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SI Tables

Table S1. List of forward (F) and reverse (R) PCR primers used in the present study.

Primer name Sequence (5′ 7→ 3′) PCR product length (bp) Reference

vAmt-F4 CGCTCGGAATATCCTGGTCC
2370 This study

vAmt-R4 AGAAACCCAAACTTCGGCCA
OtV6-full-F1 AAGGACCAAAAGTGCCCCAA

2489 This study
OtV6-full-R1 TTTGCGATGTTGTGTGCTGG
sh-Amt-vir-F TTCGCGTTACCTACCGAGTG

1757 This study
sh-Amt-vir-R TACCCTCTGACGAGTGCAGA
RT-vAmt-F1 CCACCACCGTAGAAGACACC

642 This study
RT-vAmt-R1 TGGTCCAAAGCTTCTAGGCG
RT-vAmt-F3 TACACCTAGGGCACCACAGA

606 This study
RT-vAmt-R3 CATTGGGGTTGGTCCACTGA
Euk82F GAAACTGCGAATGGCTC

1030
López-García et al., 2003 [1]

nonMet-R TTTAAGTTTCAGCCTTGCG Bower et al., 2003 [2]
vAmt-attF GGGGACAAGTTTGTACAAAAAAGCAGGCTTGATGGACATCCAAACTTTGT

1378 This study
vAmt-attR GGGGACCACTTTGTACAAGAAAGCTGGGTCTTAAGCCATTTCGTAAGCAG

Table S2. Temporal changes in cell abundances, ammonium concentrations and methylammonium uptake rates of O. tauri cultures.

Measurement† hpi‡ Control mean ±s.e. Infected mean ±s.e. Control fold change§ Infected fold change§ Significance∗

FCM cell counts

0 4.6 ±0.6 4.1 ±0.6 0 0 -
2 5.1 ±0.5 4.2 ±0.6 0.17 ±0.07 0.02 ±0.02 T =2.083; P=0.105
4 4.7 ±0.2 4.2 ±0.6 0.06 ±0.1 0.02 ±0.005 T =0.290; P=0.786
6 5.2 ±0.4 4.7 ±0.7 0.21 ±0.08 0.18 ±0.0005 T =0.339; P=0.751
8 5.2 ±1 4.9 ±0.7 0.16 ±0.15 0.25 ±0.06 T=-0.546; P=0.614

12 6.7 ±0.7 4.3 ±0.6 0.55 ±0.05 0.07 ±0.04 T =7.029; P=0.002
16 7.2 ±0.8 4.9 ±0.6 0.65 ±0.05 0.23 ±0.009 T =8.360; P=0.001

[NH+
4 ] medium

0 576 ±21.6 590 ±6.65 0 0 -
2 545 ±5.29 569 ±22.11 -0.07 ±0.05 -0.05 ±0.06 T =-0.281; P=0.792
4 535 ±5.56 560.66 ±34.10 -0.10 ±0.05 -0.07 ±0.09 T =-0.230; P=0.829
6 535 ±8.38 538.33 ±24.88 -0.10 ±0.06 -0.13 ±0.06 T =0.308; P=0.772
8 544 ±32.00 514.66 ±22.16 -0.08 ±0.11 -0.19 ±0.06 T =0.840; P=0.448
12 561.66 ±25.64 540 ±7.53 -0.03 ±0.120 -0.13 ±0.06 T =0.671; P=0.538
16 504.66 ±10.89 485.66 ±18.22 0.19 ±0.07 -0.23 ±0.03 T =1.043; P=0.355

Methylammonium uptake

0 0.063 ±0.016 0.03 ±0.004 0 0 -
2 0.042 ±0.011 0.044 ±0.013 -0.57 ±0.06 0.35 ±0.27 T =-3.273; P=0.03
4 0.053 ±0.021 0.049 ±0.012 -0.39 ±0.2 0.55 ±0.24 T =-2.997; P=0.4
6 0.083 ±0.021 0.067 ±0.008 0.39 ±0.02 1.08 ±0.11 T =-6.282; P=0.003
8 0.0309 ±0.003 0.026 ±0.005 -0.98 ±0.21 -0.30 ±0.16 T =-2.439; P=0.007

12 0.087 ±0.021 0.089 ±0.026 0.46 ±0.08 1.38 ±0.3 T =-2.919; P=0.043
16 0.041 ±0.006 0.033 ±0.005 -0.58 ±0.23 0.05 ±0.04 T =-2.394; P=0.074

†FCM counts in 107.cell.mL−1; [NH+
4 ] in fluorescent units (1 µM NH+

4 : 1086 ±12.4 s.e.); [14C]-methylammonium uptake rate in nmol.mg−1.min−1.
‡Hour post infection. §Log2 fold changes (0 hpi based). ∗Two-sample t-tests (df= 4) on log2 fold changes between control/infected triplicates.

