

 

SNP, single nucleotide polymorphism. MR, Mendelian randomization. IVW, inverse-variance weighted (analysis). SIMEX, simulation extrapolation.  

 

  



 

Supplementary Figure 1 Theoretical illustration of pleiotropic phenomena 

randomization (MR) analyses 

 

 

 

In the case of vertical pleiotropy, the conventional MR assumptions are satisfied as the intermediating phenotype lies on 

a single causal pathway. In the case of horizontal pleiotropy, one or more phenotypes lie on a different causal pathway. 

When the effects of the SNPs on the outcome through various intermediating phenotypes 

causal pathways) are balanced, then estimates derived with conventional MR estimates 

when the effects of SNPs on the outcome are systematically distorted towards one intermediating pathway (unbalanced 

horizontal pleiotropy), conventional MR estimates are invalid and biased. Advanced MR techniques (representing 

techniques such as MR-Egger and weighted median MR), accounting

instrument, should nonetheless produce an estimate that is closer to the true underlying association between the risk 

factor and outcome.  

Figure adapted from White J. et al. JAMA Cardiol

 

  

Theoretical illustration of pleiotropic phenomena on estimates derived from Mendelian 

In the case of vertical pleiotropy, the conventional MR assumptions are satisfied as the intermediating phenotype lies on 

a single causal pathway. In the case of horizontal pleiotropy, one or more phenotypes lie on a different causal pathway. 

cts of the SNPs on the outcome through various intermediating phenotypes (including those on different 

are balanced, then estimates derived with conventional MR estimates should be 

tcome are systematically distorted towards one intermediating pathway (unbalanced 

horizontal pleiotropy), conventional MR estimates are invalid and biased. Advanced MR techniques (representing 

weighted median MR), accounting for presence of unbalanced pleiotropy of the genetic 

instrument, should nonetheless produce an estimate that is closer to the true underlying association between the risk 

JAMA Cardiol. 2016.(26)  

10 

on estimates derived from Mendelian 

 

In the case of vertical pleiotropy, the conventional MR assumptions are satisfied as the intermediating phenotype lies on 

a single causal pathway. In the case of horizontal pleiotropy, one or more phenotypes lie on a different causal pathway. 

(including those on different 

should be valid. On the contrary, 

tcome are systematically distorted towards one intermediating pathway (unbalanced 

horizontal pleiotropy), conventional MR estimates are invalid and biased. Advanced MR techniques (representing 

for presence of unbalanced pleiotropy of the genetic 

instrument, should nonetheless produce an estimate that is closer to the true underlying association between the risk 



 

Supplementary Figure 2 – Overview of the main steps in this study, showing existing datasets (grey), hypothesis 

formulation (blue), key findings (green), their interpretation (yellow), conclusion (orange) and final suggestions for 

discussion (red).  

verview of the main steps in this study, showing existing datasets (grey), hypothesis 

formulation (blue), key findings (green), their interpretation (yellow), conclusion (orange) and final suggestions for 
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verview of the main steps in this study, showing existing datasets (grey), hypothesis 

formulation (blue), key findings (green), their interpretation (yellow), conclusion (orange) and final suggestions for 



 

 

 

Supplementary Figure 3 Flowchart of participants in observational NHANES analysis

Supplementary Figures 3-8, concerning METHODS: 

wchart of participants in observational NHANES analysis
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Supplementary Figure 4 Flowchart explaining the derivation of the two sets of education SNPs (162 and 72 SNPs), used to estimate causal effects from education.  

 

   



 

Supplementary Figure 5 Scatter plot of SNP-education association estimates, comparing complete dataset vs. non

 

 

The complete SSGAC dataset (x-axis) was based on 405’072 participants. The restricted dataset (y

standard errors (SE) in the complete SSGAC and restricted dataset were both of 0.003. 

above the GWA threshold (P>5 x 10
-8

) in the smaller dataset without sample overlap.

education association estimates, comparing complete dataset vs. non-overlapping dataset (n=162 SNPs)

axis) was based on 405’072 participants. The restricted dataset (y-axis) was based on 349,306 participants

standard errors (SE) in the complete SSGAC and restricted dataset were both of 0.003. Red points indicate 51 SNPs that remained associated with the education phenotype 

dataset without sample overlap.  

