(* Content-type: application/vnd.wolfram.cdf.text *) (*** Wolfram CDF File ***) (* http://www.wolfram.com/cdf *) (* CreatedBy='Mathematica 11.1' *) (*************************************************************************) (* *) (* The Mathematica License under which this file was created prohibits *) (* restricting third parties in receipt of this file from republishing *) (* or redistributing it by any means, including but not limited to *) (* rights management or terms of use, without the express consent of *) (* Wolfram Research, Inc. For additional information concerning CDF *) (* licensing and redistribution see: *) (* *) (* www.wolfram.com/cdf/adopting-cdf/licensing-options.html *) (* *) (*************************************************************************) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 1064, 20] NotebookDataLength[ 146843, 3038] NotebookOptionsPosition[ 145240, 2983] NotebookOutlinePosition[ 145887, 3006] CellTagsIndexPosition[ 145844, 3003] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell["Driving endonuclease gene (DEG) models", "Section", CellChangeTimes->{{3.617054589014371*^9, 3.617054634953948*^9}, { 3.617054745788719*^9, 3.617054749372074*^9}, {3.617331009160865*^9, 3.617331030624357*^9}, {3.61755857309064*^9, 3.617558583452688*^9}, { 3.617558631757123*^9, 3.617558634677442*^9}, {3.710333905363598*^9, 3.710333909556321*^9}, {3.710484490078437*^9, 3.710484502746763*^9}},ExpressionUUID->"56d5cd48-fe55-4f21-928b-\ 5234dd0dcba6"], Cell[CellGroupData[{ Cell["Set up recurrences and expressions for sex ratio and load", "Subsection", CellChangeTimes->{{3.6170546445289717`*^9, 3.6170547199679613`*^9}},ExpressionUUID->"ef386fc1-98d5-41fb-a48b-\ f67e1182f0e5"], Cell["\<\ Let q1 = frequency of Y+A+ in Y gametes q2 = frequency of Y+A- in Y gametes q3 = frequency of Y-A+ in Y gametes \[Xi]m = frequency of A+ in male X gametes \[Xi]f = frequency of A+ in female X gametes e = homing rate; \[Epsilon][i] = shredding rate (i = number of A+ alleles) s[i,j]; s[j] is fitness costs where i, j are number of Y+, A+ alleles are \ s[0,0] = s[0] = 0 \ \>", "Text", CellChangeTimes->{{3.617048528145439*^9, 3.6170485539904013`*^9}, { 3.6170486509176617`*^9, 3.6170486622637672`*^9}, 3.617145018240398*^9, { 3.6171450523673058`*^9, 3.617145108983358*^9}, {3.617145251459743*^9, 3.617145426920148*^9}, {3.617145485260084*^9, 3.617145494868634*^9}, { 3.617331479141987*^9, 3.61733174184792*^9}},ExpressionUUID->"f9d17f6c-a794-4c6a-9609-\ d7a134fbc543"], Cell[BoxData[ RowBox[{ TagBox[ RowBox[{"m", "=", RowBox[{"(", "\[NoBreak]", GridBox[{ {"\"\\"", "\"\\"", "\"\\"", "\"\\"", "\"\\"", "\"\\"", "\"\\"", "\"\\"", "\"\\"", "\"\\""}, {"\"\\"", RowBox[{"q1", " ", "\[Xi]f"}], RowBox[{ RowBox[{"q1", " ", RowBox[{"(", RowBox[{"1", "-", "\[Xi]f"}], ")"}]}], "+", RowBox[{"q2", " ", "\[Xi]f"}]}], RowBox[{"q2", " ", RowBox[{"(", RowBox[{"1", "-", "\[Xi]f"}], ")"}]}], RowBox[{"q3", " ", "\[Xi]f"}], RowBox[{ RowBox[{"q3", " ", RowBox[{"(", RowBox[{"1", "-", "\[Xi]f"}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"1", "-", "q1", "-", "q2", "-", "q3"}], ")"}], " ", "\[Xi]f"}]}], RowBox[{ RowBox[{"(", RowBox[{"1", "-", "q1", "-", "q2", "-", "q3"}], ")"}], " ", RowBox[{"(", RowBox[{"1", "-", "\[Xi]f"}], ")"}]}], RowBox[{"\[Xi]m", " ", "\[Xi]f"}], RowBox[{ RowBox[{"\[Xi]m", RowBox[{"(", RowBox[{"1", "-", " ", "\[Xi]f"}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"1", "-", "\[Xi]m"}], ")"}], " ", "\[Xi]f"}]}], RowBox[{ RowBox[{"(", RowBox[{"1", "-", "\[Xi]m"}], ")"}], RowBox[{"(", RowBox[{"1", "-", " ", "\[Xi]f"}], ")"}]}]}, {"\"\\"", RowBox[{"1", "-", RowBox[{"s", "[", RowBox[{"1", ",", "2"}], "]"}]}], RowBox[{"1", "-", RowBox[{"s", "[", RowBox[{"1", ",", "1"}], "]"}]}], RowBox[{"1", "-", RowBox[{"s", "[", RowBox[{"1", ",", "0"}], "]"}]}], RowBox[{"1", "-", RowBox[{"s", "[", RowBox[{"0", ",", "2"}], "]"}]}], RowBox[{"1", "-", RowBox[{"s", "[", RowBox[{"0", ",", "1"}], "]"}]}], "1", RowBox[{"1", "-", RowBox[{"s", "[", "2", "]"}]}], RowBox[{"1", "-", RowBox[{"s", "[", "1", "]"}]}], "1"}, {"\"\\"", FractionBox["1", RowBox[{"2", "-", RowBox[{"\[Epsilon]", "[", RowBox[{"1", ",", "2"}], "]"}]}]], FractionBox["1", RowBox[{"2", "-", " ", RowBox[{"\[Epsilon]", "[", RowBox[{"1", ",", "1"}], "]"}]}]], FractionBox["1", RowBox[{"2", "-", RowBox[{"\[Epsilon]", "[", RowBox[{"1", ",", "0"}], "]"}]}]], FractionBox["1", RowBox[{"2", "-", RowBox[{"\[Epsilon]", "[", RowBox[{"0", ",", "2"}], "]"}]}]], FractionBox["1", RowBox[{"2", "-", RowBox[{"\[Epsilon]", "[", RowBox[{"0", ",", "1"}], "]"}]}]], FractionBox["1", "2"], "0", "0", "0"}, {"\"\\"", FractionBox[ RowBox[{"1", "-", RowBox[{"\[Epsilon]", "[", RowBox[{"1", ",", "2"}], "]"}]}], RowBox[{"2", "-", RowBox[{"\[Epsilon]", "[", RowBox[{"1", ",", "2"}], "]"}]}]], FractionBox[ RowBox[{"1", "-", " ", RowBox[{"\[Epsilon]", "[", RowBox[{"1", ",", "1"}], "]"}]}], RowBox[{"2", "-", RowBox[{"\[Epsilon]", "[", RowBox[{"1", ",", "1"}], "]"}]}]], FractionBox[ RowBox[{"1", "-", RowBox[{"\[Epsilon]", "[", RowBox[{"1", ",", "0"}], "]"}]}], RowBox[{"2", "-", RowBox[{"\[Epsilon]", "[", RowBox[{"1", ",", "0"}], "]"}]}]], FractionBox[ RowBox[{"1", "-", RowBox[{"\[Epsilon]", "[", RowBox[{"0", ",", "2"}], "]"}]}], RowBox[{"2", "-", RowBox[{"\[Epsilon]", "[", RowBox[{"0", ",", "2"}], "]"}]}]], FractionBox[ RowBox[{"1", "-", RowBox[{"\[Epsilon]", "[", RowBox[{"0", ",", "1"}], "]"}]}], RowBox[{"2", "-", RowBox[{"\[Epsilon]", "[", RowBox[{"0", ",", "1"}], "]"}]}]], FractionBox["1", "2"], "1", "1", "1"}, {"\"\\"", "1", FractionBox[ RowBox[{"1", "+", RowBox[{"e", "[", "1", "]"}]}], "2"], "0", "0", "0", "0", "0", "0", "0"}, {"\"\\"", "0", FractionBox[ RowBox[{"1", "-", RowBox[{"e", "[", "1", "]"}]}], "2"], "1", "0", "0", "0", "0", "0", "0"}, {"\"\\"", "0", "0", "0", "1", FractionBox[ RowBox[{"1", "+", RowBox[{"e", "[", "2", "]"}]}], "2"], "0", "0", "0", "0"}, {"\"\\"", "0", "0", "0", "0", FractionBox[ RowBox[{"1", "-", RowBox[{"e", "[", "2", "]"}]}], "2"], "1", "0", "0", "0"}, {"\"\\"", "1", FractionBox[ RowBox[{"1", "+", RowBox[{"e", "[", "1", "]"}]}], "2"], "0", "1", FractionBox[ RowBox[{"1", "+", RowBox[{"e", "[", "2", "]"}]}], "2"], "0", "0", "0", "0"}, {"\"\\"", "0", FractionBox[ RowBox[{"1", "-", RowBox[{"e", "[", "1", "]"}]}], "2"], "1", "0", FractionBox[ RowBox[{"1", "-", RowBox[{"e", "[", "2", "]"}]}], "2"], "1", "0", "0", "0"}, {"\"\\"", "0", "0", "0", "0", "0", "0", "1", FractionBox[ RowBox[{"1", "+", RowBox[{"e", "[", "3", "]"}]}], "2"], "0"}, {"\"\\"", "0", "0", "0", "0", "0", "0", "0", FractionBox[ RowBox[{"1", "-", RowBox[{"e", "[", "3", "]"}]}], "2"], "1"} }, GridBoxAlignment->{ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}]}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]], ";"}]], "Input", CellChangeTimes->{{3.6173258793291683`*^9, 3.6173260713390408`*^9}, { 3.6173261059976387`*^9, 3.617326239819312*^9}, {3.617326326689048*^9, 3.617326327598322*^9}, {3.617326375522407*^9, 3.61732638464788*^9}, { 3.617329621976144*^9, 3.6173296248452787`*^9}, {3.61745428706566*^9, 3.617454559664627*^9}, {3.617454617937438*^9, 3.617454623000812*^9}, { 3.617454771296268*^9, 3.617454795791205*^9}, {3.617454904028751*^9, 3.617454954832965*^9}, {3.6174550546861763`*^9, 3.617455132125005*^9}, { 3.617461307381351*^9, 3.617461320684103*^9}, {3.617463336830634*^9, 3.6174633564773197`*^9}},ExpressionUUID->"935057cb-66ba-425d-afba-\ 8c6d6e5e141b"], Cell[BoxData[{ RowBox[{ RowBox[{"totygam", "=", RowBox[{"Plus", "@@", RowBox[{"(", RowBox[{ RowBox[{"m", "\[LeftDoubleBracket]", RowBox[{"2", ",", RowBox[{"2", ";;", "7"}]}], "\[RightDoubleBracket]"}], RowBox[{"m", "\[LeftDoubleBracket]", RowBox[{"3", ",", RowBox[{"2", ";;", "7"}]}], "\[RightDoubleBracket]"}], RowBox[{"m", "\[LeftDoubleBracket]", RowBox[{"4", ",", RowBox[{"2", ";;", "7"}]}], "\[RightDoubleBracket]"}]}], ")"}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"totxgam", "=", RowBox[{"Plus", "@@", RowBox[{"(", RowBox[{ RowBox[{"m", "\[LeftDoubleBracket]", RowBox[{"2", ",", RowBox[{"2", ";;", "7"}]}], "\[RightDoubleBracket]"}], RowBox[{"m", "\[LeftDoubleBracket]", RowBox[{"3", ",", RowBox[{"2", ";;", "7"}]}], "\[RightDoubleBracket]"}], RowBox[{"m", "\[LeftDoubleBracket]", RowBox[{"5", ",", RowBox[{"2", ";;", "7"}]}], "\[RightDoubleBracket]"}]}], ")"}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"femfit", "=", RowBox[{"Plus", "@@", RowBox[{"(", RowBox[{ RowBox[{"m", "\[LeftDoubleBracket]", RowBox[{"2", ",", RowBox[{"8", ";;", "10"}]}], "\[RightDoubleBracket]"}], RowBox[{"m", "\[LeftDoubleBracket]", RowBox[{"3", ",", RowBox[{"8", ";;", "10"}]}], "\[RightDoubleBracket]"}], RowBox[{"m", "\[LeftDoubleBracket]", RowBox[{"5", ",", RowBox[{"8", ";;", "10"}]}], "\[RightDoubleBracket]"}]}], ")"}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"q1p", "=", RowBox[{ RowBox[{"Plus", "@@", RowBox[{"(", RowBox[{ RowBox[{"m", "\[LeftDoubleBracket]", RowBox[{"2", ",", RowBox[{"2", ";;", "7"}]}], "\[RightDoubleBracket]"}], RowBox[{"m", "\[LeftDoubleBracket]", RowBox[{"3", ",", RowBox[{"2", ";;", "7"}]}], "\[RightDoubleBracket]"}], RowBox[{"m", "\[LeftDoubleBracket]", RowBox[{"4", ",", RowBox[{"2", ";;", "7"}]}], "\[RightDoubleBracket]"}], RowBox[{"m", "\[LeftDoubleBracket]", RowBox[{"6", ",", RowBox[{"2", ";;", "7"}]}], "\[RightDoubleBracket]"}]}], ")"}]}], "/", "totygam"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"q2p", "=", RowBox[{ RowBox[{"Plus", "@@", RowBox[{"(", RowBox[{ RowBox[{"m", "\[LeftDoubleBracket]", RowBox[{"2", ",", RowBox[{"2", ";;", "7"}]}], "\[RightDoubleBracket]"}], RowBox[{"m", "\[LeftDoubleBracket]", RowBox[{"3", ",", RowBox[{"2", ";;", "7"}]}], "\[RightDoubleBracket]"}], RowBox[{"m", "\[LeftDoubleBracket]", RowBox[{"4", ",", RowBox[{"2", ";;", "7"}]}], "\[RightDoubleBracket]"}], RowBox[{"m", "\[LeftDoubleBracket]", RowBox[{"7", ",", RowBox[{"2", ";;", "7"}]}], "\[RightDoubleBracket]"}]}], ")"}]}], "/", "totygam"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"q3p", "=", RowBox[{ RowBox[{"Plus", "@@", RowBox[{"(", RowBox[{ RowBox[{"m", "\[LeftDoubleBracket]", RowBox[{"2", ",", RowBox[{"2", ";;", "7"}]}], "\[RightDoubleBracket]"}], RowBox[{"m", "\[LeftDoubleBracket]", RowBox[{"3", ",", RowBox[{"2", ";;", "7"}]}], "\[RightDoubleBracket]"}], RowBox[{"m", "\[LeftDoubleBracket]", RowBox[{"4", ",", RowBox[{"2", ";;", "7"}]}], "\[RightDoubleBracket]"}], RowBox[{"m", "\[LeftDoubleBracket]", RowBox[{"8", ",", RowBox[{"2", ";;", "7"}]}], "\[RightDoubleBracket]"}]}], ")"}]}], "/", "totygam"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"\[Xi]mp", "=", RowBox[{ RowBox[{"Plus", "@@", RowBox[{"(", RowBox[{ RowBox[{"m", "\[LeftDoubleBracket]", RowBox[{"2", ",", RowBox[{"2", ";;", "7"}]}], "\[RightDoubleBracket]"}], RowBox[{"m", "\[LeftDoubleBracket]", RowBox[{"3", ",", RowBox[{"2", ";;", "7"}]}], "\[RightDoubleBracket]"}], RowBox[{"m", "\[LeftDoubleBracket]", RowBox[{"5", ",", RowBox[{"2", ";;", "7"}]}], "\[RightDoubleBracket]"}], RowBox[{"m", "\[LeftDoubleBracket]", RowBox[{"10", ",", RowBox[{"2", ";;", "7"}]}], "\[RightDoubleBracket]"}]}], ")"}]}], "/", "totxgam"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"\[Xi]fp", "=", RowBox[{ RowBox[{"Plus", "@@", RowBox[{"(", RowBox[{ RowBox[{"m", "\[LeftDoubleBracket]", RowBox[{"2", ",", RowBox[{"8", ";;", "10"}]}], "\[RightDoubleBracket]"}], RowBox[{"m", "\[LeftDoubleBracket]", RowBox[{"3", ",", RowBox[{"8", ";;", "10"}]}], "\[RightDoubleBracket]"}], RowBox[{"m", "\[LeftDoubleBracket]", RowBox[{"5", ",", RowBox[{"8", ";;", "10"}]}], "\[RightDoubleBracket]"}], RowBox[{"m", "\[LeftDoubleBracket]", RowBox[{"12", ",", RowBox[{"8", ";;", "10"}]}], "\[RightDoubleBracket]"}]}], ")"}]}], "/", "femfit"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"sexrat", "=", RowBox[{"totygam", "/", RowBox[{"(", RowBox[{"totygam", "+", "totxgam"}], ")"}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"load", "=", RowBox[{"1", "-", RowBox[{ RowBox[{"(", RowBox[{"1", "-", "sexrat"}], ")"}], RowBox[{"femfit", "/", RowBox[{"(", FractionBox["1", "2"], ")"}]}]}]}]}], ";"}]}], "Input", CellChangeTimes->{{3.6172990615222883`*^9, 3.617299160807763*^9}, { 3.617299247473967*^9, 3.61729926846807*^9}, {3.6172993252660627`*^9, 3.617299343682122*^9}, {3.617299401511891*^9, 3.61729941721397*^9}, { 3.617299885301996*^9, 3.6172999770011177`*^9}, {3.617300022291255*^9, 3.617300085932981*^9}, {3.6173263074367733`*^9, 3.6173263199481792`*^9}, 3.617326350965362*^9, {3.617326404093021*^9, 3.6173266218872547`*^9}, { 3.6173270058218737`*^9, 3.617327022731578*^9}, {3.6173306267095213`*^9, 3.6173306281659*^9}, {3.617331070247243*^9, 3.6173311010658083`*^9}},ExpressionUUID->"42d98532-e421-46be-b5f2-\ 46a0974c8206"] }, Closed]], Cell[CellGroupData[{ Cell["\<\ Check autosomal male acting DEG comes out as limiting case when Y+ fixed\ \>", "Subsection", CellChangeTimes->{{3.6170546445289717`*^9, 3.6170547199679613`*^9}, { 3.61733112980336*^9, 3.617331151136085*^9}, {3.617331250235124*^9, 3.61733128085273*^9}, 3.7103341827979116`*^9},ExpressionUUID->"e5800d9d-7ec4-4690-a728-\ 5280d831ee0c"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Module", "[", RowBox[{ RowBox[{"{", RowBox[{"t1", ",", RowBox[{"t2", "=", RowBox[{"{", "}"}]}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"t1", "=", RowBox[{ RowBox[{"{", RowBox[{"q1p", ",", "\[Xi]mp", ",", "\[Xi]fp"}], "}"}], "//.", RowBox[{"{", RowBox[{ RowBox[{"q3", "\[Rule]", "0"}], ",", RowBox[{"q1", "\[Rule]", "q"}], ",", RowBox[{"q2", "\[Rule]", RowBox[{"1", "-", "q"}]}], ",", RowBox[{ RowBox[{"\[Epsilon]", "[", RowBox[{"1", ",", "1"}], "]"}], "\[Rule]", "\[Epsilon]"}], ",", RowBox[{ RowBox[{"\[Epsilon]", "[", RowBox[{"1", ",", "2"}], "]"}], "\[Rule]", "\[Epsilon]"}], ",", RowBox[{ RowBox[{"s", "[", RowBox[{"1", ",", "2"}], "]"}], "\[Rule]", "sm"}], ",", RowBox[{ RowBox[{"s", "[", RowBox[{"1", ",", "1"}], "]"}], "\[Rule]", RowBox[{"hm", " ", "sm"}]}], ",", RowBox[{ RowBox[{"\[Epsilon]", "[", RowBox[{"_", ",", "_"}], "]"}], "\[Rule]", "0"}], ",", RowBox[{ RowBox[{"s", "[", RowBox[{"_", ",", "_"}], "]"}], "\[Rule]", "0"}], ",", RowBox[{ RowBox[{"e", "[", "1", "]"}], "\[Rule]", "e"}], ",", RowBox[{ RowBox[{"e", "[", "2", "]"}], "\[Rule]", "0"}], ",", RowBox[{ RowBox[{"e", "[", "_", "]"}], "\[Rule]", "0"}], ",", RowBox[{ RowBox[{"s", "[", "2", "]"}], "\[Rule]", "sf"}], ",", RowBox[{ RowBox[{"s", "[", "1", "]"}], "\[Rule]", RowBox[{"hf", " ", "sf"}]}], ",", RowBox[{ RowBox[{"s", "[", "_", "]"}], "\[Rule]", "0"}]}], "}"}]}]}], ";", "\[IndentingNewLine]", RowBox[{"AppendTo", "[", RowBox[{"t2", ",", RowBox[{ RowBox[{"Expand", "[", RowBox[{"FullSimplify", "[", RowBox[{"t1", "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "]"}], "]"}], "\[Equal]", RowBox[{"Expand", "[", FractionBox[ RowBox[{ RowBox[{ RowBox[{"-", RowBox[{"(", RowBox[{"1", "+", "e"}], ")"}]}], " ", "q", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"hm", " ", "sm"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"1", "+", "e", "-", RowBox[{"2", " ", "e", " ", "q"}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "q"}], "+", RowBox[{ RowBox[{"(", RowBox[{"1", "+", "e"}], ")"}], " ", "hm", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"2", " ", "q"}]}], ")"}]}]}], ")"}], " ", "sm"}]}], ")"}], " ", "\[Xi]f"}]}], RowBox[{"2", "-", RowBox[{"2", " ", "q", " ", "sm", " ", "\[Xi]f"}], "+", RowBox[{"\[Epsilon]", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "q", "+", "\[Xi]f", "-", RowBox[{"q", " ", "\[Xi]f"}]}], ")"}]}], "+", RowBox[{"2", " ", "hm", " ", "sm", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "\[Xi]f"}], "+", RowBox[{"q", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"2", " ", "\[Xi]f"}]}], ")"}]}]}], ")"}]}]}]], "]"}]}]}], "]"}], ";", "\[IndentingNewLine]", RowBox[{"AppendTo", "[", RowBox[{"t2", ",", RowBox[{ RowBox[{"Expand", "[", RowBox[{"FullSimplify", "[", RowBox[{"t1", "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}], "]"}], "]"}], "\[Equal]", RowBox[{"Expand", "[", FractionBox[ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\[Epsilon]"}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", RowBox[{"(", RowBox[{"1", "+", "e"}], ")"}]}], " ", "q", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"hm", " ", "sm"}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"1", "+", "e", "-", RowBox[{"2", " ", "e", " ", "q"}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "q"}], "+", RowBox[{ RowBox[{"(", RowBox[{"1", "+", "e"}], ")"}], " ", "hm", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"2", " ", "q"}]}], ")"}]}]}], ")"}], " ", "sm"}]}], ")"}], " ", "\[Xi]f"}]}], ")"}]}], RowBox[{ RowBox[{"-", "2"}], "+", "\[Epsilon]", "+", RowBox[{"\[Epsilon]", " ", "\[Xi]f"}], "+", RowBox[{"q", " ", RowBox[{"(", RowBox[{"\[Epsilon]", "-", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"2", " ", "sm", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\[Epsilon]"}], ")"}]}], "+", "\[Epsilon]"}], ")"}], " ", "\[Xi]f"}]}], ")"}]}], "+", RowBox[{"2", " ", "hm", " ", "sm", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\[Epsilon]"}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "\[Xi]f"}], "+", RowBox[{"q", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"2", " ", "\[Xi]f"}]}], ")"}]}]}], ")"}]}]}]], "]"}]}]}], "]"}], ";", "\[IndentingNewLine]", RowBox[{"AppendTo", "[", RowBox[{"t2", ",", RowBox[{ RowBox[{"FullSimplify", "[", RowBox[{"t1", "\[LeftDoubleBracket]", "3", "\[RightDoubleBracket]"}], "]"}], "==", FractionBox[ RowBox[{"\[Xi]m", "-", RowBox[{"hf", " ", "sf", " ", "\[Xi]m"}], "+", RowBox[{"\[Xi]f", " ", RowBox[{"(", RowBox[{"1", "-", RowBox[{"hf", " ", "sf"}], "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "hf"}], ")"}], " ", "sf", " ", "\[Xi]m"}]}], ")"}]}]}], RowBox[{"2", "-", RowBox[{"2", " ", "sf", " ", "\[Xi]f", " ", "\[Xi]m"}], "+", RowBox[{"2", " ", "hf", " ", "sf", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "\[Xi]m"}], "+", RowBox[{"\[Xi]f", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"2", " ", "\[Xi]m"}]}], ")"}]}]}], ")"}]}]}]]}]}], "]"}], ";", "\[IndentingNewLine]", "t2"}]}], "\[IndentingNewLine]", "]"}]], "Input", CellChangeTimes->{{3.617327030214079*^9, 3.6173273007754183`*^9}, 3.617327398266837*^9, {3.6173277037548037`*^9, 3.617327710020877*^9}, { 3.6173278347200527`*^9, 3.617327835101308*^9}, {3.617328448073865*^9, 3.6173284804010267`*^9}, 3.617328800483172*^9, {3.6173290082628193`*^9, 3.617329015903412*^9}, 3.617329098318829*^9, {3.617329192115253*^9, 3.6173291994955807`*^9}, {3.617329675851322*^9, 3.61732968443501*^9}, { 3.6173297582632923`*^9, 3.6173297596696777`*^9}, {3.6173297965655823`*^9, 3.6173298048914623`*^9}, 3.617329850916169*^9, {3.6173298838383503`*^9, 3.6173299117054977`*^9}, {3.6173299481127367`*^9, 3.6173299672393217`*^9}, {3.6173300873925056`*^9, 3.61733011819245*^9}, { 3.6173301513198977`*^9, 3.617330157607382*^9}, {3.617330275655327*^9, 3.617330296808707*^9}, {3.6173303301078777`*^9, 3.617330415981864*^9}, { 3.617330472964324*^9, 3.617330499590671*^9}, {3.617330543741403*^9, 3.617330557265254*^9}, 3.617330596663022*^9, {3.6173306485582657`*^9, 3.617330842569873*^9}, {3.617358104969758*^9, 3.617358105728723*^9}, { 3.6174556054311943`*^9, 3.61745568478104*^9}, {3.6174557221609993`*^9, 3.617455734606125*^9}, {3.617455850117255*^9, 3.617455855388103*^9}, { 3.617456003233555*^9, 3.617456105104995*^9}, 3.617456139466045*^9, 3.617461331336914*^9},ExpressionUUID->"87bfbce9-5267-4724-a8dd-\ 89c2a5a292dc"], Cell[BoxData[ RowBox[{"{", RowBox[{"True", ",", "True", ",", RowBox[{ FractionBox[ RowBox[{"\[Xi]f", "-", RowBox[{"hf", " ", "sf", " ", "\[Xi]f"}], "+", "\[Xi]m", "-", RowBox[{"hf", " ", "sf", " ", "\[Xi]m"}], "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "hf"}], ")"}], " ", "sf", " ", "\[Xi]f", " ", "\[Xi]m"}]}], RowBox[{"2", "-", RowBox[{"2", " ", "sf", " ", "\[Xi]f", " ", "\[Xi]m"}], "+", RowBox[{"2", " ", "hf", " ", "sf", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "\[Xi]m"}], "+", RowBox[{"\[Xi]f", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"2", " ", "\[Xi]m"}]}], ")"}]}]}], ")"}]}]}]], "\[Equal]", FractionBox[ RowBox[{"\[Xi]m", "-", RowBox[{"hf", " ", "sf", " ", "\[Xi]m"}], "+", RowBox[{"\[Xi]f", " ", RowBox[{"(", RowBox[{"1", "-", RowBox[{"hf", " ", "sf"}], "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "hf"}], ")"}], " ", "sf", " ", "\[Xi]m"}]}], ")"}]}]}], RowBox[{"2", "-", RowBox[{"2", " ", "sf", " ", "\[Xi]f", " ", "\[Xi]m"}], "+", RowBox[{"2", " ", "hf", " ", "sf", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "\[Xi]m"}], "+", RowBox[{"\[Xi]f", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"2", " ", "\[Xi]m"}]}], ")"}]}]}], ")"}]}]}]]}]}], "}"}]], "Output", CellChangeTimes->{ 3.617455864032539*^9, 3.617456151182322*^9, 3.617460750513343*^9, 3.6174608420090523`*^9, 3.617461333943852*^9, 3.617463406169688*^9, 3.617463999288509*^9, 3.617472078298912*^9, 3.617473301096427*^9, 3.617474415049762*^9, 3.617477873748249*^9, 3.617477936676931*^9, 3.617478459576314*^9, 3.6175061612225323`*^9, 3.6175071249240828`*^9, 3.6175429012827387`*^9, 3.617544523497401*^9, 3.617545039218647*^9, 3.6175452591172447`*^9, 3.617545360091057*^9, 3.617545621584772*^9, 3.617551015104759*^9, 3.617551634742148*^9, 3.6175579778416233`*^9, 3.618565648981402*^9, 3.618566576075637*^9, 3.647618731719425*^9, 3.647618794254661*^9, {3.647618911072741*^9, 3.647618939389306*^9}, 3.6476189976457787`*^9, 3.647619196961693*^9, 3.6476193359548893`*^9, 3.647619599855291*^9, 3.647619718169944*^9, 3.647620191555722*^9, 3.647620520415831*^9, 3.647620582156619*^9, 3.647620685900714*^9, 3.647620737615364*^9, {3.6476208341824017`*^9, 3.6476208623715897`*^9}, 3.647621232248151*^9, 3.647621265211734*^9, 3.647621350466751*^9, 3.647621493244185*^9, 3.647621600121441*^9, 3.6476765721337633`*^9, 3.647676684466709*^9, 3.647676798910124*^9, 3.647676845914474*^9, 3.647676925100911*^9, 3.710335750273902*^9, 3.710336093167006*^9, 3.71048259928364*^9},ExpressionUUID->"e11d02ee-47fd-4991-8637-\ ee93b78b8caf"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["\<\ Assume equal fitness effects in two sexes and fully recessive\ \>", "Subsection", CellChangeTimes->{{3.6170546445289717`*^9, 3.6170547199679613`*^9}, { 3.61733112980336*^9, 3.617331151136085*^9}, {3.617331250235124*^9, 3.61733128085273*^9}, {3.617358571814444*^9, 3.617358589745606*^9}},ExpressionUUID->"5e1bba4e-ac61-4e04-bfe8-\ 6a95c18d6361"], Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"TSNF", "[", "x_", "]"}], ":=", RowBox[{"ToString", "[", RowBox[{"NumberForm", "[", RowBox[{ RowBox[{"Chop", "[", RowBox[{"x", ",", RowBox[{"10", "^", RowBox[{"-", "4"}]}]}], "]"}], ",", RowBox[{"{", RowBox[{"4", ",", "3"}], "}"}]}], "]"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"style1", "[", "t_", "]"}], ":=", RowBox[{"Style", "[", RowBox[{"t", ",", "Large", ",", RowBox[{"FontFamily", "\[Rule]", "\"\\""}], ",", RowBox[{"FontSize", "\[Rule]", "16"}]}], "]"}]}], ";"}]}], "Input", CellChangeTimes->{{3.61736224625775*^9, 3.617362252147005*^9}},ExpressionUUID->"46c617d2-e280-4937-ad3b-\ a980f29e6a60"], Cell[BoxData[ RowBox[{"austin1", ":=", RowBox[{"(", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"recf5", "[", RowBox[{"qq_", ",", "qp_", ",", "param_"}], "]"}], ":=", RowBox[{ RowBox[{"qp", "/.", "param"}], "/.", RowBox[{"{", RowBox[{ RowBox[{"q1", "\[Rule]", RowBox[{ "qq", "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}]}], ",", RowBox[{"q2", "\[Rule]", RowBox[{ "qq", "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}]}], ",", RowBox[{"q3", "\[Rule]", RowBox[{ "qq", "\[LeftDoubleBracket]", "3", "\[RightDoubleBracket]"}]}], ",", RowBox[{"\[Xi]m", "\[Rule]", RowBox[{ "qq", "\[LeftDoubleBracket]", "4", "\[RightDoubleBracket]"}]}], ",", RowBox[{"\[Xi]f", "\[Rule]", RowBox[{ "qq", "\[LeftDoubleBracket]", "5", "\[RightDoubleBracket]"}]}]}], "}"}]}]}], ";", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"Manipulate", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"Module", "[", RowBox[{ RowBox[{"{", RowBox[{"initial", ",", RowBox[{"gen", "=", "50"}], ",", "t1", ",", "t2", ",", "param", ",", "reps", ",", "reps2", ",", "reps3", ",", RowBox[{"eqs", "=", RowBox[{"{", RowBox[{ "q1p", ",", "q2p", ",", "q3p", ",", "\[Xi]mp", ",", "\[Xi]fp", ",", "sexrat", ",", "load"}], "}"}]}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"initial", "=", RowBox[{"Table", "[", RowBox[{"init", ",", RowBox[{"{", "5", "}"}]}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"Which", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"(", RowBox[{"shred", "\[Equal]", "1"}], ")"}], ",", RowBox[{"reps", "=", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"\[Epsilon]", "[", RowBox[{"1", ",", "2"}], "]"}], "\[Rule]", "\[Epsilon]"}], ",", RowBox[{ RowBox[{"\[Epsilon]", "[", RowBox[{"1", ",", "1"}], "]"}], "\[Rule]", "\[Epsilon]"}], ",", RowBox[{ RowBox[{"\[Epsilon]", "[", RowBox[{"1", ",", "0"}], "]"}], "\[Rule]", "\[Epsilon]"}], ",", RowBox[{ RowBox[{"\[Epsilon]", "[", RowBox[{"_", ",", "_"}], "]"}], "\[Rule]", "0"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"(", RowBox[{"shred", "\[Equal]", "2"}], ")"}], ",", RowBox[{"reps", "=", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"\[Epsilon]", "[", RowBox[{"1", ",", "2"}], "]"}], "\[Rule]", "\[Epsilon]"}], ",", RowBox[{ RowBox[{"\[Epsilon]", "[", RowBox[{"1", ",", "1"}], "]"}], "\[Rule]", "\[Epsilon]"}], ",", RowBox[{ RowBox[{"\[Epsilon]", "[", RowBox[{"0", ",", "2"}], "]"}], "\[Rule]", "\[Epsilon]"}], ",", RowBox[{ RowBox[{"\[Epsilon]", "[", RowBox[{"0", ",", "1"}], "]"}], "\[Rule]", "\[Epsilon]"}], ",", RowBox[{ RowBox[{"\[Epsilon]", "[", RowBox[{"_", ",", "_"}], "]"}], "\[Rule]", "0"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"(", RowBox[{"shred", "\[Equal]", "3"}], ")"}], ",", RowBox[{"reps", "=", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"\[Epsilon]", "[", RowBox[{"1", ",", "2"}], "]"}], "\[Rule]", "\[Epsilon]"}], ",", RowBox[{ RowBox[{"\[Epsilon]", "[", RowBox[{"1", ",", "1"}], "]"}], "\[Rule]", "\[Epsilon]"}], ",", RowBox[{ RowBox[{"\[Epsilon]", "[", RowBox[{"_", ",", "_"}], "]"}], "\[Rule]", "0"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"(", RowBox[{"shred", "\[Equal]", "4"}], ")"}], ",", RowBox[{"reps", "=", RowBox[{"{", RowBox[{ RowBox[{"\[Epsilon]", "[", RowBox[{"_", ",", "_"}], "]"}], "\[Rule]", "0"}], "}"}]}]}], "\[IndentingNewLine]", "]"}], ";", "\[IndentingNewLine]", RowBox[{"Which", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"(", RowBox[{"hom", "\[Equal]", "2"}], ")"}], ",", RowBox[{"reps2", "=", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"e", "[", "1", "]"}], "\[Rule]", "e"}], ",", RowBox[{ RowBox[{"e", "[", "2", "]"}], "\[Rule]", "e"}], ",", RowBox[{ RowBox[{"e", "[", "_", "]"}], "\[Rule]", "0"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"(", RowBox[{"hom", "\[Equal]", "3"}], ")"}], ",", RowBox[{"reps2", "=", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"e", "[", "1", "]"}], "\[Rule]", "e"}], ",", RowBox[{ RowBox[{"e", "[", "_", "]"}], "\[Rule]", "0"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"(", RowBox[{"hom", "\[Equal]", "4"}], ")"}], ",", RowBox[{"reps2", "=", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"e", "[", "3", "]"}], "\[Rule]", "e"}], ",", RowBox[{ RowBox[{"e", "[", "_", "]"}], "\[Rule]", "0"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"(", RowBox[{"hom", "\[Equal]", "5"}], ")"}], ",", RowBox[{"reps2", "=", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"e", "[", "1", "]"}], "\[Rule]", "e"}], ",", RowBox[{ RowBox[{"e", "[", "2", "]"}], "\[Rule]", "e"}], ",", RowBox[{ RowBox[{"e", "[", "3", "]"}], "\[Rule]", "e"}], ",", RowBox[{ RowBox[{"e", "[", "_", "]"}], "\[Rule]", "0"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"(", RowBox[{"hom", "\[Equal]", "6"}], ")"}], ",", RowBox[{"reps2", "=", RowBox[{"{", RowBox[{ RowBox[{"e", "[", "_", "]"}], "\[Rule]", "0"}], "}"}]}]}], "\[IndentingNewLine]", "]"}], ";", "\[IndentingNewLine]", RowBox[{"Which", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"(", RowBox[{"leth", "\[Equal]", "1"}], ")"}], ",", RowBox[{"reps3", "=", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"s", "[", RowBox[{"_", ",", "2"}], "]"}], "\[Rule]", "s"}], ",", RowBox[{ RowBox[{"s", "[", RowBox[{"_", ",", "1"}], "]"}], "\[Rule]", "nol"}], ",", RowBox[{ RowBox[{"s", "[", RowBox[{"_", ",", "_"}], "]"}], "\[Rule]", "0"}], ",", RowBox[{ RowBox[{"s", "[", "_", "]"}], "\[Rule]", "0"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"(", RowBox[{"leth", "\[Equal]", "2"}], ")"}], ",", RowBox[{"reps3", "=", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"s", "[", RowBox[{"_", ",", "1"}], "]"}], "\[Rule]", "nol"}], ",", RowBox[{ RowBox[{"s", "[", RowBox[{"_", ",", "_"}], "]"}], "\[Rule]", "0"}], ",", RowBox[{ RowBox[{"s", "[", "2", "]"}], "\[Rule]", "s"}], ",", RowBox[{ RowBox[{"s", "[", "_", "]"}], "\[Rule]", "0"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"(", RowBox[{"leth", "\[Equal]", "3"}], ")"}], ",", RowBox[{"reps3", "=", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"s", "[", RowBox[{"_", ",", "2"}], "]"}], "\[Rule]", "s"}], ",", RowBox[{ RowBox[{"s", "[", RowBox[{"_", ",", "1"}], "]"}], "\[Rule]", "nol"}], ",", RowBox[{ RowBox[{"s", "[", RowBox[{"_", ",", "_"}], "]"}], "\[Rule]", "0"}], ",", RowBox[{ RowBox[{"s", "[", "2", "]"}], "\[Rule]", "s"}], ",", RowBox[{ RowBox[{"s", "[", "_", "]"}], "\[Rule]", "0"}]}], "}"}]}]}], "\[IndentingNewLine]", "]"}], ";", "\[IndentingNewLine]", RowBox[{"reps", "=", RowBox[{"Flatten", "[", RowBox[{"{", RowBox[{"reps", ",", "reps2", ",", "reps3"}], "}"}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"eqs", "=", RowBox[{"eqs", "/.", "reps"}]}], ";", "\[IndentingNewLine]", RowBox[{"param", "=", RowBox[{"{", RowBox[{ RowBox[{"e", "\[Rule]", "ee"}], ",", RowBox[{"\[Epsilon]", "\[Rule]", "\[Epsilon]\[Epsilon]"}], ",", RowBox[{"s", "\[Rule]", "ss"}], ",", RowBox[{"nol", "\[Rule]", "0"}]}], "}"}]}], ";", "\[IndentingNewLine]", RowBox[{"t1", "=", RowBox[{"NestList", "[", RowBox[{ RowBox[{ RowBox[{"recf5", "[", RowBox[{"#", ",", RowBox[{"eqs", "\[LeftDoubleBracket]", RowBox[{"1", ";;", "5"}], "\[RightDoubleBracket]"}], ",", "param"}], "]"}], "&"}], ",", "initial", ",", "gen"}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"t2", "=", RowBox[{"Table", "[", RowBox[{ RowBox[{ RowBox[{"eqs", "\[LeftDoubleBracket]", RowBox[{"6", ";;", "7"}], "\[RightDoubleBracket]"}], "/.", RowBox[{"Flatten", "[", RowBox[{"{", RowBox[{"param", ",", RowBox[{"{", RowBox[{ RowBox[{"q1", "\[Rule]", RowBox[{"t1", "\[LeftDoubleBracket]", RowBox[{"i", ",", "1"}], "\[RightDoubleBracket]"}]}], ",", RowBox[{"q2", "\[Rule]", RowBox[{"t1", "\[LeftDoubleBracket]", RowBox[{"i", ",", "2"}], "\[RightDoubleBracket]"}]}], ",", RowBox[{"q3", "\[Rule]", RowBox[{"t1", "\[LeftDoubleBracket]", RowBox[{"i", ",", "3"}], "\[RightDoubleBracket]"}]}], ",", RowBox[{"\[Xi]m", "\[Rule]", RowBox[{"t1", "\[LeftDoubleBracket]", RowBox[{"i", ",", "4"}], "\[RightDoubleBracket]"}]}], ",", RowBox[{"\[Xi]f", "\[Rule]", RowBox[{"t1", "\[LeftDoubleBracket]", RowBox[{"i", ",", "5"}], "\[RightDoubleBracket]"}]}]}], "}"}]}], "}"}], "]"}]}], ",", RowBox[{"{", RowBox[{"i", ",", "1", ",", RowBox[{"gen", "+", "1"}]}], "}"}]}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"t1", "=", RowBox[{"Transpose", "[", "t1", "]"}]}], ";", RowBox[{"t2", "=", RowBox[{"Transpose", "[", "t2", "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"Grid", "[", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"Labeled", "[", RowBox[{ RowBox[{"ListPlot", "[", RowBox[{ RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"Legended", "[", RowBox[{ RowBox[{ "t1", "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], ",", RowBox[{"\"\\"", "<>", RowBox[{"TSNF", "[", RowBox[{"t1", "\[LeftDoubleBracket]", RowBox[{"1", ",", RowBox[{"gen", "+", "1"}]}], "\[RightDoubleBracket]"}], "]"}], "<>", "\"\<)\>\""}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Legended", "[", RowBox[{ RowBox[{ "t1", "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}], ",", RowBox[{"\"\\"", "<>", RowBox[{"TSNF", "[", RowBox[{"t1", "\[LeftDoubleBracket]", RowBox[{"2", ",", RowBox[{"gen", "+", "1"}]}], "\[RightDoubleBracket]"}], "]"}], "<>", "\"\<)\>\""}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Legended", "[", RowBox[{ RowBox[{ "t1", "\[LeftDoubleBracket]", "3", "\[RightDoubleBracket]"}], ",", RowBox[{"\"\\"", "<>", RowBox[{"TSNF", "[", RowBox[{"t1", "\[LeftDoubleBracket]", RowBox[{"3", ",", RowBox[{"gen", "+", "1"}]}], "\[RightDoubleBracket]"}], "]"}], "<>", "\"\<)\>\""}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Legended", "[", RowBox[{ RowBox[{ "t1", "\[LeftDoubleBracket]", "4", "\[RightDoubleBracket]"}], ",", RowBox[{"\"\\"", "<>", RowBox[{"TSNF", "[", RowBox[{"t1", "\[LeftDoubleBracket]", RowBox[{"4", ",", RowBox[{"gen", "+", "1"}]}], "\[RightDoubleBracket]"}], "]"}], "<>", "\"\<)\>\""}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Legended", "[", RowBox[{ RowBox[{ "t1", "\[LeftDoubleBracket]", "5", "\[RightDoubleBracket]"}], ",", RowBox[{"\"\\"", "<>", RowBox[{"TSNF", "[", RowBox[{"t1", "\[LeftDoubleBracket]", RowBox[{"5", ",", RowBox[{"gen", "+", "1"}]}], "\[RightDoubleBracket]"}], "]"}], "<>", "\"\<)\>\""}]}], "]"}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"Joined", "\[Rule]", "True"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{"0", ",", "1"}], "}"}]}], ",", RowBox[{"ImageSize", "\[Rule]", "Medium"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{"style1", "[", "\"\\"", "]"}], ",", RowBox[{"style1", "[", "\"\\"", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"Bottom", ",", "Left"}], "}"}], ",", RowBox[{"RotateLabel", "\[Rule]", "True"}]}], "]"}], "}"}], ",", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"Labeled", "[", RowBox[{ RowBox[{"ListPlot", "[", RowBox[{ RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"Legended", "[", RowBox[{ RowBox[{ "t2", "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], ",", RowBox[{"\"\\"", "<>", RowBox[{"TSNF", "[", RowBox[{"t2", "\[LeftDoubleBracket]", RowBox[{"1", ",", RowBox[{"gen", "+", "1"}]}], "\[RightDoubleBracket]"}], "]"}], "<>", "\"\<)\>\""}]}], "]"}], ",", RowBox[{"Legended", "[", RowBox[{ RowBox[{"1", "-", RowBox[{ "t2", "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}]}], ",", RowBox[{"\"\\"", "<>", RowBox[{"TSNF", "[", RowBox[{"1", "-", RowBox[{"t2", "\[LeftDoubleBracket]", RowBox[{"2", ",", RowBox[{"gen", "+", "1"}]}], "\[RightDoubleBracket]"}]}], "]"}], "<>", "\"\<)\>\""}]}], "]"}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"Joined", "\[Rule]", "True"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{"0", ",", "1"}], "}"}]}], ",", RowBox[{"ImageSize", "\[Rule]", "Medium"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{"style1", "[", "\"\\"", "]"}], ",", RowBox[{"style1", "[", "\"\<\>\"", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"Bottom", ",", "Left"}], "}"}], ",", RowBox[{"RotateLabel", "\[Rule]", "True"}]}], "]"}], "}"}]}], "\[IndentingNewLine]", "}"}], "]"}]}]}], "\[IndentingNewLine]", "]"}], "\[IndentingNewLine]", ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"hom", ",", "5", ",", RowBox[{ "style1", "[", "\"\\"", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"2", "\[Rule]", RowBox[{"style1", "[", RowBox[{"\"\\"", "<>", RowBox[{"ToString", "[", "\[Mars]", "]"}], "<>", "\"\<)\>\""}], "]"}]}], ",", RowBox[{"3", "\[Rule]", RowBox[{"style1", "[", RowBox[{"\"\\"", "<>", RowBox[{"ToString", "[", "\[Mars]", "]"}], "<>", "\"\<)\>\""}], "]"}]}], ",", RowBox[{"4", "\[Rule]", RowBox[{"style1", "[", RowBox[{"\"\\"", "<>", RowBox[{"ToString", "[", "\[Venus]", "]"}], "<>", "\"\<)\>\""}], "]"}]}], ",", RowBox[{"5", "\[Rule]", RowBox[{"style1", "[", RowBox[{"\"\\"", "<>", RowBox[{"ToString", "[", "\[Mars]", "]"}], "<>", "\"\<,\>\"", "<>", RowBox[{"ToString", "[", "\[Venus]", "]"}], "<>", "\"\<)\>\""}], "]"}]}], ",", RowBox[{"6", "\[Rule]", RowBox[{"style1", "[", "\"\\"", "]"}]}]}], "}"}], ",", RowBox[{"Appearance", "\[Rule]", "\"\\""}]}], "}"}], "\[IndentingNewLine]", ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"shred", ",", "4", ",", RowBox[{ "style1", "[", "\"\\"", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"1", "\[Rule]", RowBox[{"style1", "[", "\"\\"", "]"}]}], ",", RowBox[{"2", "\[Rule]", RowBox[{"style1", "[", "\"\\"", "]"}]}], ",", RowBox[{"3", "\[Rule]", RowBox[{"style1", "[", "\"\\"", "]"}]}], ",", RowBox[{"4", "\[Rule]", RowBox[{"style1", "[", "\"\\"", "]"}]}]}], "}"}], ",", RowBox[{"Appearance", "\[Rule]", "\"\\""}]}], "}"}], "\[IndentingNewLine]", ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"leth", ",", "3", ",", RowBox[{"style1", "[", "\"\\"", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"1", "\[Rule]", RowBox[{"style1", "[", RowBox[{"ToString", "[", "\[Mars]", "]"}], "]"}]}], ",", RowBox[{"2", "\[Rule]", RowBox[{"style1", "[", RowBox[{"ToString", "[", "\[Venus]", "]"}], "]"}]}], ",", RowBox[{"3", "\[Rule]", RowBox[{"style1", "[", RowBox[{ RowBox[{"ToString", "[", "\[Mars]", "]"}], "<>", RowBox[{"ToString", "[", "\[Venus]", "]"}]}], "]"}]}]}], "}"}], ",", RowBox[{"Appearance", "\[Rule]", "\"\\""}]}], "}"}], "\[IndentingNewLine]", ",", "Delimiter", "\[IndentingNewLine]", ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"ee", ",", ".8", ",", RowBox[{"style1", "[", "\"\\"", "]"}]}], "}"}], ",", "0", ",", "1"}], "}"}], "\[IndentingNewLine]", ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\[Epsilon]\[Epsilon]", ",", ".9", ",", RowBox[{"style1", "[", "\"\\"", "]"}]}], "}"}], ",", "0", ",", "1"}], "}"}], "\[IndentingNewLine]", ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"ss", ",", "1", ",", RowBox[{"style1", "[", "\"\\"", "]"}]}], "}"}], ",", "0", ",", "1"}], "}"}], "\[IndentingNewLine]", RowBox[{"(*", RowBox[{",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"nn", ",", "0.5", ",", RowBox[{ "style1", "[", "\"\\"", "]"}]}], "}"}], ",", "0", ",", "1"}], "}"}]}], "*)"}], "\[IndentingNewLine]", ",", "Delimiter", "\[IndentingNewLine]", ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"init", ",", "0.01", ",", "\"\\""}], "}"}], ",", RowBox[{"FieldSize", "\[Rule]", "4"}]}], "}"}], ",", RowBox[{"ControlPlacement", "\[Rule]", "Top"}], ",", RowBox[{"SaveDefinitions", "\[Rule]", "True"}]}], "\[IndentingNewLine]", "]"}]}], ")"}]}]], "Input", CellChangeTimes->{{3.617359494301772*^9, 3.617359542478582*^9}, { 3.617359582435277*^9, 3.6173596372548027`*^9}, {3.617359703482337*^9, 3.617359769457925*^9}, {3.6173598285196323`*^9, 3.6173599903617487`*^9}, { 3.617360773171467*^9, 3.617360773847332*^9}, {3.617458137986347*^9, 3.617458160928886*^9}, {3.6174603568575068`*^9, 3.617460387879847*^9}, 3.617460477957149*^9, {3.6174608852572613`*^9, 3.617460887513268*^9}, { 3.61746352121498*^9, 3.6174635475421553`*^9}, 3.617463585611861*^9, { 3.617463624700444*^9, 3.617463638599525*^9}, {3.617463733783082*^9, 3.6174638412855473`*^9}, {3.6174641661401*^9, 3.6174641745342712`*^9}, { 3.617464214826186*^9, 3.617464345104547*^9}, {3.6174643807792683`*^9, 3.617464404272357*^9}, 3.617464460733059*^9, {3.6174646733910913`*^9, 3.6174646742677193`*^9}, {3.6174647080158377`*^9, 3.6174648920102863`*^9}, 3.617464923573701*^9, {3.6174649576802998`*^9, 3.617464963799815*^9}, { 3.617465065589992*^9, 3.617465076493108*^9}, {3.61746720845333*^9, 3.6174673424111967`*^9}, {3.617467540318634*^9, 3.617467569414165*^9}, { 3.617467720736534*^9, 3.617467746458518*^9}, {3.6174677929526863`*^9, 3.617467942631233*^9}, {3.6174680528174257`*^9, 3.617468139782786*^9}, { 3.617468599062209*^9, 3.617468605049635*^9}, {3.6174686567528677`*^9, 3.617468692299425*^9}, {3.617469290582426*^9, 3.617469296818874*^9}, { 3.617469340227522*^9, 3.617469344899234*^9}, {3.617472429126916*^9, 3.617472445222146*^9}, {3.617472493657445*^9, 3.6174724987111464`*^9}, { 3.617473009987759*^9, 3.617473016345644*^9}, {3.61747715785185*^9, 3.617477193913803*^9}, {3.617477259155229*^9, 3.617477334906864*^9}, { 3.61747738365207*^9, 3.6174775126810017`*^9}, {3.617477613074833*^9, 3.617477765870122*^9}, {3.617477818450699*^9, 3.617477823906283*^9}, { 3.6175059284569597`*^9, 3.6175059615342283`*^9}, {3.617506554734281*^9, 3.61750666690833*^9}, {3.61750681529458*^9, 3.617507035918467*^9}, 3.617507103237224*^9, {3.61750766319869*^9, 3.6175076781507397`*^9}, { 3.6175077141154413`*^9, 3.617507719111602*^9}, {3.617507974255821*^9, 3.617507975301976*^9}, {3.617542998423403*^9, 3.617543028939592*^9}, { 3.6175430665781097`*^9, 3.6175430838617897`*^9}, 3.6175431188910933`*^9, { 3.617550012290677*^9, 3.617550017182922*^9}, {3.617551569909891*^9, 3.617551575603305*^9}, 3.61856655064701*^9, {3.647618642444544*^9, 3.647618662702124*^9}, {3.6476186948359833`*^9, 3.647618706537355*^9}, { 3.6476187835892267`*^9, 3.6476187865688753`*^9}, {3.647618931173896*^9, 3.6476189318360987`*^9}, {3.647618986239492*^9, 3.6476189869917173`*^9}, { 3.647619185140354*^9, 3.64761918748818*^9}, {3.6476193035693417`*^9, 3.64761932849094*^9}, {3.647619621513569*^9, 3.647619673368393*^9}, { 3.6476202825071*^9, 3.6476202839793777`*^9}, {3.647620435591786*^9, 3.64762046375305*^9}, {3.647620648659165*^9, 3.647620677900528*^9}, { 3.647620731526263*^9, 3.647620732064616*^9}, {3.647620815684559*^9, 3.647620818722411*^9}, {3.64762085584202*^9, 3.647620856527315*^9}, { 3.6476212529009457`*^9, 3.647621259944138*^9}, {3.647621344059944*^9, 3.647621344790848*^9}, {3.647621487796138*^9, 3.647621488357684*^9}, 3.647621595042982*^9, 3.647676567539776*^9, {3.647676655355752*^9, 3.647676677755539*^9}, {3.647676793048765*^9, 3.647676794870523*^9}, { 3.647676840054735*^9, 3.647676840943153*^9}, {3.647676908903119*^9, 3.647676920401602*^9}, {3.647677017377913*^9, 3.6476770237340107`*^9}, { 3.7103341853389473`*^9, 3.7103341898231564`*^9}, {3.710335981410056*^9, 3.7103359989164753`*^9}, 3.710336063965858*^9, {3.710336292299872*^9, 3.710336310433717*^9}, {3.710336365742313*^9, 3.710336379656165*^9}},ExpressionUUID->"5749661d-9420-4a98-827d-\ 809e5c32bbfb"], Cell[BoxData[ RowBox[{"austin2", ":=", RowBox[{"(", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"recf5", "[", RowBox[{"qq_", ",", "qp_", ",", "param_"}], "]"}], ":=", RowBox[{ RowBox[{"qp", "/.", "param"}], "/.", RowBox[{"{", RowBox[{ RowBox[{"q1", "\[Rule]", RowBox[{ "qq", "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}]}], ",", RowBox[{"q2", "\[Rule]", RowBox[{ "qq", "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}]}], ",", RowBox[{"q3", "\[Rule]", RowBox[{ "qq", "\[LeftDoubleBracket]", "3", "\[RightDoubleBracket]"}]}], ",", RowBox[{"\[Xi]m", "\[Rule]", RowBox[{ "qq", "\[LeftDoubleBracket]", "4", "\[RightDoubleBracket]"}]}], ",", RowBox[{"\[Xi]f", "\[Rule]", RowBox[{ "qq", "\[LeftDoubleBracket]", "5", "\[RightDoubleBracket]"}]}]}], "}"}]}]}], ";", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"Manipulate", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"Module", "[", RowBox[{ RowBox[{"{", RowBox[{ "initial", ",", "gen", ",", "param", ",", "reps", ",", "reps2", ",", "reps3", ",", RowBox[{"eqs", "=", RowBox[{"{", RowBox[{ "q1p", ",", "q2p", ",", "q3p", ",", "\[Xi]mp", ",", "\[Xi]fp", ",", "sexrat", ",", "load"}], "}"}]}], ",", "delta", ",", RowBox[{"numcon", "=", "10"}], ",", "ticks"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"initial", "=", RowBox[{"Table", "[", RowBox[{"init", ",", RowBox[{"{", "5", "}"}]}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"gen", "=", "gen2"}], ";", "\[IndentingNewLine]", RowBox[{"delta", "=", RowBox[{"1.", "/", "delta2"}]}], ";", "\[IndentingNewLine]", RowBox[{"Which", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"(", RowBox[{"shred", "\[Equal]", "1"}], ")"}], ",", RowBox[{"reps", "=", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"\[Epsilon]", "[", RowBox[{"1", ",", "2"}], "]"}], "\[Rule]", "\[Epsilon]"}], ",", RowBox[{ RowBox[{"\[Epsilon]", "[", RowBox[{"1", ",", "1"}], "]"}], "\[Rule]", "\[Epsilon]"}], ",", RowBox[{ RowBox[{"\[Epsilon]", "[", RowBox[{"1", ",", "0"}], "]"}], "\[Rule]", "\[Epsilon]"}], ",", RowBox[{ RowBox[{"\[Epsilon]", "[", RowBox[{"_", ",", "_"}], "]"}], "\[Rule]", "0"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"(", RowBox[{"shred", "\[Equal]", "2"}], ")"}], ",", RowBox[{"reps", "=", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"\[Epsilon]", "[", RowBox[{"1", ",", "2"}], "]"}], "\[Rule]", "\[Epsilon]"}], ",", RowBox[{ RowBox[{"\[Epsilon]", "[", RowBox[{"1", ",", "1"}], "]"}], "\[Rule]", "\[Epsilon]"}], ",", RowBox[{ RowBox[{"\[Epsilon]", "[", RowBox[{"0", ",", "2"}], "]"}], "\[Rule]", "\[Epsilon]"}], ",", RowBox[{ RowBox[{"\[Epsilon]", "[", RowBox[{"0", ",", "1"}], "]"}], "\[Rule]", "\[Epsilon]"}], ",", RowBox[{ RowBox[{"\[Epsilon]", "[", RowBox[{"_", ",", "_"}], "]"}], "\[Rule]", "0"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"(", RowBox[{"shred", "\[Equal]", "3"}], ")"}], ",", RowBox[{"reps", "=", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"\[Epsilon]", "[", RowBox[{"1", ",", "2"}], "]"}], "\[Rule]", "\[Epsilon]"}], ",", RowBox[{ RowBox[{"\[Epsilon]", "[", RowBox[{"1", ",", "1"}], "]"}], "\[Rule]", "\[Epsilon]"}], ",", RowBox[{ RowBox[{"\[Epsilon]", "[", RowBox[{"_", ",", "_"}], "]"}], "\[Rule]", "0"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"(", RowBox[{"shred", "\[Equal]", "4"}], ")"}], ",", RowBox[{"reps", "=", RowBox[{"{", RowBox[{ RowBox[{"\[Epsilon]", "[", RowBox[{"_", ",", "_"}], "]"}], "\[Rule]", "0"}], "}"}]}]}], "\[IndentingNewLine]", "]"}], ";", "\[IndentingNewLine]", RowBox[{"Which", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"(", RowBox[{"hom", "\[Equal]", "2"}], ")"}], ",", RowBox[{"reps2", "=", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"e", "[", "1", "]"}], "\[Rule]", "e"}], ",", RowBox[{ RowBox[{"e", "[", "2", "]"}], "\[Rule]", "e"}], ",", RowBox[{ RowBox[{"e", "[", "_", "]"}], "\[Rule]", "0"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"(", RowBox[{"hom", "\[Equal]", "3"}], ")"}], ",", RowBox[{"reps2", "=", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"e", "[", "1", "]"}], "\[Rule]", "e"}], ",", RowBox[{ RowBox[{"e", "[", "_", "]"}], "\[Rule]", "0"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"(", RowBox[{"hom", "\[Equal]", "4"}], ")"}], ",", RowBox[{"reps2", "=", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"e", "[", "3", "]"}], "\[Rule]", "e"}], ",", RowBox[{ RowBox[{"e", "[", "_", "]"}], "\[Rule]", "0"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"(", RowBox[{"hom", "\[Equal]", "5"}], ")"}], ",", RowBox[{"reps2", "=", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"e", "[", "1", "]"}], "\[Rule]", "e"}], ",", RowBox[{ RowBox[{"e", "[", "2", "]"}], "\[Rule]", "e"}], ",", RowBox[{ RowBox[{"e", "[", "3", "]"}], "\[Rule]", "e"}], ",", RowBox[{ RowBox[{"e", "[", "_", "]"}], "\[Rule]", "0"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"(", RowBox[{"hom", "\[Equal]", "6"}], ")"}], ",", RowBox[{"reps2", "=", RowBox[{"{", RowBox[{ RowBox[{"e", "[", "_", "]"}], "\[Rule]", "0"}], "}"}]}]}], "\[IndentingNewLine]", "]"}], ";", "\[IndentingNewLine]", RowBox[{"Which", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"(", RowBox[{"leth", "\[Equal]", "1"}], ")"}], ",", RowBox[{"reps3", "=", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"s", "[", RowBox[{"_", ",", "2"}], "]"}], "\[Rule]", "s"}], ",", RowBox[{ RowBox[{"s", "[", RowBox[{"_", ",", "_"}], "]"}], "\[Rule]", "0"}], ",", RowBox[{ RowBox[{"s", "[", "_", "]"}], "\[Rule]", "0"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"(", RowBox[{"leth", "\[Equal]", "2"}], ")"}], ",", RowBox[{"reps3", "=", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"s", "[", RowBox[{"_", ",", "_"}], "]"}], "\[Rule]", "0"}], ",", RowBox[{ RowBox[{"s", "[", "2", "]"}], "\[Rule]", "s"}], ",", RowBox[{ RowBox[{"s", "[", "_", "]"}], "\[Rule]", "0"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"(", RowBox[{"leth", "\[Equal]", "3"}], ")"}], ",", RowBox[{"reps3", "=", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"s", "[", RowBox[{"_", ",", "2"}], "]"}], "\[Rule]", "s"}], ",", RowBox[{ RowBox[{"s", "[", RowBox[{"_", ",", "_"}], "]"}], "\[Rule]", "0"}], ",", RowBox[{ RowBox[{"s", "[", "2", "]"}], "\[Rule]", "s"}], ",", RowBox[{ RowBox[{"s", "[", "_", "]"}], "\[Rule]", "0"}]}], "}"}]}]}], "\[IndentingNewLine]", "]"}], ";", "\[IndentingNewLine]", RowBox[{"reps", "=", RowBox[{"Flatten", "[", RowBox[{"{", RowBox[{"reps", ",", "reps2", ",", "reps3"}], "}"}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"eqs", "=", RowBox[{"eqs", "/.", "reps"}]}], ";", "\[IndentingNewLine]", RowBox[{"param", "=", RowBox[{"{", RowBox[{ RowBox[{"e", "\[Rule]", "ee"}], ",", RowBox[{"\[Epsilon]", "\[Rule]", "\[Epsilon]\[Epsilon]"}], ",", RowBox[{"s", "\[Rule]", "ss"}]}], "}"}]}], ";", "\[IndentingNewLine]", RowBox[{"ticks", "=", RowBox[{"Table", "[", RowBox[{ RowBox[{"{", RowBox[{"i", ",", RowBox[{ RowBox[{"(", RowBox[{"i", "-", "1."}], ")"}], "/", RowBox[{"(", RowBox[{"1", "/", "delta"}], ")"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{"i", ",", "1", ",", RowBox[{"1", "+", RowBox[{"1", "/", "delta"}]}], ",", RowBox[{ RowBox[{"(", RowBox[{"1", "/", "delta"}], ")"}], "/", "5"}]}], "}"}]}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"t1", "=", RowBox[{"Chop", "[", RowBox[{"Table", "[", RowBox[{ RowBox[{"Flatten", "[", RowBox[{"{", RowBox[{ RowBox[{"FixedPoint", "[", RowBox[{ RowBox[{ RowBox[{"recf5", "[", RowBox[{"#", ",", RowBox[{"eqs", "\[LeftDoubleBracket]", RowBox[{"1", ";;", "5"}], "\[RightDoubleBracket]"}], ",", "param"}], "]"}], "&"}], ",", "initial", ",", "gen"}], "]"}], ",", "ee", ",", "\[Epsilon]\[Epsilon]"}], "}"}], "]"}], ",", RowBox[{"{", RowBox[{ "\[Epsilon]\[Epsilon]", ",", "0", ",", "1", ",", "delta"}], "}"}], ",", RowBox[{"{", RowBox[{"ee", ",", "0", ",", "1", ",", "delta"}], "}"}]}], "]"}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"t2", "=", RowBox[{"Map", "[", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"0.9999", "-", RowBox[{ "eqs", "\[LeftDoubleBracket]", "7", "\[RightDoubleBracket]"}]}], "/.", RowBox[{"{", RowBox[{ RowBox[{"q1", "\[Rule]", RowBox[{ "#", "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}]}], ",", RowBox[{"q2", "\[Rule]", RowBox[{ "#", "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}]}], ",", RowBox[{"q3", "\[Rule]", RowBox[{ "#", "\[LeftDoubleBracket]", "3", "\[RightDoubleBracket]"}]}], ",", RowBox[{"\[Xi]m", "\[Rule]", RowBox[{ "#", "\[LeftDoubleBracket]", "4", "\[RightDoubleBracket]"}]}], ",", RowBox[{"\[Xi]f", "\[Rule]", RowBox[{ "#", "\[LeftDoubleBracket]", "5", "\[RightDoubleBracket]"}]}], ",", RowBox[{"e", "\[Rule]", RowBox[{ "#", "\[LeftDoubleBracket]", "6", "\[RightDoubleBracket]"}]}], ",", RowBox[{"\[Epsilon]", "\[Rule]", RowBox[{ "#", "\[LeftDoubleBracket]", "7", "\[RightDoubleBracket]"}]}], ",", RowBox[{"s", "\[Rule]", "ss"}]}], "}"}]}], ")"}], "&"}], ",", "t1", ",", RowBox[{"{", "2", "}"}]}], "]"}]}], ";", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"ListContourPlot", "[", RowBox[{"t2", ",", RowBox[{"Contours", "\[Rule]", RowBox[{"Table", "[", RowBox[{"i", ",", RowBox[{"{", RowBox[{"i", ",", "0", ",", "1", ",", RowBox[{"1.", "/", "numcon"}]}], "}"}]}], "]"}]}], ",", RowBox[{"ContourLabels", "\[Rule]", "All"}], ",", RowBox[{ RowBox[{"ImageSize", "\[Rule]", "Large"}], ";", RowBox[{"FrameTicks", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"ticks", ",", "None"}], "}"}], ",", RowBox[{"{", RowBox[{"ticks", ",", "None"}], "}"}]}], "}"}]}]}], ",", RowBox[{"FrameLabel", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"style1", "[", "\"\\"", "]"}], ",", RowBox[{"style1", "[", "\"\\"", "]"}], ",", RowBox[{ "style1", "[", "\"\\"", "]"}]}], "}"}]}]}], "]"}]}]}], "\[IndentingNewLine]", "]"}], "\[IndentingNewLine]", ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"shred", ",", "3", ",", RowBox[{ "style1", "[", "\"\\"", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"1", "\[Rule]", RowBox[{"style1", "[", "\"\\"", "]"}]}], ",", RowBox[{"2", "\[Rule]", RowBox[{"style1", "[", "\"\\"", "]"}]}], ",", RowBox[{"3", "\[Rule]", RowBox[{"style1", "[", "\"\\"", "]"}]}], ",", RowBox[{"4", "\[Rule]", RowBox[{"style1", "[", "\"\\"", "]"}]}]}], "}"}], ",", RowBox[{"Appearance", "\[Rule]", "\"\\""}]}], "}"}], "\[IndentingNewLine]", ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"hom", ",", "2", ",", RowBox[{ "style1", "[", "\"\\"", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"2", "\[Rule]", RowBox[{"style1", "[", RowBox[{"\"\\"", "<>", RowBox[{"ToString", "[", "\[Mars]", "]"}], "<>", "\"\<)\>\""}], "]"}]}], ",", RowBox[{"3", "\[Rule]", RowBox[{"style1", "[", RowBox[{"\"\\"", "<>", RowBox[{"ToString", "[", "\[Mars]", "]"}], "<>", "\"\<)\>\""}], "]"}]}], ",", RowBox[{"4", "\[Rule]", RowBox[{"style1", "[", RowBox[{"\"\\"", "<>", RowBox[{"ToString", "[", "\[Venus]", "]"}], "<>", "\"\<)\>\""}], "]"}]}], ",", RowBox[{"5", "\[Rule]", RowBox[{"style1", "[", RowBox[{"\"\\"", "<>", RowBox[{"ToString", "[", "\[Mars]", "]"}], "<>", "\"\<,\>\"", "<>", RowBox[{"ToString", "[", "\[Venus]", "]"}], "<>", "\"\<)\>\""}], "]"}]}], ",", RowBox[{"6", "\[Rule]", RowBox[{"style1", "[", "\"\\"", "]"}]}]}], "}"}], ",", RowBox[{"Appearance", "\[Rule]", "\"\\""}]}], "}"}], "\[IndentingNewLine]", ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"leth", ",", "3", ",", RowBox[{"style1", "[", "\"\\"", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"1", "\[Rule]", RowBox[{"style1", "[", RowBox[{"ToString", "[", "\[Mars]", "]"}], "]"}]}], ",", RowBox[{"2", "\[Rule]", RowBox[{"style1", "[", RowBox[{"ToString", "[", "\[Venus]", "]"}], "]"}]}], ",", RowBox[{"3", "\[Rule]", RowBox[{"style1", "[", RowBox[{ RowBox[{"ToString", "[", "\[Mars]", "]"}], "<>", RowBox[{"ToString", "[", "\[Venus]", "]"}]}], "]"}]}]}], "}"}], ",", RowBox[{"Appearance", "\[Rule]", "\"\\""}]}], "}"}], "\[IndentingNewLine]", ",", "Delimiter", "\[IndentingNewLine]", ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"ss", ",", "1", ",", RowBox[{"style1", "[", "\"\\"", "]"}]}], "}"}], ",", RowBox[{"Table", "[", RowBox[{"i", ",", RowBox[{"{", RowBox[{"i", ",", "0", ",", "1", ",", "0.1"}], "}"}]}], "]"}]}], "}"}], "\[IndentingNewLine]", ",", "Delimiter", "\[IndentingNewLine]", ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"init", ",", "0.01", ",", "\"\\""}], "}"}], ",", RowBox[{"FieldSize", "\[Rule]", "4"}]}], "}"}], "\[IndentingNewLine]", ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ "gen2", ",", "50", ",", "\"\\""}], "}"}], ",", RowBox[{"FieldSize", "\[Rule]", "4"}]}], "}"}], "\[IndentingNewLine]", ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ "delta2", ",", "12", ",", "\"\\""}], "}"}], ",", RowBox[{"FieldSize", "\[Rule]", "4"}]}], "}"}], ",", RowBox[{"SaveDefinitions", "\[Rule]", "True"}]}], "\[IndentingNewLine]", "]"}]}], ")"}]}]], "Input", CellChangeTimes->{{3.617359494301772*^9, 3.617359542478582*^9}, { 3.617359582435277*^9, 3.6173596372548027`*^9}, {3.617359703482337*^9, 3.617359769457925*^9}, {3.6173598285196323`*^9, 3.6173599903617487`*^9}, { 3.617360773171467*^9, 3.617360773847332*^9}, {3.617458137986347*^9, 3.617458160928886*^9}, {3.6174603568575068`*^9, 3.617460387879847*^9}, 3.617460477957149*^9, {3.6174608852572613`*^9, 3.617460887513268*^9}, { 3.61746352121498*^9, 3.6174635475421553`*^9}, 3.617463585611861*^9, { 3.617463624700444*^9, 3.617463638599525*^9}, {3.617463733783082*^9, 3.6174638412855473`*^9}, {3.6174641661401*^9, 3.6174641745342712`*^9}, { 3.617464214826186*^9, 3.617464345104547*^9}, {3.6174643807792683`*^9, 3.617464404272357*^9}, 3.617464460733059*^9, {3.6174646733910913`*^9, 3.6174646742677193`*^9}, {3.6174647080158377`*^9, 3.6174648920102863`*^9}, 3.617464923573701*^9, {3.6174649576802998`*^9, 3.617464963799815*^9}, { 3.617465065589992*^9, 3.617465076493108*^9}, {3.61746720845333*^9, 3.6174673424111967`*^9}, {3.617467540318634*^9, 3.617467569414165*^9}, { 3.617467720736534*^9, 3.617467746458518*^9}, {3.6174677929526863`*^9, 3.617467942631233*^9}, {3.6174680528174257`*^9, 3.617468139782786*^9}, { 3.617468599062209*^9, 3.617468605049635*^9}, {3.6174686567528677`*^9, 3.617468692299425*^9}, {3.617469290582426*^9, 3.617469296818874*^9}, { 3.617469340227522*^9, 3.617469344899234*^9}, {3.617472429126916*^9, 