Monier et al. 10.1073/pnas.1708097114 1 of 11



Table S3. OtV6 particle abundances in infected O. tauri cultures.

hpi† mean ±s.e.† Fold change§ Significance∗

0 1.68 ±0.04 0 -
2 1.67 ±0.05 -0.01 ±0.01 T =-0.768; P=0.522
4 1.64 ±0.08 -0.04 ±0.03 T =0.674; P=0.537
6 1.39 ±0.11 -0.27 ±0.07 T =2.925; P=0.043
8 1.36 ±0.05 -0.30 ±0.03 T =0.307; P=0.773
12 1.58 ±0.09 -0.09 ±0.05 T =-3.354; P=0.028
16 2.60 ±0.18 0.62 ±0.09 T =-6.725; P=0.002

†Hour post infection. ‡Based on FCM viral particle counts (107.particle.mL−1); no particles detected in non-infected, control O. tauri cultures at
the start of the experiment (timepoint 0 h). §Log2 fold changes (0 hpi based). ∗Two-sample t-tests (df=4) on triplicate log2 fold changes between
current/previous timepoints (one-sample t-test for 2 hpi).

Table S4. List of qPCR forward (F), reverse (R) primers and probes (P) designed for this study.

Primer name† UniProtKB accession Sequence (5′ 7→ 3′) PCR product length (bp) Efficiency (%)

Ot-betaTubulin-F
A0A090LXT7

CAACGTTAAGAGCTCGGTGT
179 98.27Ot-betaTubulin-R CCATCTCATCCATACCCTCA

Ot-betaTubulin-P TAAGATGTCCGCCACCTTTG
Ot-amt-F

A0A096PA30
ACCAAGTTCGAGGCTTACCT

196 100.87Ot-amt-R CAGTCATGTGGACGATACCA
Ot-amt-P TCCTCTGCGCATTCGTCTAC
OtV6-polB-F

H8ZJQ3
AGAGGAGAATGGGGTACCAG

193 96.70OtV6-polB-R GACGAGTTCGTCCTTCTTCA
OtV6-polB-P AAACCAAAGAAGCCTCCGAA
OtV6-mcp-F

H8ZJG5
CTCACCGACTTCAAGCTCAT

135 99.13OtV6-mcp-R CGCGAAGGAGTAGGAGTACA
OtV6-mcp-P AGGTCCAGGCCTACAACCAC
OtV6-amt-F

H8ZJB2
GAGCAACCGGCAGTAATAGA

158 101.30OtV6-amt-R AAGGTTATCTCACGCACAGC
OtV6-amt-P GAGAGCCATCGCTGTGAGAC

SI Figures

Fig. S1. Ammonium transporter domain architecture, gene structure and C-terminus alignment of vAmt and Amt-Euk homologs.

Fig. S2. Maximum-likelihood phylogeny of green algal viruses based on DNA polymerase B protein sequences.

Fig. S3. Score distribution of BLASTP pairwise searches of all ORFs from Ostreococcus and Micromonas viruses.

Fig. S4. Maximum-likelihood phylogenies of vAmt flanking genes.

Fig. S5. RT-DNA gel plot of O. tauri infected cells, RT-PCR-targeting OtV6 vAmt.

Fig. S6. O. tauri Amt1.1 and vAmt sequence and structure comparisons.

Fig. S7. O. tauri Amt1.1 and vAmt transmembrane domain predictions.

Fig. S8. Functional complementation experiments of ammonium or urea uptake defective yeasts for various nitrogen sources.

Fig. S9. Respiration curves from the OmniLog® Phenotype MicroArray system.

Fig. S10. Ammonium concentrations in growth media.

Fig. S11. Amt/Mep/Rh superfamily phylogenetic tree.