14 

overlapping dataset (n=162 SNPs) 

 

axis) was based on 349,306 participants without sample overlap. Median 

hat remained associated with the education phenotype 



 

Supplementary Figure 6 Scatter plot of SNP-education association estimates, comparing complete dataset vs. 

 

 

The complete SSGAC dataset (x-axis) was based on 293’723 

the replication data was additionally used, to allow for most precise estimates while concurrently minimizing bias)

were both of 0.003. Red points indicate 29 SNPs that remained associated with the education ph

overlap. 

education association estimates, comparing complete dataset vs. non-overlapping dataset (n=72 SNPs)

293’723 participants. The restricted dataset (y-axis) was based on 349,306 participants

data was additionally used, to allow for most precise estimates while concurrently minimizing bias). Median SE in the complete SSGAC and restricted data dataset 

Red points indicate 29 SNPs that remained associated with the education phenotype above the GWA threshold (P>5 x 10

15 

overlapping dataset (n=72 SNPs) 

 

axis) was based on 349,306 participants without sample overlap (and where 

Median SE in the complete SSGAC and restricted data dataset 

enotype above the GWA threshold (P>5 x 10
-8

) in the dataset without sample 



 

Supplementary Figure 7 Flowchart illustrating how SNPs identified 

SNPs reported in CARDIoGRAMplusC4D (n=162 SNPs)

Where necessary, proxies were retrieved using the SNP Annotation and Proxy Search online tool (SNAP, 

http://archive.broadinstitute.org/mpg/snap/ldsearch.php ; reference panel = 1000 Genomes; LD threshold r2>0.80).

  

Flowchart illustrating how SNPs identified in the SSGAC education GWAS 

CARDIoGRAMplusC4D (n=162 SNPs) 

Where necessary, proxies were retrieved using the SNP Annotation and Proxy Search online tool (SNAP, 

http://archive.broadinstitute.org/mpg/snap/ldsearch.php ; reference panel = 1000 Genomes; LD threshold r2>0.80).
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education GWAS were mapped against 

 
Where necessary, proxies were retrieved using the SNP Annotation and Proxy Search online tool (SNAP, 

http://archive.broadinstitute.org/mpg/snap/ldsearch.php ; reference panel = 1000 Genomes; LD threshold r2>0.80). 



 

Supplementary Figure 8 Flowchart illustrating how SNPs identified by SSGAC 

listed in CARDIoGRAMplusC4D (n=72 SNPs)

 

Where necessary, proxies were retrieved using the SNP Annotation and Proxy Search online tool (SNAP, 

http://archive.broadinstitute.org/mpg/snap/ldsearch.php ; reference panel = 1000 Genomes; LD threshold r2>0.80).

 

 

  

Flowchart illustrating how SNPs identified by SSGAC education GWAS 

listed in CARDIoGRAMplusC4D (n=72 SNPs) 

Where necessary, proxies were retrieved using the SNP Annotation and Proxy Search online tool (SNAP, 

http://archive.broadinstitute.org/mpg/snap/ldsearch.php ; reference panel = 1000 Genomes; LD threshold r2>0.80).

17 

education GWAS were mapped against SNPs 

 
Where necessary, proxies were retrieved using the SNP Annotation and Proxy Search online tool (SNAP, 

http://archive.broadinstitute.org/mpg/snap/ldsearch.php ; reference panel = 1000 Genomes; LD threshold r2>0.80). 



 

Supplementary Figures 9

 

Supplementary Figure 9 Observational estimates from the MORGAM consortium

results from meta-analysis. 

Meta-analysis performed using inverse-variance weighted fixed

CHD, coronary heart disease. SD, standard deviation. HR, hazard ratio. CI, confidence interval.