3.617472445222146*^9}, {3.617472493657445*^9, 3.6174724987111464`*^9}, { 3.617473009987759*^9, 3.617473016345644*^9}, {3.61747715785185*^9, 3.617477193913803*^9}, {3.617477259155229*^9, 3.617477334906864*^9}, { 3.61747738365207*^9, 3.6174775126810017`*^9}, {3.617477613074833*^9, 3.617477765870122*^9}, {3.617477818450699*^9, 3.617477823906283*^9}, { 3.6175059284569597`*^9, 3.6175059615342283`*^9}, {3.617506554734281*^9, 3.61750666690833*^9}, {3.61750681529458*^9, 3.617507035918467*^9}, 3.617507103237224*^9, {3.61750766319869*^9, 3.6175076781507397`*^9}, { 3.6175077141154413`*^9, 3.617507719111602*^9}, {3.617507974255821*^9, 3.617507975301976*^9}, {3.617542998423403*^9, 3.617543028939592*^9}, { 3.6175430665781097`*^9, 3.6175430838617897`*^9}, 3.6175431188910933`*^9, 3.61754398734093*^9, {3.617544038945258*^9, 3.617544063216188*^9}, 3.61754411842113*^9, {3.617544153955709*^9, 3.617544258058585*^9}, 3.617544398241789*^9, {3.6175445080539703`*^9, 3.617544511146674*^9}, { 3.617544562773961*^9, 3.6175445646738977`*^9}, {3.617544976890687*^9, 3.617545003715147*^9}, {3.617545060789803*^9, 3.617545144717608*^9}, { 3.617545190748522*^9, 3.617545215761751*^9}, {3.6175453258009853`*^9, 3.6175453487097893`*^9}, {3.6175454723395*^9, 3.617545550874136*^9}, 3.617545591529294*^9, {3.6175457027076406`*^9, 3.617545705900446*^9}, { 3.617545828564546*^9, 3.6175458510690613`*^9}, {3.61754589542679*^9, 3.617545960086282*^9}, {3.617545996651147*^9, 3.617546065424849*^9}, { 3.617546185305911*^9, 3.6175462171950493`*^9}, {3.617546332891811*^9, 3.617546337336111*^9}, {3.6175463688542757`*^9, 3.617546552873877*^9}, 3.617546633203573*^9, {3.6175466757276707`*^9, 3.617546677221978*^9}, { 3.617546713746914*^9, 3.617546719081624*^9}, 3.617546860051993*^9, { 3.617546934733873*^9, 3.6175469460410633`*^9}, {3.617547417701866*^9, 3.6175474190064297`*^9}, {3.617547488298004*^9, 3.6175475007659903`*^9}, { 3.61754955643629*^9, 3.6175495579002523`*^9}, {3.617549590869276*^9, 3.617549888290071*^9}, {3.617550035525413*^9, 3.617550084853868*^9}, { 3.6185665282219973`*^9, 3.618566533261435*^9}, {3.647619368760454*^9, 3.647619378784689*^9}, {3.6476194861467447`*^9, 3.6476195264616957`*^9}, 3.6476196859822474`*^9, {3.647620569337205*^9, 3.6476205740736628`*^9}, { 3.64762061699714*^9, 3.647620621900592*^9}, {3.710334190756185*^9, 3.710334192903791*^9}},ExpressionUUID->"759feeb4-0cce-49b8-90a0-\ 14ce844a664c"], Cell[BoxData[ RowBox[{"RunModel", ":=", RowBox[{"Grid", "[", RowBox[{ RowBox[{"{", RowBox[{"{", "austin1", RowBox[{"(*", RowBox[{",", "austin2"}], "*)"}], "}"}], "}"}], ",", RowBox[{"Alignment", "\[Rule]", "Top"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.617359660358436*^9, 3.61735966217529*^9}, { 3.6173606143311977`*^9, 3.617360615062416*^9}, {3.617361642869626*^9, 3.6173616467597313`*^9}, {3.617544299544125*^9, 3.617544301558215*^9}, { 3.617550103776206*^9, 3.617550105923971*^9}, {3.61755098759823*^9, 3.617550997110874*^9}, {3.617551057474843*^9, 3.617551090622252*^9}, { 3.617551127507695*^9, 3.617551161280056*^9}, {3.647620177821488*^9, 3.647620182408586*^9}, {3.710333938313567*^9, 3.710333944162005*^9}},ExpressionUUID->"60fccbb1-f79b-4889-a20d-\ a4db1ebbe6e7"] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["Explore dynamics", "Section", CellChangeTimes->{{3.617055014041576*^9, 3.617055043443183*^9}, 3.617055946557176*^9, 3.617055991258872*^9, {3.617285223254343*^9, 3.617285224627346*^9}, 3.617285842760458*^9, {3.617467608567972*^9, 3.617467620842515*^9}},ExpressionUUID->"ef45f0b0-c1d6-43bc-aa6d-\ 7a70302ab8b5"], Cell["\<\ This programme allows the dynamics of classic homing DEGs and X-shredding \ DEGs to be explored separately and together. Use the top panel of options to chose the type of DEG to investigate. Use the first row of options to pick a type of classic homing DEG (or turn \ off: \[OpenCurlyDoubleQuote]Absent\[CloseCurlyDoubleQuote]). The most \ straightforward assumption is to assume the DEG is on an autosome and homing \ occurs in both sexes, \[OpenCurlyDoubleQuote]A(\[Mars],\[Venus])\ \[CloseCurlyDoubleQuote], males \[OpenCurlyDoubleQuote]A(\[Mars])\ \[CloseCurlyDoubleQuote], or females \[OpenCurlyDoubleQuote]A(\[Venus])\ \[CloseCurlyDoubleQuote]. We also provide the option where homing occurs in \ males and the DEG is partly coded by genes on both the Y chromosome and an \ autosome (both must be present) \[OpenCurlyDoubleQuote]Y+A(\[Mars])\ \[CloseCurlyDoubleQuote]. For a normal X-shredding DEG on the Y chromosome select the \ \[OpenCurlyDoubleQuote]Y\[CloseCurlyDoubleQuote] option in the second row. \ Alternatives are to place the DEG on an autosome (\[OpenCurlyDoubleQuote]A\ \[CloseCurlyDoubleQuote]), to require the DEG to be coded by genes on both \ the Y chromosome and an autosome (\[OpenCurlyDoubleQuote]Y+A\ \[CloseCurlyDoubleQuote]), or to turn X-shredding off \ (\[OpenCurlyDoubleQuote]Absent). Here we assume expression occurs before homing and that the DEG is recessive. \ The third row allows the fitness costs to be experienced by one or both sexes. Use the sliders in the second panel to adjust the homing rate, shredding rate \ and fitness costs to the homozygote classical HEG (all range from 0 to 1). The initial DEG frequency is assumed to be 0.01 but can be adjusted if \ required. The output is two graphs. The first shows the frequency of different gamete \ types carrying the DEG. The second shows changes in population fitness (1- \ the load) and sex ratio (fraction males). The actual values of ech quantity \ at the end of the simulation are shown in brackets.\ \>", "Text", CellChangeTimes->{{3.710334273298904*^9, 3.710334353622114*^9}, { 3.7103344847202*^9, 3.710334495598783*^9}, {3.71033460822713*^9, 3.71033464902839*^9}, {3.710334695267805*^9, 3.710334908198153*^9}, { 3.710334945693802*^9, 3.7103349904928923`*^9}, {3.710335031027234*^9, 3.710335151009672*^9}, {3.710335186497463*^9, 3.710335677506133*^9}, { 3.710335786081987*^9, 3.710335888671443*^9}, {3.7103364082611017`*^9, 3.710336435259951*^9}, {3.710484532538589*^9, 3.710484549402349*^9}, { 3.71048459053267*^9, 3.710484674200458*^9}},ExpressionUUID->"e0a52d6d-9646-43bf-b26b-\ 9a3d711b21cc"], Cell[CellGroupData[{ Cell[BoxData["RunModel"], "Input", CellChangeTimes->{{3.617559970400648*^9, 3.617559972694628*^9}, { 3.710333948055889*^9, 3.710333950270898*^9}},ExpressionUUID->"2fec992d-c5aa-44bf-90ab-\ ca7863619cd9"], Cell[BoxData[ TagBox[GridBox[{ { TagBox[ StyleBox[ DynamicModuleBox[{$CellContext`ee$$ = 0.8, $CellContext`hom$$ = 5, $CellContext`init$$ = 0.01, $CellContext`leth$$ = 3, $CellContext`shred$$ = 4, $CellContext`ss$$ = 1, $CellContext`\[Epsilon]\[Epsilon]$$ = 0.9, Typeset`show$$ = True, Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ = "\"untitled\"", Typeset`specs$$ = {{{ Hold[$CellContext`hom$$], 5, Style[ "Homing (in sex) needs construct(s) on", Large, FontFamily -> "Helvetica", FontSize -> 16]}, { 2 -> Style[ "A (\[Mars])", Large, FontFamily -> "Helvetica", FontSize -> 16], 3 -> Style[ "Y + A (\[Mars])", Large, FontFamily -> "Helvetica", FontSize -> 16], 4 -> Style[ "A (\[Venus])", Large, FontFamily -> "Helvetica", FontSize -> 16], 5 -> Style[ "A (\[Mars],\[Venus])", Large, FontFamily -> "Helvetica", FontSize -> 16], 6 -> Style["Absent", Large, FontFamily -> "Helvetica", FontSize -> 16]}}, {{ Hold[$CellContext`shred$$], 4, Style[ "Shredding needs construct(s) on", Large, FontFamily -> "Helvetica", FontSize -> 16]}, { 1 -> Style["Y", Large, FontFamily -> "Helvetica", FontSize -> 16], 2 -> Style["A", Large, FontFamily -> "Helvetica", FontSize -> 16], 3 -> Style[ "Y + A", Large, FontFamily -> "Helvetica", FontSize -> 16], 4 -> Style["Absent", Large, FontFamily -> "Helvetica", FontSize -> 16]}}, {{ Hold[$CellContext`leth$$], 3, Style[ "DEG fitness effects in", Large, FontFamily -> "Helvetica", FontSize -> 16]}, { 1 -> Style[ "\[Mars]", Large, FontFamily -> "Helvetica", FontSize -> 16], 2 -> Style["\[Venus]", Large, FontFamily -> "Helvetica", FontSize -> 16], 3 -> Style[ "\[Mars]\[Venus]", Large, FontFamily -> "Helvetica", FontSize -> 16]}}, {{ Hold[$CellContext`ee$$], 0.8, Style[ "Homing rate", Large, FontFamily -> "Helvetica", FontSize -> 16]}, 0, 1}, {{ Hold[$CellContext`\[Epsilon]\[Epsilon]$$], 0.9, Style[ "Shredding rate", Large, FontFamily -> "Helvetica", FontSize -> 16]}, 0, 1}, {{ Hold[$CellContext`ss$$], 1, Style[ "DEG fitness costs", Large, FontFamily -> "Helvetica", FontSize -> 16]}, 0, 1}, {{ Hold[$CellContext`init$$], 0.01, "Initial DEG frequency"}}}, Typeset`size$$ = {592., {251.634033203125, 257.365966796875}}, Typeset`update$$ = 0, Typeset`initDone$$, Typeset`skipInitDone$$ = False, $CellContext`hom$4934$$ = False, $CellContext`shred$4935$$ = False, $CellContext`leth$4936$$ = False, $CellContext`ee$4937$$ = 0, $CellContext`\[Epsilon]\[Epsilon]$4938$$ = 0, $CellContext`ss$4939$$ = 0}, DynamicBox[Manipulate`ManipulateBoxes[ 1, StandardForm, "Variables" :> {$CellContext`ee$$ = 0.8, $CellContext`hom$$ = 5, $CellContext`init$$ = 0.01, $CellContext`leth$$ = 3, $CellContext`shred$$ = 4, $CellContext`ss$$ = 1, $CellContext`\[Epsilon]\[Epsilon]$$ = 0.9}, "ControllerVariables" :> { Hold[$CellContext`hom$$, $CellContext`hom$4934$$, False], Hold[$CellContext`shred$$, $CellContext`shred$4935$$, False], Hold[$CellContext`leth$$, $CellContext`leth$4936$$, False], Hold[$CellContext`ee$$, $CellContext`ee$4937$$, 0], Hold[$CellContext`\[Epsilon]\[Epsilon]$$, $CellContext`\[Epsilon]\ \[Epsilon]$4938$$, 0], Hold[$CellContext`ss$$, $CellContext`ss$4939$$, 0]}, "OtherVariables" :> { Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$, Typeset`skipInitDone$$}, "Body" :> Module[{$CellContext`initial$, $CellContext`gen$ = 50, $CellContext`t1$, $CellContext`t2$, $CellContext`param$, \ $CellContext`reps$, $CellContext`reps2$, $CellContext`reps3$, \ $CellContext`eqs$ = {$CellContext`q1p, $CellContext`q2p, $CellContext`q3p, \ $CellContext`\[Xi]mp, $CellContext`\[Xi]fp, $CellContext`sexrat, \ $CellContext`load}}, $CellContext`initial$ = Table[$CellContext`init$$, {5}]; Which[$CellContext`shred$$ == 1, $CellContext`reps$ = {$CellContext`\[Epsilon][ 1, 2] -> $CellContext`\[Epsilon], $CellContext`\[Epsilon][ 1, 1] -> $CellContext`\[Epsilon], $CellContext`\[Epsilon][ 1, 0] -> $CellContext`\[Epsilon], $CellContext`\[Epsilon][ Blank[], Blank[]] -> 0}, $CellContext`shred$$ == 2, $CellContext`reps$ = {$CellContext`\[Epsilon][ 1, 2] -> $CellContext`\[Epsilon], $CellContext`\[Epsilon][ 1, 1] -> $CellContext`\[Epsilon], $CellContext`\[Epsilon][ 0, 2] -> $CellContext`\[Epsilon], $CellContext`\[Epsilon][ 0, 1] -> $CellContext`\[Epsilon], $CellContext`\[Epsilon][ Blank[], Blank[]] -> 0}, $CellContext`shred$$ == 3, $CellContext`reps$ = {$CellContext`\[Epsilon][ 1, 2] -> $CellContext`\[Epsilon], $CellContext`\[Epsilon][ 1, 1] -> $CellContext`\[Epsilon], $CellContext`\[Epsilon][ Blank[], Blank[]] -> 0}, $CellContext`shred$$ == 4, $CellContext`reps$ = {$CellContext`\[Epsilon][ Blank[], Blank[]] -> 0}]; Which[$CellContext`hom$$ == 2, $CellContext`reps2$ = {$CellContext`e[ 1] -> $CellContext`e, $CellContext`e[ 2] -> $CellContext`e, $CellContext`e[ Blank[]] -> 0}, $CellContext`hom$$ == 3, $CellContext`reps2$ = {$CellContext`e[ 1] -> $CellContext`e, $CellContext`e[ Blank[]] -> 0}, $CellContext`hom$$ == 4, $CellContext`reps2$ = {$CellContext`e[ 3] -> $CellContext`e, $CellContext`e[ Blank[]] -> 0}, $CellContext`hom$$ == 5, $CellContext`reps2$ = {$CellContext`e[ 1] -> $CellContext`e, $CellContext`e[ 2] -> $CellContext`e, $CellContext`e[ 3] -> $CellContext`e, $CellContext`e[ Blank[]] -> 0}, $CellContext`hom$$ == 6, $CellContext`reps2$ = {$CellContext`e[ Blank[]] -> 0}]; Which[$CellContext`leth$$ == 1, $CellContext`reps3$ = {$CellContext`s[ Blank[], 2] -> $CellContext`s, $CellContext`s[ Blank[], 1] -> $CellContext`nol, $CellContext`s[ Blank[], Blank[]] -> 0, $CellContext`s[ Blank[]] -> 0}, $CellContext`leth$$ == 2, $CellContext`reps3$ = {$CellContext`s[ Blank[], 1] -> $CellContext`nol, $CellContext`s[ Blank[], Blank[]] -> 0, $CellContext`s[2] -> $CellContext`s, $CellContext`s[ Blank[]] -> 0}, $CellContext`leth$$ == 3, $CellContext`reps3$ = {$CellContext`s[ Blank[], 2] -> $CellContext`s, $CellContext`s[ Blank[], 1] -> $CellContext`nol, $CellContext`s[ Blank[], Blank[]] -> 0, $CellContext`s[2] -> $CellContext`s, $CellContext`s[ Blank[]] -> 0}]; $CellContext`reps$ = Flatten[{$CellContext`reps$, $CellContext`reps2$, \ $CellContext`reps3$}]; $CellContext`eqs$ = ReplaceAll[$CellContext`eqs$, $CellContext`reps$]; \ $CellContext`param$ = {$CellContext`e -> $CellContext`ee$$, $CellContext`\ \[Epsilon] -> $CellContext`\[Epsilon]\[Epsilon]$$, $CellContext`s -> \ $CellContext`ss$$, $CellContext`nol -> 0}; $CellContext`t1$ = NestList[$CellContext`recf5[#, Part[$CellContext`eqs$, Span[ 1, 5]], $CellContext`param$]& , $CellContext`initial$, \ $CellContext`gen$]; $CellContext`t2$ = Table[ ReplaceAll[ Part[$CellContext`eqs$, Span[6, 7]], Flatten[{$CellContext`param$, {$CellContext`q1 -> Part[$CellContext`t1$, $CellContext`i, 1], $CellContext`q2 -> Part[$CellContext`t1$, $CellContext`i, 2], $CellContext`q3 -> Part[$CellContext`t1$, $CellContext`i, 3], $CellContext`\[Xi]m -> Part[$CellContext`t1$, $CellContext`i, 4], $CellContext`\[Xi]f -> Part[$CellContext`t1$, $CellContext`i, 5]}}]], {$CellContext`i, 1, $CellContext`gen$ + 1}]; $CellContext`t1$ = Transpose[$CellContext`t1$]; $CellContext`t2$ = Transpose[$CellContext`t2$]; Grid[{{ Labeled[ ListPlot[{ Legended[ Part[$CellContext`t1$, 1], StringJoin["Y+A+ male gamete (", $CellContext`TSNF[ Part[$CellContext`t1$, 1, $CellContext`gen$ + 1]], ")"]], Legended[ Part[$CellContext`t1$, 2], StringJoin["Y+A- male gamete (", $CellContext`TSNF[ Part[$CellContext`t1$, 2, $CellContext`gen$ + 1]], ")"]], Legended[ Part[$CellContext`t1$, 3], StringJoin["Y-A+ male gamete (", $CellContext`TSNF[ Part[$CellContext`t1$, 3, $CellContext`gen$ + 1]], ")"]], Legended[ Part[$CellContext`t1$, 4], StringJoin["XA+ male gamete (", $CellContext`TSNF[ Part[$CellContext`t1$, 4, $CellContext`gen$ + 1]], ")"]], Legended[ Part[$CellContext`t1$, 5], StringJoin["XA+ female gamete (", $CellContext`TSNF[ Part[$CellContext`t1$, 5, $CellContext`gen$ + 1]], ")"]]}, Joined -> True, PlotRange -> {0, 1}, ImageSize -> Medium], { $CellContext`style1["Generation"], $CellContext`style1["Frequency"]}, {Bottom, Left}, RotateLabel -> True]}, { Labeled[ ListPlot[{ Legended[ Part[$CellContext`t2$, 1], StringJoin["Sex ratio (", $CellContext`TSNF[ Part[$CellContext`t2$, 1, $CellContext`gen$ + 1]], ")"]], Legended[1 - Part[$CellContext`t2$, 2], StringJoin["Pop. fitness (", $CellContext`TSNF[ 1 - Part[$CellContext`t2$, 2, $CellContext`gen$ + 1]], ")"]]}, Joined -> True, PlotRange -> {0, 1}, ImageSize -> Medium], { $CellContext`style1["Generation"], $CellContext`style1[""]}, {Bottom, Left}, RotateLabel -> True]}}]], "Specifications" :> {{{$CellContext`hom$$, 5, Style[ "Homing (in sex) needs construct(s) on", Large, FontFamily -> "Helvetica", FontSize -> 16]}, { 2 -> Style[ "A (\[Mars])", Large, FontFamily -> "Helvetica", FontSize -> 16], 3 -> Style[ "Y + A (\[Mars])", Large, FontFamily -> "Helvetica", FontSize -> 16], 4 -> Style[ "A (\[Venus])", Large, FontFamily -> "Helvetica", FontSize -> 16], 5 -> Style[ "A (\[Mars],\[Venus])", Large, FontFamily -> "Helvetica", FontSize -> 16], 6 -> Style["Absent", Large, FontFamily -> "Helvetica", FontSize -> 16]}, Appearance -> "Row"}, {{$CellContext`shred$$, 4, Style[ "Shredding needs construct(s) on", Large, FontFamily -> "Helvetica", FontSize -> 16]}, { 1 -> Style[ "Y", Large, FontFamily -> "Helvetica", FontSize -> 16], 2 -> Style["A", Large, FontFamily -> "Helvetica", FontSize -> 16], 3 -> Style["Y + A", Large, FontFamily -> "Helvetica", FontSize -> 16], 4 -> Style[ "Absent", Large, FontFamily -> "Helvetica", FontSize -> 16]}, Appearance -> "Row"}, {{$CellContext`leth$$, 3, Style[ "DEG fitness effects in", Large, FontFamily -> "Helvetica", FontSize -> 16]}, { 1 -> Style[ "\[Mars]", Large, FontFamily -> "Helvetica", FontSize -> 16], 2 -> Style[ "\[Venus]", Large, FontFamily -> "Helvetica", FontSize -> 16], 3 -> Style[ "\[Mars]\[Venus]", Large, FontFamily -> "Helvetica", FontSize -> 16]}, Appearance -> "Row"}, Delimiter, {{$CellContext`ee$$, 0.8, Style[ "Homing rate", Large, FontFamily -> "Helvetica", FontSize -> 16]}, 0, 1}, {{$CellContext`\[Epsilon]\[Epsilon]$$, 0.9, Style[ "Shredding rate", Large, FontFamily -> "Helvetica", FontSize -> 16]}, 0, 1}, {{$CellContext`ss$$, 1, Style[ "DEG fitness costs", Large, FontFamily -> "Helvetica", FontSize -> 16]}, 0, 1}, Delimiter, {{$CellContext`init$$, 0.01, "Initial DEG frequency"}, FieldSize -> 4}}, "Options" :> {ControlPlacement -> Top}, "DefaultOptions" :> {}], ImageSizeCache->{637., {398., 404.}}, SingleEvaluation->True], Deinitialization:>None, DynamicModuleValues:>{}, Initialization:>({$CellContext`t1 = {{{ 0.00015242556648826356`, 0.019650530891063608`, 0.007544686065049597, 0.00769711163153786, 0.0076971116315378615`, 0, 0}, { 0.0001895650414517055, 0.019576323241986483`, 0.007967654549257214, 0.008157219590708918, 0.008142637664443404, 0.08333333333333333, 0}, { 0.00023784952813019555`, 0.019479793853913564`, 0.00848194322698793, 0.008719792755118128, 0.008685814251099528, 0.16666666666666666`, 0}, { 0.00030215805269126044`, 0.019350937017410696`, 0.009118036021250999, 0.009420194073942258, 0.009359762463404009, 0.25, 0}, { 0.00039019679617799266`, 0.019173651737926598`, 0.009920186832357101, 0.010310383628535095`, 0.010212834429490596`, 0.3333333333333333, 0}, { 0.0005145051875944726, 0.018921004574150257`, 0.010953982661645623`, 0.011468487849240098`, 0.01131716279406525, 0.41666666666666663`, 0}, { 0.0006960226993938103, 0.01854608884941327, 0.012318171066128382`, 0.013014193765522191`, 0.01278218619905759, 0.5, 0}, { 0.0009701697160752591, 0.01796406935257736, 0.014161778745145627`, 0.015131948461220885`, 0.014774517513193157`, 0.5833333333333333, 0}, { 0.0013955442025908708`, 0.01701753143813871, 0.016702924282673084`, 0.018098468485263954`, 0.017540250804227605`, 0.6666666666666666, 0}, { 0.002058205782054896, 0.015416681630141461`, 0.02022601645925532, 0.022284222241310218`, 0.021402134049000977`, 0.75, 0}, { 0.0030352222703882927`, 0.012673209864394014`, 0.0249779861428946, 0.028013208413282895`, 0.026633561926742762`, 0.8333333333333333, 0}, { 0.0042186167456109884`, 0.008171199654444381, 0.030809515082391156`, 0.03502813182800214, 0.033010532514883846`, 0.9166666666666666, 0}, { 0.004942441727169433, 0.0017203085679358084`, 0.03654393264666525, 0.041486374373834685`, 0.039015153510249964`, 1., 0}}, {{ 0.00018012634511552092`, 0.02132799569860955, 0.007528017282888665, 0.007693364062169587, 0.0076934269751529035`, 0, 0.08333333333333333}, { 0.00022898247475999054`, 0.021441754117748523`, 0.007988594691105709, 0.008198784120334864, 0.00818199865568178, 0.08333333333333333, 0.08333333333333333}, { 0.00029537970295429316`, 0.021575879647034234`, 0.008564676851098036, 0.00883581442455472, 0.008795521009294998, 0.16666666666666666`, 0.08333333333333333}, { 0.00038881510381618203`, 0.02173458277317643, 0.00930227438521524, 0.00965918898218899, 0.009584896263274975, 0.25, 0.08333333333333333}, {0.0005258591054515455, 0.021921526885742677`, 0.010272964431763358`, 0.010755708943529384`, 0.010630100364515713`, 0.3333333333333333, 0.08333333333333333}, { 0.0007369379063152238, 0.022136340238665488`, 0.011591822448673784`, 0.012268412516705941`, 0.012061351321508549`, 0.41666666666666663`, 0.08333333333333333}, {0.001080838082018276, 0.022363696551355006`, 0.013449070307934382`, 0.014441572883332974`, 0.01409750829484994, 0.5, 0.08333333333333333}, {0.0016756768029125564`, 0.022540427485308857`, 0.016162053211199012`, 0.01770121254487709, 0.017111961397236558`, 0.5833333333333333, 0.08333333333333333}, {0.002758108558895682, 0.02246177646008486, 0.020237969287865202`, 0.02277251637408481, 0.02172030747545713, 0.6666666666666666, 0.08333333333333333}, {0.004747142812161634, 0.02155397612287508, 0.026349275553634123`, 0.03071470952311946, 0.02877624227901136, 0.75, 0.08333333333333333}, { 0.00808048540152224, 0.01854436406699352, 0.03489951405563209, 0.04233772652652424, 0.038841743985055466`, 0.8333333333333333, 0.08333333333333333}, {0.012282618221298657`, 0.011726325796006104`, 0.0449113569900677, 0.05623048086935249, 0.050643213643126475`, 0.9166666666666666, 0.08333333333333333}, {0.014848095632326098`, 0.0009521628211021844, 0.053339042024973284`, 0.06703273873086991, 0.05997131437670464, 1., 0.08333333333333333}}, {{ 0.00021729782345565263`, 0.023451118618259246`, 0.007506376571648411, 0.007688014954166868, 0.0076881815224502745`, 0, 0.16666666666666666`}, { 0.0002840750863723111, 0.023867588597508357`, 0.008014634046624733, 0.0082520845811576, 0.008232316723686529, 0.08333333333333333, 0.16666666666666666`}, { 0.0003800426093905533, 0.024395154496488172`, 0.008673629029072394, 0.008991307512127022, 0.008941970129087828, 0.16666666666666666`, 0.16666666666666666`}, {0.0005250346442022719, 0.02508030037312291, 0.00955624674590143, 0.00999517503291456, 0.009899655838975384, 0.25, 0.16666666666666666`}, { 0.000758031068697036, 0.025995119367888786`, 0.010785774432770835`, 0.011419631098809854`, 0.011247261871452082`, 0.3333333333333333, 0.16666666666666666`}, {0.001161751773436344, 0.02725136333124647, 0.012580742433703253`, 0.013552573553063321`, 0.01324202931913011, 0.41666666666666663`, 0.16666666666666666`}, { 0.0019258425680442226`, 0.029010945050698275`, 0.01534297383440535, 0.016955098830236128`, 0.01637254625184032, 0.5, 0.16666666666666666`}, {0.00350919333245158, 0.0314396822744178, 0.019809257753866154`, 0.022750393010374962`, 0.021579930979800682`, 0.5833333333333333, 0.16666666666666666`}, { 0.006986900794559693, 0.034381602317010075`, 0.02717764461690008, 0.03304624010595052, 0.03052441939717403, 0.6666666666666666, 0.16666666666666666`}, { 0.014272116809849366`, 0.036266726793444434`, 0.038632868007523045`, 0.05066402876555935, 0.0451654462399013, 0.75, 0.16666666666666666`}, {0.026254271421904764`, 0.032847962421421004`, 0.05340511346759946, 0.07564476355933208, 0.0649479392205991, 0.8333333333333333, 0.16666666666666666`}, {0.03833171310380118, 0.020058607522586647`, 0.06750916922978999, 0.1001196999375743, 0.08370418777859114, 0.9166666666666666, 0.16666666666666666`}, {0.042480280963190044`, 0.000375283664143672, 0.07655725064683251, 0.11275580113489755`, 0.0937250560154284, 1., 0.16666666666666666`}}, {{ 0.00026889909177811984`, 0.026211353592723842`, 0.0074774229463598916`, 0.007680129855164877, 0.007680472191435025, 0, 0.25}, {0.0003645994282497149, 0.027130834012135063`, 0.00804769534775974, 0.008322545409084442, 0.00829858070744538, 0.08333333333333333, 0.25}, {0.0005123800910057672, 0.028357024974720688`, 0.0088224483723383, 0.009208755604750402, 0.009145729771346336, 0.16666666666666666`, 0.25}, {0.0007576669266015511, 0.030057675900183628`, 0.009924228631917232, 0.010495659712563226`, 0.010365022227515517`, 0.25, 0.25}, { 0.001203961118771087, 0.03252974926477003, 0.011582583444057893`, 0.012491193875043426`, 0.01223196861730358, 0.3333333333333333, 0.25}, { 0.002114152626197597, 0.036316130784821876`, 0.014253698248132286`, 0.01585114038721973, 0.015317110233442127`, 0.41666666666666663`, 0.25}, { 0.004226437934776748, 0.04238069467201143, 0.0188697759054758, 0.022070697834750286`, 0.020866736274571508`, 0.5, 0.25}, { 0.0096798584527619, 0.05202924044305226, 0.0271794663837944, 0.034544957158803916`, 0.03151973391813654, 0.5833333333333333, 0.25}, {0.023612367231994346`, 0.06489840898419927, 0.04124237761450788, 0.059372228698728546`, 0.051428469480162976`, 0.6666666666666666, 0.25}, { 0.05142204621803121, 0.07329323749668284, 0.060033148874406514`, 0.10006991200656881`, 0.08163868192579524, 0.75, 0.25}, { 0.08522506374301839, 0.06402998256413024, 0.07796121623811156, 0.1452562336188026, 0.11286504169734098`, 0.8333333333333333, 0.25}, {0.10529126617868449`, 0.03554603726355055, 0.09133074919529774, 0.17510896705374512`, 0.13290977947056282`, 0.9166666666666666, 0.25}, {0.1030102999531443, 0.00010155912754062034`, 0.09916286953996967, 0.18108397310129576`, 0.13784567955064, 1., 0.25}}, {{ 0.0003435657456391373, 0.02991992889967064, 0.0074372254534355595`, 0.00766802559781638, 0.007668678248419238, 0, 0.3333333333333333}, { 0.0004891520554271642, 0.03171211818300552, 0.008090623437530767, 0.008419259144994586, 0.008389095444192802, 0.08333333333333333, 0.3333333333333333}, {0.0007363070358120553, 0.03425195044575001, 0.009035140381789299, 0.009530021465772587, 0.009444733579277543, 0.16666666666666666`, 0.3333333333333333}, {0.0012025719605358886`, 0.038068472854452216`, 0.010492448639671404`, 0.011301411685792824`, 0.011106274571340577`, 0.25, 0.3333333333333333}, {0.0022115708661093894`, 0.0442343554599442, 0.012931521688691326`, 0.014421849737454967`, 0.013975028869671852`, 0.3333333333333333, 0.3333333333333333}, {0.004791806834241479, 0.05502130757449443, 0.01740023747056029, 0.02064132087649874, 0.01951199243075322, 0.41666666666666663`, 0.3333333333333333}, {0.012525231727208812`, 0.07485467769564039, 0.02609685020922579, 0.034639836685801596`, 0.03134023658357099, 0.5, 0.3333333333333333}, { 0.03637121178547248, 0.10802173128921212`, 0.041715415283985396`, 0.06698876883865638, 0.05656668714319428, 0.5833333333333333, 0.3333333333333333}, {0.09213364251478369, 0.1429037170034627, 0.06137212114644985, 0.12749311138875458`, 0.09901487946301461, 0.6666666666666666, 0.3333333333333333}, { 0.1666570906187833, 0.14787355189032758`, 0.07682581547654863, 0.2006708146069755, 0.1450032532572985, 0.75, 0.3333333333333333}, {0.21971628183325145`, 0.1134560343522162, 0.08895317122330557, 0.2558742324335601, 0.17712795442150078`, 0.8333333333333333, 0.3333333333333333}, {0.23167980865585489`, 0.057180845832166184`, 0.10136537624790797`, 0.2782403833298487, 0.19044244685006548`, 0.9166666666666666, 0.3333333333333333}, {0.2089355349181902, 0.00001941134285469889, 0.11207385394042282`, 0.27018101555585006`, 0.18752564453281179`, 1., 0.3333333333333333}}, {{ 0.0004573171564178537, 0.035111277165172775`, 0.0073787792464697155`, 0.00764846239860938, 0.007649693276731312, 0, 0.41666666666666663`}, { 0.0006964612475068963, 0.03850764024006689, 0.00814753689650412, 0.008558391025003597, 0.008518494926277606, 0.08333333333333333, 0.41666666666666663`}, { 0.0011581349600787252`, 0.043720538177046506`, 0.009356501857081253, 0.01004038638556943, 0.009915265923783466, 0.16666666666666666`, 0.41666666666666663`}, { 0.002200345904868008, 0.0524520366971276, 0.011442574227612003`, 0.012744804657943308`, 0.012412851668725968`, 0.25, 0.41666666666666663`}, {0.0050806251928179206`, 0.06873234995135921, 0.015455754309703133`, 0.018478127614267644`, 0.017531868034784227`, 0.3333333333333333, 0.41666666666666663`}, { 0.014940374391756892`, 0.10210406345189796`, 0.02380559366290215, 0.03280915384748079, 0.029610203465748285`, 0.41666666666666663`, 0.41666666666666663`}, { 0.05116734037623977, 0.16696378469823736`, 0.03919285584692782, 0.07106045694861257, 0.05897667153927617, 0.5, 0.41666666666666663`}, {0.14612087752585473`, 0.2454560603177399, 0.05431102284779363, 0.15117437642715245`, 0.11312900233977663`, 0.5833333333333333, 0.41666666666666663`}, {0.27300298431810693`, 0.27216969152914516`, 0.05854531458785491, 0.2522263251903631, 0.17252584828943657`, 0.6666666666666666, 0.41666666666666663`}, {0.3703301894464501, 0.2365083448383137, 0.06130259583910662, 0.3367058439596872, 0.2166251778262841, 0.75, 0.41666666666666663`}, {0.4176296515687252, 0.16535555152414896`, 0.0713649270024721, 0.388786142488214, 0.2422312863756294, 0.8333333333333333, 0.41666666666666663`}, { 0.4112965971954983, 0.080245476668303, 0.0893725721428026, 0.40100518131881013`, 0.24912731666403062`, 0.9166666666666666, 0.41666666666666663`}, {0.3620660279590394, 2.7158676815235185`*^-6, 0.10929336792138901`, 0.37743937375147135`, 0.2395806609980895, 1., 0.41666666666666663`}}, {{ 0.0006422236562645376, 0.04276571193575056, 0.007288676994796739, 0.007614679150014011, 0.007617066426339585, 0, 0.5}, {0.001076734643425139, 