Fig. S12. vAmt evolutionary relationships with Amt-Euk homologs.
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Virus

Cyanidiales
Non-Cyanidiales

Rhodophyta
(red algae)

Prasinophytes
Chlorodendrophyceae
Chlamydomonadales
Trebouxiophyceae
Embryophyta

Chlorophyta
(green algae) Viridiplantae

H8ZJB2 Ostreococcus tauri virus 6 vAmt
CAMPEP-0179605098 Ostreococcus mediterraneus RCC1621 
JGI-60909 Ostreococcus sp. RCC809
A4SAD9 Ostreococcus lucimarinus CCE9901 Amt1.1
A0A096PA30 Ostreococcus tauri OTH95 Amt1.1
K8FCX2 Bathycoccus prasinos
C1N5A7 Micromonas pusilla CCMP1545 Amt1.1
C1FI64 Micromonas sp. RCC299 Amt1.1
CAMPEP-0181374270 Mantoniella antarctica SL-175
CAMPEP-0182860548 Nephroselmis pyriformis CCMP717
CAMPEP-0183795018 Crustomastix stigmata CCMP3273
CAMPEP-0198210566 Pyramimonas sp. CCMP2087
A0A061S4M6 Tetraselmis sp. GSL018
A8HSA2 Chlamydomonas reinhardtii Amt1.4
A8JFV7 Chlamydomonas reinhardtii Amt1.6 
Q8LJU0 Chlamydomonas reinhardtii Amt1.2
Q8RUT6 Chlamydomonas reinhardtii Amt1.1
Q8LRM5 Chlamydomonas reinhardtii Amt1.3

Q9LK16 Arabidopsis thaliana Amt1.5
Q9SVT8 Arabidopsis thaliana Amt1.4
Q9ZPJ8 Arabidopsis thaliana Amt1.2

Q9SQH9 Arabidopsis thaliana Amt1.3

CAMPEP-0184695302 Porphyridium aerugineum SAG 1380-2
M2Y7S8 Galdieria sulphuraria
E1Z3A4 Chlorella variabilis

P54144 Arabidopsis thaliana Amt1.1
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Conservation