 

 

  

Supplementary Figures 9-11, concerning OBSERVATIONAL RESULTS:

bservational estimates from the MORGAM consortium, showing cohort

 

variance weighted fixed-effect modelling.  

CHD, coronary heart disease. SD, standard deviation. HR, hazard ratio. CI, confidence interval. 
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11, concerning OBSERVATIONAL RESULTS: 

howing cohort-level estimates and the 

 



 

Supplementary Figure 10 Dose response relationship between education and CHD, using observational NHANES data

 

 

 

Lowest education group represents “some high school” in USA system, i.e. typically 16

Logistic regression model was adjusted for age and sex.

P for trend < 0.0001. 

CHD, coronary heart disease; NHANES, National Health and Nutrition Examination Survey;

OR, odds ratio CI, confidence interval. 

 

 

Dose response relationship between education and CHD, using observational NHANES data

Lowest education group represents “some high school” in USA system, i.e. typically 16-year old pupil.

for age and sex. 

CHD, coronary heart disease; NHANES, National Health and Nutrition Examination Survey; 
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Dose response relationship between education and CHD, using observational NHANES data 

 

year old pupil. 



 

  

Supplementary Figure 11 Dose response relationship between education and CHD incidenc

data 

 

 

 
 

Lowest education group represents “Primary education or lower”, i.e. max. 4 years of education.

Cox proportional hazard regression model was adjusted for age, sex and country.

P for trend<0.001. 

CHD, coronary heart disease; HAPIEE, The Health, Alcohol and Psychosocial factors In Eastern Europe Study; 

HR, hazard ratio CI, confidence interval. 

 

Dose response relationship between education and CHD incidence, using observational HAPIEE 

Lowest education group represents “Primary education or lower”, i.e. max. 4 years of education.

Cox proportional hazard regression model was adjusted for age, sex and country. 

CHD, coronary heart disease; HAPIEE, The Health, Alcohol and Psychosocial factors In Eastern Europe Study; 

 

20 

e, using observational HAPIEE 

 

Lowest education group represents “Primary education or lower”, i.e. max. 4 years of education. 

CHD, coronary heart disease; HAPIEE, The Health, Alcohol and Psychosocial factors In Eastern Europe Study;  
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Supplementary Figures 12-, concerning CAUSAL RESULTS: 

 

Supplementary Figure 12 Scatter plot of 162 SNPs associated with education and their risk of CHD (with 95% confidence intervals) 

 
 

Each dot represents one single nucleotide polymorphism (SNP). 

The red line represents the regression slope of the causal effect estimate of education on risk of CHD (where each SNP is weighted by its inverse allele frequency). 

CHD, coronary heart disease. OR, odds ratio. CI, confidence interval.  
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Supplementary Figure 13 Scatter plot of 162 SNPs associated with education and their risk of CHD (with MR-Egger) 

 

 
 

The red line shows causal regression estimates from conventional Mendelian randomization (MR), inverse variance weighted (IVW).  

The blue line shows causal regression estimates from MR-Egger. 

SNP, single nucleotide polymorphism. CHD, coronary heart disease. OR, odds ratio. 

  



 

Supplementary Figure 14 Funnel plot of 162 SNPS, showing instrument strength against causal estimates

 

 

The instrument strength, representing the minor allele frequency corrected 

standard error of the SNP-outcome association for each SNP. The conventional MR (IVW in red) and Egger MR (MR

SNP, single nucleotide polymorphism. CHD, coronary heart

interval.   