0.04934484363958092, 0.008223579840198253, 0.008770664403334448, 0.008714263547707723, 0.08333333333333333, 0.5}, { 0.00208070626516552, 0.06061204722431412, 0.009874017670304706, 0.010933870951852064`, 0.01072772861968167, 0.16666666666666666`, 0.5}, {0.005007020478339378, 0.08255913960817249, 0.013172674145832987`, 0.015739229701345014`, 0.015053991426844071`, 0.25, 0.5}, { 0.01617141919798777, 0.1314355022331111, 0.020420551775432134`, 0.028856246214942663`, 0.026185170577421136`, 0.3333333333333333, 0.5}, {0.0640762062950804, 0.2376409839028637, 0.03364807775551989, 0.06879792936025692, 0.05689292298321278, 0.41666666666666663`, 0.5}, { 0.197437254003188, 0.36771526373765956`, 0.04019278468346776, 0.15996704816560342`, 0.11824744245974105`, 0.5, 0.5}, { 0.3577486385422287, 0.4043384106048244, 0.03229481893812852, 0.2728094899675266, 0.183750618820589, 0.5833333333333333, 0.5}, {0.4773226112798825, 0.3632186189401298, 0.026411077871578474`, 0.371454587805427, 0.23342814946701196`, 0.6666666666666666, 0.5}, {0.5615026103160143, 0.2897787681862915, 0.027712510348290986`, 0.45419677133624536`, 0.27088839492548805`, 0.75, 0.5}, {0.6108423415807197, 0.19937308179912194`, 0.0379684234728755, 0.5149711480327988, 0.29692497616637886`, 0.8333333333333333, 0.5}, { 0.6075065983120606, 0.09839583494162946, 0.06021663787823984, 0.5328676476201479, 0.3051745504115292, 0.9166666666666666, 0.5}, {0.5455857108051464, 2.829251920078781*^-7, 0.09043214338897301, 0.49947941448323274`, 0.29245351207884485`, 1., 0.5}}, {{ 0.0009686334694742818, 0.05482945446861228, 0.007138971682380352, 0.007551102253431082, 0.007556022902695672, 0, 0.5833333333333333}, { 0.001872154190484284, 0.06838438719266046, 0.008320006631846958, 0.00911845519769188, 0.009031282915109264, 0.08333333333333333, 0.5833333333333333}, {0.004568048307638629, 0.09541429713030504, 0.010748834873383371`, 0.01271024936801469, 0.012309431190731674`, 0.16666666666666666`, 0.5833333333333333}, {0.015634824412089535`, 0.15906122935608807`, 0.01632155131142836, 0.02317423152113586, 0.021339038376212698`, 0.25, 0.5833333333333333}, { 0.06964519672940056, 0.30939716761553854`, 0.026203558416302276`, 0.058806001486481865`, 0.049316504458970234`, 0.3333333333333333, 0.5833333333333333}, {0.22432234886125024`, 0.48461182893448734`, 0.025310581810169385`, 0.14569297153505, 0.10988002434491127`, 0.41666666666666663`, 0.5833333333333333}, {0.3840017863687685, 0.5104859708120092, 0.01367054495374139, 0.24763065589103986`, 0.17204344143171824`, 0.5, 0.5833333333333333}, {0.49474709743175505`, 0.4568401781504808, 0.007668843819192322, 0.33647593607583337`, 0.21868195755367387`, 0.5833333333333333, 0.5833333333333333}, { 0.5845543500525762, 0.3824564901559545, 0.005960896595279978, 0.4223428571832648, 0.2585121426217386, 0.6666666666666666, 0.5833333333333333}, {0.6661599989352788, 0.2994118889797514, 0.006899204089241575, 0.511727435627416, 0.29651403744613275`, 0.75, 0.5833333333333333}, {0.7363489531275477, 0.208374183030604, 0.012036682884534378`, 0.6000003107830564, 0.33199598739636227`, 0.8333333333333333, 0.5833333333333333}, { 0.7690703625526969, 0.10698941297131881`, 0.028304527462181345`, 0.6557060399600496, 0.354153105535261, 0.9166666666666666, 0.5833333333333333}, {0.7250919554346603, 2.205325714107102*^-8, 0.06177534157442262, 0.6306382397632533, 0.3452096630149131, 1., 0.5833333333333333}}, {{ 0.0016079950351932945`, 0.07553668236740897, 0.006865461060231662, 0.007417362180710511, 0.007428496182811047, 0, 0.6666666666666666}, { 0.003855828307574742, 0.10637843616535776`, 0.00839965684991805, 0.009731113262574722, 0.009580600435619044, 0.08333333333333333, 0.6666666666666666}, { 0.013326023284013267`, 0.18082114417728565`, 0.012057541433074236`, 0.01675471922702507, 0.01580102170052137, 0.16666666666666666`, 0.6666666666666666}, { 0.06423571070202737, 0.36804617112273025`, 0.01848636443140402, 0.042833111014873665`, 0.037095489600028064`, 0.25, 0.6666666666666666}, {0.2175495576018817, 0.5805830434726411, 0.014569619146973311`, 0.111299238429327, 0.08818907480535963, 0.3333333333333333, 0.6666666666666666}, {0.36170814227399384`, 0.5912889489804549, 0.005223023007375728, 0.19071915223787517`, 0.1414550129923437, 0.41666666666666663`, 0.6666666666666666}, { 0.459042613256178, 0.5271251086202078, 0.0019094761571538882`, 0.26171215173398155`, 0.1824257067006012, 0.5, 0.6666666666666666}, {0.5427855073651127, 0.451081267700409, 0.0009818503481734116, 0.33506078492351804`, 0.2196056892503516, 0.5833333333333333, 0.6666666666666666}, {0.6244130665081816, 0.3713751016044204, 0.0007616600699060824, 0.4174067138438296, 0.2574065401787486, 0.6666666666666666, 0.6666666666666666}, { 0.7069169370210194, 0.28843164162384854`, 0.0009379478287641517, 0.5127409193785966, 0.29784110577294226`, 0.75, 0.6666666666666666}, {0.7900770439996766, 0.20100662772144695`, 0.0019897846461449675`, 0.6237652246542468, 0.34225750331282756`, 0.8333333333333333, 0.6666666666666666}, { 0.862560543668221, 0.10596589025979351`, 0.0076653536494352675`, 0.738041548037165, 0.3867830367589024, 0.9166666666666666, 0.6666666666666666}, {0.8660950774004845, 1.2909629789198604`*^-9, 0.03325663717619895, 0.7618374258463437, 0.3967559122385576, 1., 0.6666666666666666}}, {{ 0.0030228223640097057`, 0.11497574494903265`, 0.0063066726254871084`, 0.0070945465474386935`, 0.00712286371249782, 0, 0.75}, {0.009933200718471657, 0.19383803363267815`, 0.008174833727424865, 0.010806766526929995`, 0.010524775590002845`, 0.08333333333333333, 0.75}, {0.0490248276745182, 0.40063607586357297`, 0.01167081432595033, 0.025536645045229817`, 0.023194301742473927`, 0.16666666666666666`, 0.75}, {0.18196805276602887`, 0.6535742027719978, 0.008256616474983762, 0.06876406535372236, 0.05831976794995252, 0.25, 0.75}, {0.31251733416323507`, 0.6620357342173516, 0.0021179023062942695`, 0.12375849523401393`, 0.09992347424962549, 0.3333333333333333, 0.75}, {0.4036502414690513, 0.5917042470000813, 0.0005042002879792573, 0.17711450242515547`, 0.1351765522126778, 0.41666666666666663`, 0.75}, {0.48467340304525286`, 0.5140690307503492, 0.0001641686770410179, 0.2354478114565643, 0.16909774450407478`, 0.5, 0.75}, {0.5641618468519848, 0.4353194169591177, 0.00007871265037726908, 0.3031360106088179, 0.20444195737591433`, 0.5833333333333333, 0.75}, { 0.6442425998389175, 0.3554234708084301, 0.00005778825592736223, 0.3834494779235878, 0.24251205850947685`, 0.6666666666666666, 0.75}, {0.7259370855701338, 0.2737057463366613, 0.00006973191857480315, 0.48059629520662084`, 0.2847650746537001, 0.75, 0.75}, {0.8101729177203127, 0.1890989483857528, 0.00015972842379333713`, 0.6012582884920951, 0.3337520482071511, 0.8333333333333333, 0.75}, { 0.8967279795126303, 0.09956335360327584, 0.000916502573030954, 0.7548248527195297, 0.39398777137294205`, 0.9166666666666666, 0.75}, {0.952866825209304, 0, 0.012689505094094977`, 0.8792932046627606, 0.44450995263319604`, 1., 0.75}}, {{ 0.006469431103757922, 0.1977857451230006, 0.005059303092719257, 0.006204440274837986, 0.006281970487005546, 0, 0.8333333333333333}, {0.029881330719214314`, 0.399455180228297, 0.0062799683253491915`, 0.01180277894425259, 0.01138603205677927, 0.08333333333333333, 0.8333333333333333}, { 0.12720023969142633`, 0.6988943775837045, 0.0045860825733822115`, 0.031512383586968326`, 0.02878329192029195, 0.16666666666666666`, 0.8333333333333333}, {0.24645215141160606`, 0.7332714902728064, 0.0010039032400429835`, 0.06267417574110236, 0.055433197534910904`, 0.25, 0.8333333333333333}, { 0.33709589480484514`, 0.660622664294727, 0.0001625858629013493, 0.09737694587657673, 0.08241914149938445, 0.3333333333333333, 0.8333333333333333}, {0.4191883256665231, 0.5804572520622244, 0.000032644415490320746`, 0.13790889173986212`, 0.11069034463717624`, 0.41666666666666663`, 0.8333333333333333}, {0.49932006728309747`, 0.5005989859158733, 9.154727803482077*^-6, 0.1869478434808769, 0.14150514131278563`, 0.5, 0.8333333333333333}, {0.5789951811134683, 0.42097694321286583`, 3.753309642635902*^-6, 0.24710677055068586`, 0.17556500284987947`, 0.5833333333333333, 0.8333333333333333}, {0.658895645091817, 0.3410892691333751, 2.3702748894699854`*^-6, 0.3219493083079694, 0.213735663631502, 0.6666666666666666, 0.8333333333333333}, {0.7396493652653264, 0.26033665095549136`, 2.5331490725229713`*^-6, 0.4170808248503208, 0.2575639804067211, 0.75, 0.8333333333333333}, {0.8220667296272777, 0.17790657354245237`, 5.552798243692787*^-6, 0.5422824753616153, 0.31020229084044826`, 0.8333333333333333, 0.8333333333333333}, {0.907431861785765, 0.09240476290867625, 0.00003932390411085603, 0.7171991504988312, 0.37941310693950037`, 0.9166666666666666, 0.8333333333333333}, { 0.9906660416778824, 0, 0.00265710997375911, 0.9617251874361381, 0.48097592349110324`, 1., 0.8333333333333333}}, {{ 0.013827576222644062`, 0.3668658826758323, 0.002562027591954848, 0.0038109349314563103`, 0.003971036114969136, 0, 0.9166666666666666}, {0.06652176514278604, 0.6924581613441203, 0.0019802332801221105`, 0.008478143176637653, 0.00834301761476896, 0.08333333333333333, 0.9166666666666666}, { 0.16678520194630506`, 0.8049277316105705, 0.0005069655717763357, 0.01952237066918263, 0.018701159555092686`, 0.16666666666666666`, 0.9166666666666666}, {0.2577249600962114, 0.7401184027930903, 0.00006563063631935346, 0.034634394162956966`, 0.0324096492288134, 0.25, 0.9166666666666666}, {0.3423939347472891, 0.6574192630698303, 8.349923089055618*^-6, 0.05393183681433252, 0.048897952910212907`, 0.3333333333333333, 0.9166666666666666}, {0.42520814479686686`, 0.5747705374114945, 1.2970869960919781`*^-6, 0.07879229544406353, 0.0687041784604053, 0.41666666666666663`, 0.9166666666666666}, { 0.5070459655621885, 0.4929506410648601, 2.6809688039789154`*^-7, 0.11111395518935296`, 0.09246423541220658, 0.5, 0.9166666666666666}, {0.588230443775121, 0.41176876676958213`, 7.843759066074924*^-8, 0.15371795402847893`, 0.12101531716830351`, 0.5833333333333333, 0.9166666666666666}, { 0.6690485766752837, 0.33095113681987104`, 3.502446166777787*^-8, 0.21115246449795116`, 0.15565128450962096`, 0.6666666666666666, 0.9166666666666666}, {0.74985036466721, 0.25014945322844795`, 2.7027780370777666`*^-8, 0.29139543080027974`, 0.1986291989723424, 0.75, 0.9166666666666666}, { 0.8311272228743793, 0.16887251913795018`, 4.63159963129188*^-8, 0.41013506973165526`, 0.25450373430844947`, 0.8333333333333333, 0.9166666666666666}, {0.9137200785790727, 0.08627838544809657, 3.379667517785553*^-7, 0.6042819013297744, 0.33503070618852676`, 0.9166666666666666, 0.9166666666666666}, { 0.9993111419141091, 0, 0.000200771110869002, 0.9941870039225972, 0.4968631346692349, 1., 0.9166666666666666}}, {{ 0.01943780908372058, 0.5982246949463258, 0.000044757548400864554`, 0.00004656790447405582, 0.00007481053216568124, 0, 1.}, {0.08126895145909473, 0.8472542381119242, 1.5919408620676936`*^-7, 1.8729486958854603`*^-7, 7.003220387021423*^-7, 0.08333333333333333, 1.}, {0.16611400962986686`, 0.8287772990282267, 1.3652925419139568`*^-10, 1.9088776674587932`*^-10, 3.235355285087537*^-9, 0.16666666666666666`, 1.}, { 0.24994601541842598`, 0.749764878827587, 0, 0, 0, 0.25, 1.}, { 0.3333288857288216, 0.6666543084569962, 0, 0, 0, 0.3333333333333333, 1.}, { 0.41666629928279886`, 0.5833326265227851, 0, 0, 0, 0.41666666666666663`, 1.}, { 0.49999996779267325`, 0.49999995531627295`, 0, 0, 0, 0.5, 1.}, { 0.5833333302741318, 0.41666666354927234`, 0, 0, 0, 0.5833333333333333, 1.}, { 0.6666666663497265, 0.33333333309561225`, 0, 0, 0, 0.6666666666666666, 1.}, { 0.7499999999641392, 0.24999999998050765`, 0, 0, 0, 0.75, 1.}, { 0.8333333333288933, 0.1666666666650055, 0, 0, 0, 0.8333333333333333, 1.}, { 0.9166666666660557, 0.08333333333320504, 0, 0, 0, 0.9166666666666666, 1.}, { 0.999999999999873, 0, 0, 0.006120462685223902, 0.006140926386289466, 1., 1.}}}, $CellContext`t2 = CompressedData[" 1:eJwtk30wFGgcxzdTcYXzeq3CKL2cuK6jMdR1X8kpThkvp8vLrnLrVI7UGMYh cVcRSTgvl5fduhCRsiGkQpzysuLycstsaxdrd5+Qt5LuuZn745nPzDPzfOY7 v+/v2Xg81J2jwmAwNP4/Or78T+4tExTP2X3gUbLPGp5NpYRupn84pST/h3A3 yt5CNaYxpe3NhGDBBwL3WLOQo5QukV5JGUsE6bWG6xzfE5zp1MnXXiQYm77o zZ8lsIgxfjU5RZBZzZReo++DrT5KoinrersPsSm5RdkrrSl/YyT2LFJffA13 Tx5ljVX6yVWUR7z38hepF236kcvUW69l9FR3jsD4Vm11hZLgwj2RIFpMkCvr q9g3QMDhXugPpL5Xn8puOlBucTE5oEe5y7bV8wX1FbS/cfamzDP1Tvud5r7k yjyxmfp5xeI65gLB2qBW93U0b491S6uWiPrsre5oNhF0WGrGbSig7zkvc0cv E2jv8fXYSr2hHTduK6hv28Ef/8miNGXwzdQpE8XGvjrUrxVV3Lz+HYFA1eXu RToPdk8LjzVBvfmpAWvaCLLLmEJFDIGdZ25CwzqChKbC94IuJUJWX9EIbVei Ic6gron6tIKSNrEpsxZ+lldTr2XiDkU8zS0yvV4+RXMbGXxTFjxN8HWSqerV YYKVyY5cYR6B8/YLD80WlHgaZ8GJVVGCaW9+6BwUqMzO2+q1UoF6Rv8BiwMK RCSskG7+b+7KTocA6jcaHgmbpblVR9bIn88TeIXlrDAndB9eBl8KExCc5wiP 3WETBJqn90wYKSHfdieXfCuHGqNUaFgrQ2PtW7spyQQa4+yfdM5MwHEodqiT 3qc9YP6kS/22u8MdIqhfdzlR0EP77A02nfGXEySVqgVnNBPcWpE90q9He36r rR+rroBbvcrRtRwZeuYLykwwDrZg+TCDK8V9bsezGJ4EXrbCZ6k1ErjNnfes ZoyhWSxq0KF+ya4jX2yn/isNXZXVMjrv0/v1NOsJqlztdAx7lcjadJstNJRj yb3ZOcl0AoFhJvKcBSksS8eu6myUQD9nIOiyjxiLRa3PHz4S4ZWDfkWUqghp j3ODb7m+hgl75PEo7XWWtSM9h/ofHf/8u4w6goyaJoPQeiW6TklZoX9O4iMv 6uXWknHMPmwP8yiUIj45gWHTP4rlk46VX64RI8XM1SNhgwiunoGhkyrD4Cy9 ZTXoDWJVhkb5bPwgrBUn8GGSoOS3hH3jdB8LS9pWq4uUsGMtOPgIJuFjn2p/ 7sU4spxO3M+rlaKvb8ixRTyKri3qXr9oiREy7ZsdbS7CTOj6+hsHh5Fyb8Os 9l8D4HW05/96oxeRKTFajU4ClPTPDy7Qfq2dt5SmWBO8W+KV1pbJca1ZL8rg 2gSGLr0ZL9w3BmZ6P9ftKwnmfFSdinaKITzdOTu9UwTzRnW+peswijP91JWa gzhWo+UrjOjDvHyUl2fTje8jnrexApsRuNS2NzqT/r+sqaS1GkqsagkRKTZO wuqztBn38+NQcn3UBvWlkDXr+u98JEa3YVs5/4wINuk1RkN+wzj0pGKvy+AA it09bBKd+vD3Qb8qnyvdKORnHu7ue4bH+eHt+9WqUBTlz86ie8ryO9J5iqMA a5twhl0ug6N6ybmCj2OIZapNJ3tKEGvRXTNQ8hq+AYFVvssj0BM1Q7VkEHZP Y8YqPfoQ5PHAtHapC3ePv4vUdG+B3e4/rrce5iNgX7LstfX6xn8BIgDg9Q== "], $CellContext`q1p = (((($CellContext`q1 ( 1 - $CellContext`\[Xi]f) + $CellContext`q2 $CellContext`\ \[Xi]f) (1 + $CellContext`e[1])) (1 - $CellContext`s[1, 1]))/( 2 (2 - $CellContext`\[Epsilon][ 1, 1])) + (($CellContext`q1 $CellContext`\[Xi]f) ( 1 - $CellContext`s[1, 2]))/(2 - $CellContext`\[Epsilon][ 1, 2]))/((( 1 - $CellContext`q1 - $CellContext`q2 - $CellContext`q3) ( 1 - $CellContext`\[Xi]f))/ 2 + (($CellContext`q3 (1 - $CellContext`\[Xi]f) + ( 1 - $CellContext`q1 - $CellContext`q2 - $CellContext`q3) \ $CellContext`\[Xi]f) (1 - $CellContext`s[0, 1]))/(2 - $CellContext`\[Epsilon][ 0, 1]) + (($CellContext`q3 $CellContext`\[Xi]f) ( 1 - $CellContext`s[0, 2]))/(2 - $CellContext`\[Epsilon][ 0, 2]) + (($CellContext`q2 (1 - $CellContext`\[Xi]f)) ( 1 - $CellContext`s[1, 0]))/(2 - $CellContext`\[Epsilon][ 1, 0]) + (($CellContext`q1 ( 1 - $CellContext`\[Xi]f) + $CellContext`q2 \ $CellContext`\[Xi]f) (1 - $CellContext`s[1, 1]))/(2 - $CellContext`\[Epsilon][ 1, 1]) + (($CellContext`q1 $CellContext`\[Xi]f) ( 1 - $CellContext`s[1, 2]))/(2 - $CellContext`\[Epsilon][ 1, 2])), $CellContext`q2p = ((($CellContext`q2 ( 1 - $CellContext`\[Xi]f)) (1 - $CellContext`s[1, 0]))/( 2 - $CellContext`\[Epsilon][ 1, 0]) + ((($CellContext`q1 ( 1 - $CellContext`\[Xi]f) + $CellContext`q2 $CellContext`\ \[Xi]f) (1 - $CellContext`e[1])) (1 - $CellContext`s[1, 1]))/( 2 (2 - $CellContext`\[Epsilon][1, 1])))/((( 1 - $CellContext`q1 - $CellContext`q2 - $CellContext`q3) ( 1 - $CellContext`\[Xi]f))/ 2 + (($CellContext`q3 (1 - $CellContext`\[Xi]f) + ( 1 - $CellContext`q1 - $CellContext`q2 - $CellContext`q3) \ $CellContext`\[Xi]f) (1 - $CellContext`s[0, 1]))/(2 - $CellContext`\[Epsilon][ 0, 1]) + (($CellContext`q3 $CellContext`\[Xi]f) ( 1 - $CellContext`s[0, 2]))/(2 - $CellContext`\[Epsilon][ 0, 2]) + (($CellContext`q2 (1 - $CellContext`\[Xi]f)) ( 1 - $CellContext`s[1, 0]))/(2 - $CellContext`\[Epsilon][ 1, 0]) + (($CellContext`q1 ( 1 - $CellContext`\[Xi]f) + $CellContext`q2 \ $CellContext`\[Xi]f) (1 - $CellContext`s[1, 1]))/(2 - $CellContext`\[Epsilon][ 1, 1]) + (($CellContext`q1 $CellContext`\[Xi]f) ( 1 - $CellContext`s[1, 2]))/(2 - $CellContext`\[Epsilon][ 1, 2])), $CellContext`q3p = (((($CellContext`q3 ( 1 - $CellContext`\[Xi]f) + ( 1 - $CellContext`q1 - $CellContext`q2 - $CellContext`q3) \ $CellContext`\[Xi]f) (1 + $CellContext`e[2])) (1 - $CellContext`s[0, 1]))/( 2 (2 - $CellContext`\[Epsilon][ 0, 1])) + (($CellContext`q3 $CellContext`\[Xi]f) ( 1 - $CellContext`s[0, 2]))/(2 - $CellContext`\[Epsilon][ 0, 2]))/((( 1 - $CellContext`q1 - $CellContext`q2 - $CellContext`q3) ( 1 - $CellContext`\[Xi]f))/ 2 + (($CellContext`q3 (1 - $CellContext`\[Xi]f) + ( 1 - $CellContext`q1 - $CellContext`q2 - $CellContext`q3) \ $CellContext`\[Xi]f) (1 - $CellContext`s[0, 1]))/(2 - $CellContext`\[Epsilon][ 0, 1]) + (($CellContext`q3 $CellContext`\[Xi]f) ( 1 - $CellContext`s[0, 2]))/(2 - $CellContext`\[Epsilon][ 0, 2]) + (($CellContext`q2 (1 - $CellContext`\[Xi]f)) ( 1 - $CellContext`s[1, 0]))/(2 - $CellContext`\[Epsilon][ 1, 0]) + (($CellContext`q1 ( 1 - $CellContext`\[Xi]f) + $CellContext`q2 \ $CellContext`\[Xi]f) (1 - $CellContext`s[1, 1]))/(2 - $CellContext`\[Epsilon][ 1, 1]) + (($CellContext`q1 $CellContext`\[Xi]f) ( 1 - $CellContext`s[1, 2]))/(2 - $CellContext`\[Epsilon][ 1, 2])), $CellContext`\[Xi]mp = ((((($CellContext`q3 ( 1 - $CellContext`\[Xi]f) + ( 1 - $CellContext`q1 - $CellContext`q2 - $CellContext`q3) \ $CellContext`\[Xi]f) (1 + $CellContext`e[2])) (1 - $CellContext`s[0, 1])) ( 1 - $CellContext`\[Epsilon][0, 1]))/( 2 (2 - $CellContext`\[Epsilon][ 0, 1])) + ((($CellContext`q3 $CellContext`\[Xi]f) ( 1 - $CellContext`s[0, 2])) (1 - $CellContext`\[Epsilon][ 0, 2]))/(2 - $CellContext`\[Epsilon][ 0, 2]) + (((($CellContext`q1 ( 1 - $CellContext`\[Xi]f) + $CellContext`q2 $CellContext`\ \[Xi]f) (1 + $CellContext`e[1])) (1 - $CellContext`s[1, 1])) ( 1 - $CellContext`\[Epsilon][1, 1]))/( 2 (2 - $CellContext`\[Epsilon][ 1, 1])) + ((($CellContext`q1 $CellContext`\[Xi]f) ( 1 - $CellContext`s[1, 2])) (1 - $CellContext`\[Epsilon][ 1, 2]))/(2 - $CellContext`\[Epsilon][ 1, 2]))/((( 1 - $CellContext`q1 - $CellContext`q2 - $CellContext`q3) ( 1 - $CellContext`\[Xi]f))/ 2 + ((($CellContext`q3 (1 - $CellContext`\[Xi]f) + ( 1 - $CellContext`q1 - $CellContext`q2 - $CellContext`q3) \ $CellContext`\[Xi]f) (1 - $CellContext`s[0, 1])) (1 - $CellContext`\[Epsilon][ 0, 1]))/(2 - $CellContext`\[Epsilon][ 0, 1]) + ((($CellContext`q3 $CellContext`\[Xi]f) ( 1 - $CellContext`s[0, 2])) (1 - $CellContext`\[Epsilon][ 0, 2]))/(2 - $CellContext`\[Epsilon][ 0, 2]) + ((($CellContext`q2 (1 - $CellContext`\[Xi]f)) ( 1 - $CellContext`s[1, 0])) (1 - $CellContext`\[Epsilon][ 1, 0]))/(2 - $CellContext`\[Epsilon][ 1, 0]) + ((($CellContext`q1 ( 1 - $CellContext`\[Xi]f) + $CellContext`q2 $CellContext`\ \[Xi]f) (1 - $CellContext`s[1, 1])) (1 - $CellContext`\[Epsilon][1, 1]))/( 2 - $CellContext`\[Epsilon][ 1, 1]) + ((($CellContext`q1 $CellContext`\[Xi]f) ( 1 - $CellContext`s[1, 2])) (1 - $CellContext`\[Epsilon][ 1, 2]))/(2 - $CellContext`\[Epsilon][ 1, 2])), $CellContext`\[Xi]fp = (((($CellContext`\[Xi]f ( 1 - $CellContext`\[Xi]m) + ( 1 - $CellContext`\[Xi]f) $CellContext`\[Xi]m) ( 1 + $CellContext`e[3])) (1 - $CellContext`s[1]))/ 2 + ($CellContext`\[Xi]f $CellContext`\[Xi]m) ( 1 - $CellContext`s[2]))/((1 - $CellContext`\[Xi]f) ( 1 - $CellContext`\[Xi]m) + ($CellContext`\[Xi]f ( 1 - $CellContext`\[Xi]m) + ( 1 - $CellContext`\[Xi]f) $CellContext`\[Xi]m) ( 1 - $CellContext`s[ 1]) + ($CellContext`\[Xi]f $CellContext`\[Xi]m) ( 1 - $CellContext`s[ 2])), $CellContext`sexrat = ((( 1 - $CellContext`q1 - $CellContext`q2 - $CellContext`q3) ( 1 - $CellContext`\[Xi]f))/ 2 + (($CellContext`q3 (1 - $CellContext`\[Xi]f) + ( 1 - $CellContext`q1 - $CellContext`q2 - $CellContext`q3) \ $CellContext`\[Xi]f) (1 - $CellContext`s[0, 1]))/(2 - $CellContext`\[Epsilon][ 0, 1]) + (($CellContext`q3 $CellContext`\[Xi]f) ( 1 - $CellContext`s[0, 2]))/(2 - $CellContext`\[Epsilon][ 0, 2]) + (($CellContext`q2 (1 - $CellContext`\[Xi]f)) ( 1 - $CellContext`s[1, 0]))/(2 - $CellContext`\[Epsilon][ 1, 0]) + (($CellContext`q1 ( 1 - $CellContext`\[Xi]f) + $CellContext`q2 $CellContext`\ \[Xi]f) (1 - $CellContext`s[1, 1]))/(2 - $CellContext`\[Epsilon][ 1, 1]) + (($CellContext`q1 $CellContext`\[Xi]f) ( 1 - $CellContext`s[1, 2]))/(2 - $CellContext`\[Epsilon][ 1, 2]))/(( 1 - $CellContext`q1 - $CellContext`q2 - $CellContext`q3) ( 1 - $CellContext`\[Xi]f) + (($CellContext`q3 ( 1 - $CellContext`\[Xi]f) + ( 1 - $CellContext`q1 - $CellContext`q2 - $CellContext`q3) \ $CellContext`\[Xi]f) (1 - $CellContext`s[0, 1]))/(2 - $CellContext`\[Epsilon][ 0, 1]) + ((($CellContext`q3 (1 - $CellContext`\[Xi]f) + ( 1 - $CellContext`q1 - $CellContext`q2 - $CellContext`q3) \ $CellContext`\[Xi]f) (1 - $CellContext`s[0, 1])) (1 - $CellContext`\[Epsilon][ 0, 1]))/(2 - $CellContext`\[Epsilon][ 0, 1]) + (($CellContext`q3 $CellContext`\[Xi]f) ( 1 - $CellContext`s[0, 2]))/(2 - $CellContext`\[Epsilon][ 0, 2]) + ((($CellContext`q3 $CellContext`\[Xi]f) ( 1 - $CellContext`s[0, 2])) (1 - $CellContext`\[Epsilon][ 0, 2]))/(2 - $CellContext`\[Epsilon][ 0, 2]) + (($CellContext`q2 (1 - $CellContext`\[Xi]f)) ( 1 - $CellContext`s[1, 0]))/(2 - $CellContext`\[Epsilon][ 1, 0]) + ((($CellContext`q2 (1 - $CellContext`\[Xi]f)) ( 1 - $CellContext`s[1, 0])) (1 - $CellContext`\[Epsilon][ 1, 0]))/(2 - $CellContext`\[Epsilon][ 1, 0]) + (($CellContext`q1 ( 1 - $CellContext`\[Xi]f) + $CellContext`q2 \ $CellContext`\[Xi]f) (1 - $CellContext`s[1, 1]))/(2 - $CellContext`\[Epsilon][ 1, 1]) + ((($CellContext`q1 ( 1 - $CellContext`\[Xi]f) + $CellContext`q2 $CellContext`\ \[Xi]f) (1 - $CellContext`s[1, 1])) (1 - $CellContext`\[Epsilon][1, 1]))/( 2 - $CellContext`\[Epsilon][ 1, 1]) + (($CellContext`q1 $CellContext`\[Xi]f) ( 1 - $CellContext`s[1, 2]))/(2 - $CellContext`\[Epsilon][ 1, 2]) + ((($CellContext`q1 $CellContext`\[Xi]f) ( 1 - $CellContext`s[1, 2])) (1 - $CellContext`\[Epsilon][ 1, 2]))/(2 - $CellContext`\[Epsilon][ 1, 2])), $CellContext`load = 1 - (2 ((1 - $CellContext`\[Xi]f) ( 1 - $CellContext`\[Xi]m) + ($CellContext`\[Xi]f ( 1 - $CellContext`\[Xi]m) + ( 1 - $CellContext`\[Xi]f) $CellContext`\[Xi]m) ( 1 - $CellContext`s[ 1]) + ($CellContext`\[Xi]f $CellContext`\[Xi]m) ( 1 - $CellContext`s[2]))) ( 1 - (((1 - $CellContext`q1 - $CellContext`q2 - $CellContext`q3) ( 1 - $CellContext`\[Xi]f))/ 2 + (($CellContext`q3 (1 - $CellContext`\[Xi]f) + ( 1 - $CellContext`q1 - $CellContext`q2 - $CellContext`q3) \ $CellContext`\[Xi]f) (1 - $CellContext`s[0, 1]))/(2 - $CellContext`\[Epsilon][ 0, 1]) + (($CellContext`q3 $CellContext`\[Xi]f) ( 1 - $CellContext`s[0, 2]))/(2 - $CellContext`\[Epsilon][ 0, 2]) + (($CellContext`q2 (1 - $CellContext`\[Xi]f)) ( 1 - $CellContext`s[1, 0]))/(2 - $CellContext`\[Epsilon][ 1, 0]) + (($CellContext`q1 ( 1 - $CellContext`\[Xi]f) + $CellContext`q2 $CellContext`\ \[Xi]f) (1 - $CellContext`s[1, 1]))/(2 - $CellContext`\[Epsilon][ 1, 1]) + (($CellContext`q1 $CellContext`\[Xi]f) ( 1 - $CellContext`s[1, 2]))/(2 - $CellContext`\[Epsilon][ 1, 2]))/(( 1 - $CellContext`q1 - $CellContext`q2 - $CellContext`q3) ( 1 - $CellContext`\[Xi]f) + (($CellContext`q3 ( 1 - $CellContext`\[Xi]f) + ( 1 - $CellContext`q1 - $CellContext`q2 - $CellContext`q3) \ $CellContext`\[Xi]f) (1 - $CellContext`s[0, 1]))/(2 - $CellContext`\[Epsilon][ 0, 1]) + ((($CellContext`q3 (1 - $CellContext`\[Xi]f) + ( 1 - $CellContext`q1 - $CellContext`q2 - $CellContext`q3) \ $CellContext`\[Xi]f) (1 - $CellContext`s[0, 1])) (1 - $CellContext`\[Epsilon][ 0, 1]))/(2 - $CellContext`\[Epsilon][ 0, 1]) + (($CellContext`q3 $CellContext`\[Xi]f) ( 1 - $CellContext`s[0, 2]))/(2 - $CellContext`\[Epsilon][ 0, 2]) + ((($CellContext`q3 $CellContext`\[Xi]f) ( 1 - $CellContext`s[0, 2])) (1 - $CellContext`\[Epsilon][ 0, 2]))/(2 - $CellContext`\[Epsilon][ 0, 2]) + (($CellContext`q2 (1 - $CellContext`\[Xi]f)) ( 1 - $CellContext`s[1, 0]))/(2 - $CellContext`\[Epsilon][ 1, 0]) + ((($CellContext`q2 (1 - $CellContext`\[Xi]f)) ( 1 - $CellContext`s[1, 0])) (1 - $CellContext`\[Epsilon][ 1, 0]))/(2 - $CellContext`\[Epsilon][ 1, 0]) + (($CellContext`q1 ( 1 - $CellContext`\[Xi]f) + $CellContext`q2 $CellContext`\ \[Xi]f) (1 - $CellContext`s[1, 1]))/(2 - $CellContext`\[Epsilon][ 1, 1]) + ((($CellContext`q1 ( 1 - $CellContext`\[Xi]f) + $CellContext`q2 $CellContext`\ \[Xi]f) (1 - $CellContext`s[1, 1])) (1 - $CellContext`\[Epsilon][1, 1]))/( 2 - $CellContext`\[Epsilon][ 1, 1]) + (($CellContext`q1 $CellContext`\[Xi]f) ( 1 - $CellContext`s[1, 2]))/(2 - $CellContext`\[Epsilon][ 1, 2]) + ((($CellContext`q1 $CellContext`\[Xi]f) ( 1 - $CellContext`s[1, 2])) (1 - $CellContext`\[Epsilon][ 1, 2]))/(2 - $CellContext`\[Epsilon][ 1, 2]))), $CellContext`recf5[ Pattern[$CellContext`qq, Blank[]], Pattern[$CellContext`qp, Blank[]], Pattern[$CellContext`param, Blank[]]] := ReplaceAll[ ReplaceAll[$CellContext`qp, $CellContext`param], \ {$CellContext`q1 -> Part[$CellContext`qq, 1], $CellContext`q2 -> Part[$CellContext`qq, 2], $CellContext`q3 -> Part[$CellContext`qq, 3], $CellContext`\[Xi]m -> Part[$CellContext`qq, 4], $CellContext`\[Xi]f -> Part[$CellContext`qq, 5]}], $CellContext`TSNF[ Pattern[$CellContext`x, Blank[]]] := ToString[ NumberForm[ Chop[$CellContext`x, 10^(-4)], {4, 3}]], $CellContext`style1[ Pattern[$CellContext`t, Blank[]]] := Style[$CellContext`t, Large, FontFamily -> "Helvetica", FontSize -> 16]}; Typeset`initDone$$ = True), SynchronousInitialization->True, UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$}, UnsavedVariables:>{Typeset`initDone$$}, UntrackedVariables:>{Typeset`size$$}], "Manipulate", Deployed->True, StripOnInput->False], Manipulate`InterpretManipulate[1]]} }, AutoDelete->False, GridBoxAlignment->{"Rows" -> {{Top}}}, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"]], "Output", CellChangeTimes->{ 3.7104825997516317`*^9},ExpressionUUID->"d12532f7-3e2c-4923-81d6-\ 4b9aad1e4e51"] }, Open ]] }, Open ]] }, WindowSize->{825, 937}, WindowMargins->{{0, Automatic}, {Automatic, 0}}, FrontEndVersion->"11.1 for Mac OS X x86 (32-bit, 64-bit Kernel) (April 18, \ 2017)", StyleDefinitions->Notebook[{ Cell[ StyleData[StyleDefinitions -> "Default.nb"]], Cell[ StyleData["Text"], FontColor -> RGBColor[0.5, 0, 0.5]]}, Visible -> False, FrontEndVersion -> "11.1 for Mac OS X x86 (32-bit, 64-bit Kernel) (April 18, 2017)", StyleDefinitions -> "PrivateStylesheetFormatting.nb"] ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[1486, 35, 470, 7, 64, "Section", "ExpressionUUID" -> \ "fa8cda7c-a968-49d8-8da0-cbf49e4b2fd5"], Cell[CellGroupData[{ Cell[1981, 46, 209, 3, 44, "Subsection", "ExpressionUUID" -> \ "6d0f0d30-7026-416b-8bdc-e3282cb823ac"], Cell[2193, 51, 795, 16, 137, "Text", "ExpressionUUID" -> \ "94b405fa-e6af-423a-80ad-726fc5086654"], Cell[2991, 69, 7021, 186, 329, "Input", "ExpressionUUID" -> \ "f7d2dc76-3028-406f-93fc-4ce6a87352e8"], Cell[10015, 257, 6322, 165, 238, "Input", "ExpressionUUID" -> \ "10b237ce-5d55-4f2d-bb0b-01e4d8da949b"] }, Closed]], Cell[CellGroupData[{ Cell[16374, 427, 355, 7, 36, "Subsection", "ExpressionUUID" -> \ "538a97bc-d176-4fe1-92eb-1198dcafca89"], Cell[CellGroupData[{ Cell[16754, 438, 8834, 220, 317, "Input", "ExpressionUUID" -> \ "d7b80619-dfdb-4be3-91a1-c992cd28c087"], Cell[25591, 660, 3032, 68, 70, "Output", "ExpressionUUID" -> \ "ad39db3b-b2a6-45aa-acfb-0213cff0f1ee"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[28672, 734, 363, 7, 36, "Subsection", "ExpressionUUID" -> \ "b3c5d022-7a4e-42c3-91e2-ba04fdbb1a9a"], Cell[29038, 743, 788, 23, 54, "Input", "ExpressionUUID" -> \ "587089c0-ff63-4f37-9834-379118a53f80"], Cell[29829, 768, 26873, 588, 1230, "Input", "ExpressionUUID" -> \ "5a2d89e7-2c05-4768-b284-47ecaf284297"], Cell[56705, 1358, 22859, 519, 999, "Input", "ExpressionUUID" -> \ "be7dd7fd-6dc4-4898-bc43-9324edde6a6f"], Cell[79567, 1879, 833, 17, 32, "Input", "ExpressionUUID" -> \ "88a7a7db-82ac-45c8-afce-9366a61301e1"] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[80449, 1902, 328, 5, 50, "Section", "ExpressionUUID" -> \ "101a8493-ec03-439c-84df-4ed6fc40a7fb"], Cell[80780, 1909, 2647, 48, 461, "Text", "ExpressionUUID" -> \ "ba547d8d-5ea3-41cb-a3c7-543757284db1"], Cell[CellGroupData[{ Cell[83452, 1961, 209, 4, 32, "Input", "ExpressionUUID" -> \ "96598e27-31a3-4e7e-8923-061a4ed091e1"], Cell[83664, 1967, 61548, 1012, 819, "Output", "ExpressionUUID" -> \ "4cd4ede9-20cf-4009-988c-0d6bea3a6a85"] }, Open ]] }, Open ]] } ] *) (* End of internal cache information *) (* NotebookSignature YuD6YzU5V1oEqAg3NX#eSFRj *)