P54144 Arabidopsis thaliana Amt1.1

A. thaliana AMT1.1
Coordinates (residues)

A. thaliana Amt1.1
Threonine 460XI

420 430 440 450 460 470 480 490 500
G G K L L G A Q I I G V V T I A T WT MG M L G A F F G L Y K K L G L L R V T E E E E S I G L D E S K H G G S A Y E M A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
N G K L L G A Q I C G I V V I A A WT C S M L G A F F M L M K K MN L L R T T V E E E T L G L D E S K H G G S A Y A M E L V K P V P V E - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
S G K L L G A Q I V G V L V I A A WV G T N L G G F F F L M K K MN L L R T T V E E E T L G L D E S K H G G S A Y S M E L V A P E P V D G A A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
G G K Q L G A Q I V G I L V I I A WT C G T I G P F F M L M K K F N L L R T T V E E E T L G L D E S K H G G K A Y A L E L V A P E P A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
N G K L L G A Q I A G I C V I T A WV G A T L G A F F L L M K K L N L L R T S V E E E T MG L D E S K H G G S A Y A M E L V A P E P A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
D G S L L G A Q V V G V I C I F L WV G G L L G L F F L A L K K MN M L R T S P E E E Q L G L D E S K H G G S A Y N M E L V A P M P T E M - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
N G R L F G V Q L L G C V A I I L WT C G I L G P F F F V L K Q A G L L R T S A E E E A A G L D E S K H G G S A Y N N A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
G G K L L G N Q I L G I V V I T L WV G T T I G G L F F A L K T V G M L R A S A E E E A A G L D E S K H G G S A Y N M E P S K V - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
S G N L L A C Q I T G V V V I I A WT C T L L G L F F S A F R A I G M L R T S A E E E A A G L D S S K H G G S A Y N M E V M S A K N - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
G G N M L G C N I C G V L A I M T WT S G L L G L F F F V C S K A G I L R V S MD E E M V G L D V S K H G G S A Y N M E D N L K S G S R A P M - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
G G E V L A C Q I T G I I V I I A WT C S L L G G F F Y V L K A MN H L R V P Y E E E M I G I D V S H H G G S A Y N D S E A E K A M S K P N N A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
G WH L L G C Q F V G A C A I V A WV T T L I G L V F L M L K S I G Q L R V P L E D E V T G L D V S H H G G K A Y N E G G Q N V E M S T A A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
G G R L L A C Q V I A I I T I A A WT V L T MG P F Y Y L F K R L D I L R V S A A E E A I G L D E S K H G G R A Y N G E R A V D V S I K N L P K D D F D A T D D L K K D N T V I - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
D G R L L A S Q V I G I I S I F A WV F G L M L L L F G G L K A V G L L R I S A E E E Q A G L D V S K H G G S A Y N Y D H G L G K P E K A Q A L G L - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
G G L L L A S Q V I G I L S I A G WV L G T MG P F F L L F R A A G S L R I S A E D E H K G L D A S K H G G S A Y H H H H G G G - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
D G K L L A S Q I V G I L V I I G WV I G MM V P F F G I F Q F F G A L R I P P E E E E MG L D R S K H G G S A Y N G T G A N T L G G L S P G N D V MR N N S P L G K V L P V T A - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
H G Q V L L V Q L I E V L A I F G WT G F MMG S F F F I L N K A G L L R V P L Q E E M A G L D A A N Y S K S V G S K D P S V H C T V G V D K L E G G A L G E G K A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
H G Q V L L C Q V I E A L S I C A WV G V MMG A F F G L L K V A K R L R V P V D Q E L A G L D V S K H T N E A Y N G A I M P T A G G G A G G G G G Y G S N G G E R G S G F Y T G A G P A G D T S T G G G H A A N G G Y D - - - - - - - - -
G G K L L G AQ L I Q I I V I T G WV S A T MG T L F F I L K KM K L L R I S S E D E M AG MD M T R H G G F A Y M Y F D D D E S H K A I Q L R R V E P R S P S P S G AN T T P T P V - - - - - - - - - - - - - - - - - - - - - - - - - - -
G G K L L G A Q L V Q I L V I V G WV S A T MG T L F F I L K R L N L L R I S E Q H E MQ G MD M T R H G G F A Y I Y H D N D D E S H R V D P G S P F P R S A L P L A F N F Q L F G N L L P F K Y C L G F G F E I - - - - - - - - - - - - -
G G K L L G A Q L V Q I I V I V G WV S A T MG T L F F I L K K L N L L R I S E Q H E MR G MD L A G H G G F A Y I Y H D N D D D S I G V P G S P V P R A P N P P A V - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
G G R L L A A H V V Q I L V I T G WV S V T MG T L F F I L H K L K L L R I P A E D E I A G V D P T S H G G L A Y M Y T E D E I R N G I M V R R V G G D N D P N V G V - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
G G K L L A A Q I V Q I I V I V G WV T V T MG P L F Y G L H K MN L L R I S A E D E M A G MD M T R H G G F A Y A Y N D E D D V S T K P WG H F A G R V E P T S R S S T P T P T L T V - - - - - - - - - - - - - - - - - - - - - - - - - -
N G S L L L A N F V G L I T V I A WT V G L M A P V F L C L K F F G V L R L P L E D E L I G N D I S K H G G V A Y P E D G V E T A N K V G A K D L A D MR D N L G MD D S V K R P A E G E A D A N Q A P V E F S S N V - - - - - - - - - - -
G G N L L A C Q I I G I L L I WG WV S L N S V I L WF S L K F L G I L R V P P E E E L A G MD T S K H G G P A Y H S E N I D N T N D E D L Q E L R G A E S L E F S R K D N L G MD N G M S N N R E N N S H D S N G N S H V S L T Q T H - -
G G K L F A A Q L V Y V L A I I G WV G G L MG M F F F A L K M A G L F R V S A E V E A E G C D T S H Y G G S V Y H G L T P E T G A G A T A P A S K G V F P S K G D A A S S S S D S D E L E R L K A E V A D L S S K V D A L A K A G T S T V
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Fig. S1. Ammonium transporter domain architecture (A), gene structure (B) and C-terminus alignment of vAmt and Amt-Euk (Amt1) homologs (C). The eukaryotic sequences
shown here were selected based on phylogenetic analysis (Fig. 6B and Fig. S11) to identify homologs of taxa that branch in key positions relative to vAmt. For each sequence,
the taxonomic information is represented as a colored circle with shades of green or red color for Chlorophytes (green algae) and Rhodophyta (red algae), respectively. The
vAmt is displayed in red characters and a red star indicates its position. (A) Pfam PF00909 domain distribution along the protein sequences (lower scale indicates amino acid
residue position); domains are represented by pink oblongs. (B) Corresponding gene structure (lower scale indicates nucleotide position in kb); exons are represented by grey
boxes and introns are dashed lines. Asterisks indicate sequence data originating from transcriptome, for which gene structure information is lacking. Note that the vAmt gene is
intron-less; all other homologs shown here, with available gene structure information, possess at least one intron, with the exception of the homolog from Ostreococcus sp.
RCC809 and Arabidopsis. (C) Alignment of vAmt and Amt-Euk C-terminal domains showing that the vAmt protein is shorter than its most similar homologs in eukaryotes,
with the exception of Micromonas pusilla CCMP1545. The upper scale corresponds to the amino acid residue position of Arabidopsis thaliana Amt1.1, which is shown in
bold characters. A black arrowhead indicates the threonine 460 of A. thaliana Amt1.1. Phosphorylation of T460 of A. thaliana Amt1.1 may act as an allosteric switch to limit
ammonium transport [3]; T460 is substituted by a serine in green and red algae as well as in the vAmt sequence; note that in eukaryotes, serine is also a phosphorylation site.
Position of the transmembrane helix XI is indicated on the upper scale. The histogram below the sequence alignment represents the amino acid residue conservation.
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YP_001425655 Paramecium bursaria Chlorella virus FR483
YP_001427279 Acanthocystis turfacea Chlorella virus 1