Funnel plot of 162 SNPS, showing instrument strength against causal estimates 

The instrument strength, representing the minor allele frequency corrected genetic association with education is calculated by dividing the SNP

outcome association for each SNP. The conventional MR (IVW in red) and Egger MR (MR-Egger in blue) causal effect estimates are presen

heart disease. IVW, inverse variance weighted approach. MR, Mendelian randomization. OR, odds ratio. CI, confidence 
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genetic association with education is calculated by dividing the SNP-exposure association by the 

Egger in blue) causal effect estimates are presented. 

disease. IVW, inverse variance weighted approach. MR, Mendelian randomization. OR, odds ratio. CI, confidence 
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Supplementary Figure 15 Scatter plot of the 72 SNPs associated with education and their risk of CHD (with 95% confidence intervals) 

  
 

Each dot represents one single nucleotide polymorphism (SNP). 

The red line represents the regression slope of the causal effect estimate of education on risk of CHD (where each SNP is weighted by its inverse allele frequency). 

CHD, coronary heart disease. OR, odds ratio. CI, confidence interval.  
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Supplementary Figure 16 Scatter plot of the 72 SNPs associated with education and their risk of CHD (with MR-Egger) 
 

 
 

The red line shows causal regression estimates from conventional Mendelian randomization (MR), inverse variance weighted (IVW).  

The blue line shows causal regression estimates from MR-Egger. 

SNP, single nucleotide polymorphism. CHD, coronary heart disease. OR, odds ratio. 



 

Supplementary Figure 17 Funnel plot of 72 SNPs, showing 

 

 

The instrument strength, representing the minor allele frequency corrected genetic association with education is calculated by di

standard error of the SNP-outcome association for each SNP. The conventional MR (IVW in 

SNP, single nucleotide polymorphism. CHD, coronary heart

interval. 

 instrument strength against causal estimates 

 

instrument strength, representing the minor allele frequency corrected genetic association with education is calculated by dividing the SNP

outcome association for each SNP. The conventional MR (IVW in red) and Egger MR (MR-Egger in blue) causal effect estimates are presented.

heart disease. IVW, inverse variance weighted approach. MR, Mendelian randomization. OR, odds ratio. CI
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viding the SNP-exposure association by the 

Egger in blue) causal effect estimates are presented. 

disease. IVW, inverse variance weighted approach. MR, Mendelian randomization. OR, odds ratio. CI, confidence 
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Supplementary Figure 18 Scatter plot of the 53 SNPs associated with CHD development and their educational outcomes (with 95% confidence intervals) 

 

 
 

The red line represents the regression slope of the causal effects estimates (derived by the inverse-variance weighted Mendelian randomization method). 

SNP, single nucleotide polymorphism. CHD, coronary heart disease. OR, odds ratio. CI, confidence interval. 
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Supplementary Figure 19 Scatter plot of the 53 SNPs associated with CHD development and their educational outcomes (with MR-Egger) 

 

 
The red line shows causal regression estimates from conventional Mendelian randomization (MR), inverse variance weighted (IVW).  

The blue line shows causal regression estimates from MR-Egger. Here, the MR-Egger intercept is -0.00027 (95% CI =-0.0029 to 0.0023) and Egger test p-value = 0.837, suggesting 

limited pleiotropy. 

SNP, single nucleotide polymorphism. CHD, coronary heart disease. OR, odds ratio. 

 



 

Supplementary Figure 20 Funnel plot of 53 SNPs, showing 

 

The instrument strength, representing the minor allele frequency corrected genetic association with risk of 

standard error of the SNP-outcome association for each SNP. The conventional MR (I

SNP, single nucleotide polymorphism. CHD, coronary heart

interval. 

 instrument strength against the causal estimates (genetic liability for CHD on 

The instrument strength, representing the minor allele frequency corrected genetic association with risk of CHD is calculated by dividing the SNP

outcome association for each SNP. The conventional MR (IVW in red) and Egger MR (MR-Egger in blue) causal effect estimates are presented.

heart disease. IVW, inverse variance weighted approach. MR, Mendelian randomization. OR, odds rat
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on educational outcomes)  

 
is calculated by dividing the SNP-exposure association by the 

Egger in blue) causal effect estimates are presented. 

disease. IVW, inverse variance weighted approach. MR, Mendelian randomization. OR, odds ratio. CI, confidence 
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