P3032 Paramecium bursaria Chlorella virus NY2A
YP_001498312 Paramecium bursaria Chlorella virus AR158

NP_048532 Paramecium bursaria Chlorella virus 1 

YP_004061614 Bathycoccus sp. RCC1105 virus BpV1
ADQ91356 Bathycoccus sp. RCC1105 virus BpV2
YP_004062103 Micromonas sp. RCC1109 virus MpV1
AET84947 Micromonas pusilla virus SP1
AET43521 Micromonas pusilla virus PL1

OlV1_220 Ostreococcus lucimarinus virus 1
OlV4_226 Ostreococcus lucimarinus virus 4
OlV7_214 Ostreococcus lucimarinus virus 7

OlV5_220 Ostreococcus lucimarinus virus 5

YP_004063640 Ostreococcus tauri virus 2 
OlV6 219 Ostreococcus lucimarinus virus 6

OlV3 233 Ostreococcus lucimarinus virus 3
OlV2_238 Ostreococcus lucimarinus virus 2
OmV1_225 Ostreococcus mediterraneus virus 1 
YP_001648316 Ostreococcus tauri virus 5
YP_003495047 Ostreococcus tauri virus 1  

AFC35136 Ostreococcus tauri virus 6
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Fig. S2. Maximum-likelihood phylogenetic tree of green algal viruses inferred from a DNA polymerase B alignment (915 sites) under the LG+G+I+F model, as implemented in
RAxML [4]. The unrooted version of this tree is presented below the midpoint-rooted version. Viral taxonomic information is color coded as in Fig. 1. Accession numbers
displayed in front of viral taxonomic names are RefSeq identifiers. Branch node supports were computed from 1000 non-parametric bootstrap replicates. The scale bar
represents the number of estimated substitutions per site. The branch connecting the prasinoviruses to the Chlorella viruses (chloroviruses) was truncated to allow tree display.
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Fig. S3. Score distribution of BLASTP pairwise searches of all ORFs from Ostreococcus and Micromonas viruses. Dots represent a comparison of BLASTP scores of each
ORF between their best BLASTP hits with Ostreococcus (x-axis; SOV ) and Micromonas (y-axis; SMV ) viruses, excluding self-hits. Orange, purple and green dots represent
ORFs from OtV6 (total: 250 ORFs), Micromonas viruses (991 ORFs) and Ostreococcus viruses (2788 ORFs, without OtV6), respectively. BLASTP score distributions were
categorized as followed: closer to Micromonas viruses (i.e., BLASTP score against a Micromonas virus sequence is greater than against a sequence from an Ostreococcus
virus, denoted as SMV > SOV ), unique to Micromonas viruses (SMV > 0 and SOV = 0), closer to Ostreococcus viruses (SOV > SMV ), unique to Ostreococcus viruses
(SOV > 0 and SMV = 0), equidistant between Micromonas viruses and Ostreococcus viruses (SMV = SOV ) and unique to OtV6 (SMV = 0 and SOV = 0). BLASTP score
distribution categories are indicated directly on the graph, along with the number of ORFs falling within each category.
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Fig. S4. vAmt flanking gene phylogenies. (A) OtV6_114c and (B) OtV6_116 maximum-likelihood phylogenetic trees, reconstructed using RAxML with LG+G+I and WAG+G
for OtV6_114c and OtV6_116 phylogenies, respectively. For both reconstructions, protein sequence homologs were retrieved using BLASTP searches against UniProtKB;
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information is represented as a colored circle: light red, white and black circles represent eukaryotic viruses (all from prasinoviruses in both phylogenies), bacteriophages
and cellular organisms (only one sequence in the OtV6_116 phylogeny, originating from the bacteria Leptolyngbya), respectively. OtV6_114c and OtV6_116 sequences
are displayed in red and marked by a red circle. For each tree, the prasinovirus clade is highlighted by a pink rectangle. The scale bar represents the number of estimated
substitutions per site.

1 2 3 4 5 6 7 8 9 10 11 12111
1kb ladder

non-infecte
d 

infecte
d 

no template 

non-infecte
d 

infecte
d 

no template 
RT-vAmt-F1/R1 RT-vAmt-F3/R3

non-infecte
d 

infecte
d 

no template 

O. ta
uri D

NA
Euk82F/nonMet-R

1kb ladder

Fig. S5. vAmt is expressed during OtV6 infection cycle of O. tauri. RT-DNA gel plot of infected and non-infected O. tauri cells, sampled 12 h post OtV6 inoculation, targeting the
vAmt gene built from amplified RT-PCR. The vAmt PCR amplifications were conducted using two distinct sets of primers (RT-vAmt-F1/R1 and F3/R3; see Table S1), as well as
experimental controls (no template, Euk82F/nonMet-R primer set targeting the 18S rRNA gene; see Table S1).

Monier et al. 10.1073/pnas.1708097114 5 of 11



1 9

1 11 21 31 41

O. tauri Amt1.1 . . . . . M S L T E S G A E I Q S L Y N N L D A N F L L S S A Y L V F F M Q A G F A M L C A G S V R1 
OtV6 vAmt M D I Q T L S T Q V Q G H E V A S . . . . . N T Q F L L N S A Y L V F L M Q A G F A M L C A G S V R1 

51 61 71 8 1

O. tauri Amt1.1 S K N T K N I L I K N V L D A C V G A L A W F Y F G Y G F A L G E A S N G K L N S F I G S G N F A M46 
OtV6 vAmt T K N T K N I L I K N V L D A C V G A I A W F L F G Y G F A F G K T D G H T P N S F I G S G N F A M46 

101 111 121 131 141

O. tauri Amt1.1 K G V S G N T G I A M Y L F Q W S F S A A A T T I V S G S V A E R T K F E A Y L G Y S F F L C A F V96 
OtV6 vAmt N D I T T P Y D T A F Y L F Q W A F S A A A A T I V S G S V A E R T K F I A Y L G Y S F F L T A F V96 

151 161 171 181 191

O. tauri Amt1.1 Y P V V V H W G W S G Q GW L G P W R C E G S S N G C G P L L A G S G M L D F A G S G I V H M T G G146 
OtV6 vAmt Y P C I V H WGW S T E GW L G P W R . . . . E N . . G P K L L G V G M L D F A G S G I V H M V G G146 

201 211 221 231 241

O. tauri Amt1.1 V A G L V G A I I V G P R T G R F A P D G R V N P M P G H S A P L V V L G T F I L W L GW Y G F N P196 
OtV6 vAmt L A G L M G A Y M V G P R R G R F A A D G R V T P M P G H S A P L V V L G T F I L W V GW Y G F N P190 

251 261 271 281 291

O. tauri Amt1.1 G S Q L A I V A F G G A A A D N S R V I A R T A V T T T L S A A G G G I M A M V L N Y V L Y H V W D246 
OtV6 vAmt G S Q L G L M . . . . . G E D N A K V I S R T A V T T T L S A A S G G L T A M A L N Y K S D K I W D240 

301 311 321 331 341

O. tauri Amt1.1 L I A V C N G I L A G L V G I T A G C S T T E P W A A P I C G A L S A L V I H A S S K L L L K L K I296 
OtV6 vAmt L I A V C N G A L A G L V S I T A G C S T T E P W A A I I C G M L G A M C I K A S S N L L L K L K I285 

351 361 371 381 391

O. tauri Amt1.1 D D P L E A A P M H G F C G A F G V L W V G F M A K Q S Y V A E V F G T A R N G Y M P A G V F Y G G346 
OtV6 vAmt D D P L E A A P M H G F C G A L G V L W V G F M A K R Q Y V N D V F G I D E . . . . . A G V F Y G G335 

401 411 421 431 441

O. tauri Amt1.1 N G K L L G A Q I A G I C V I T A W V G A T L G A F F L L M K K L N L L R T S V E E E T M G L D E S396 
OtV6 vAmt G G K L L G A Q I I G V V T I A T W T M G M L G A F F G L Y K K L G L L R V T E E E E S I G L D E S380 

451 461

O. tauri Amt1.1 K H G G S A Y A M E L V A P E P A446 
OtV6 vAmt K H G G S A Y E M A . . . . . . .430 

RMSD

RMSD

RMSD

RMSD

RMSD

RMSD

RMSD

RMSD

RMSD

RMSD        

     

   

  

      

          
Conservation

Conservation

Conservation

Conservation

Conservation

Conservation

Conservation

Conservation

Conservation

Conservation * * * * * * *  *         

. * * * * * * * *  * :  . * : : * .  .  * * * * *  *  * * * . * * * . :  * * * : : * * * * *

* * * * * * * * * * * * * * * : * * * * * * * * * * : . * *  : * * *   .      * * * * * * *

* * * * * * *  * * * * * . * * * * * * * * * * * * *  * * *  * . * :  * : * * * : * * * * * * *

* * * * . : :      .  * * : : * * : * * * * * * * * * * * . * * :  * * . * * *    : : * *

: * * * : * *  : * * * *  * * * * . * * * * . * * * * * * * * * * * * * * * * * * : * * * * * * *

* *  : * * * * * *  : * * * * * * *     . *   * *  *  *  * * * * * * * * * * * * * . * *

: . : :    .  * : * * * * * : * * * * * : * * * * * * * * * * * * *  * * * * * * * * *  * * *

: * * * * * * * * * * * * * * * * * * : * * *  * * * * * * : * : : . .  .  * * * * * * * * * * *

     : *    . *  * :  *      : : : * * * . * * * * * * : * * * * * * * * * * * * * *

..l l hhhhh .llll . .llllll h hhhhhh hh hhhh hhhhhh h h h h h h h l l

h h h h h h h h h h h h h h h h h h h h h h h h l h h h h l l l e e l l l l l l l l l e e l l l h h

h l l l l h h h h h h h h h h h h h h h h h h h h h h h h h l l l l l h h h h h h h h h h lh h h h

h h h h h h h h h h h l l l l l ......l l l l ll l l l h h h l l l l l l l l l l l h h h h h

h h h h h h h h h h l l l l l l l l l l l l l l l l l l l l h h h h h h h h h h h h h h h h h h h h

h h h l l l l l l l l l l. h h h h h h h h h h h h h h h h h h h h h. . . . h h h h h h l l l l l

h h h h h h h h h h h h h h h h l l l l l l l h h h h h h h h h h h h h h h h h h h h h h h h l l l

ll l l l l l l h h h h h h h h h h h h h h h h l l l l l l l l l l l l l . . . . . l l l lhhhl

hh h h h h h h h h h h h h h h h h h h h h h h h h h h h h h l l l l ll h l h h h h h h l h h h h

.h h l l l l l l l l . . . . . .

vAmt DDSP

vAmt DDSP

vAmt DDSP

vAmt DDSP

vAmt DDSP

vAmt DDSP

vAmt DDSP

vAmt DDSP

vAmt DDSP

vAmt DDSP

A
I

II

III IV

V

VI

VII

VIII IX

X

XI

B C

I

II

III
IV

V

VI

VII
VIII

IX

X

XI

Fig. S6. O. tauri Amt1.1 and vAmt sequence and structure comparisons. (A) O. tauri and OtV6 vAmt sequence comparison. Both protein sequences were aligned using
EMBOSS Needle global pairwise alignment [7]. Eleven transmembrane domains (noted I to XI with circle color code as in Fig. 2B and 2C), predicted with TMHMM v2 [8], are
highlighted by light orange rectangles. Amino acid conservations, in Clustal color code format [9], are indicated above the pairwise alignment along with RMSD distance levels,
which are based on the superimposition of predicted vAmt and O. tauri Amt1.1 structures. The vAmt secondary structure prediction, computed using the DDSP algorithm
implemented in DaliLite [10], is displayed below the pairwise alignment with the alpha helices noted ‘h’ and matching the 11 transmembrane domains. Conserved histidine
residues in helices V and X are indicated by black arrows. A grey arrow indicates the serine residue conserved with the threonine 460 in Arabidopsis thaliana Amt1.1 (see Fig.
S1C). (B) O. tauri Amt1.1 3D protein structure prediction. The predicted protein structure is composed of 11 alpha-helices corresponding to the transmembrane domains
indicated by colored circles and Roman numerals. (C) Superimposition of the vAmt and O. tauri Amt1.1 3D protein structure models. The viral and host Amt structure models
are colored in blue and brown, respectively.

6 of 11 Monier et al. 10.1073/pnas.1708097114



0

0.25

0.50

0.75

1

TM
H

M
M

 P
os

te
rio

r P
ro

ba
bi

lit
y

0

0.25

0.75

0.50

1

0 100 200 300 400 500

Protein Sequence Position

Intracellular Transmembrane 

I II III IV V VI VII VIII XIIX X

Extracellular

OtV6 vAmt

O. tauri Amt1.1
I II III IV V VI VII VIII XIIX X

Fig. S7. O. tauri Amt1.1 and vAmt transmembrane domain predictions. Transmembrane domains were predicted using TMHMM v2 [8] and the 11 transmembrane domains are
noted I to XI with circle color code as in Fig. 2B, C and Fig. S6A, B. The x-axis corresponds to the protein sequence position and the y-axis to the TMHMM posterior probability .
Extracellular, transmembrane and intracellular (cytosolic) domains of each protein are represented in green, orange and purple, respectively. Both proteins have an extracellular
N-terminus and cytosolic C-terminus, a hallmark of the protein members of the Amt/Mep/Rh superfamily.

Ammonium Amino-butyric acid Glucuronamide Mannosamine Urea

0.1

1

Time (h)

A B C D E

empty
OtV6 vAmt
O. tauri Amt1.1

0.1 0.5 vector[mM]
empty
OtV6 vAmt
wild type

0.1 0.5 vector[mM]

G
ro

w
th

 (O
D

   
   

   
)

60
0n

m

0 24 48 72 96 24 48 72 96 24 48 72 96 24 48 72 96 24 48 72 960 0 0 0 wild type gap1Δ agp1Δ
+ vAmt

F Isoleucine

Fig. S8. Culture optical density (OD600nm) of (A – D) Ammonium-uptake deficient yeast 31019b cultures transformed either with an empty vector (pAG416 GPD; triangles), a
vAmt containing vector (pAG416 GPD vAmt; circles) or an O. tauri Amt1.1 containing vector (pAG416 GPD Amt1.1; diamonds) grown in media for which the sole nitrogen
source was either ammonium sulfate (A) , D,L-a-amino-butyric (B) acid, glucuronamide (C) or D-mannosamine (D) at 0.1 and 0.5 mM (black or white filled symbols, respectively).
(E) OD600nm of an urea (CH4N2O) uptake defective yeast mutant, strain YNVW1 (dur3∆), transformed either with pAG416 GPD (triangles) or pAG416 GPD vAmt (circles),
and wild type strain Σ23346c transformed with pAG416 GPD (nabla symbol), in two CH4N2O concentrations (0.1 and 0.5 mM; black or white filled symbols, respectively). Dots
represent OD600nm means of each culture triplicate and error bars represent standard errors. Lines are local polynomial regression fits (loess). (F ) Yeast spot assay of growth
phenotypes for wild type strain (23346c) and pAG416 GPD vAmt-transformed mutant 30633c, which bears deletions in the genes encoding amino acid permeases (gap1∆
agp1∆; [11]). Cells were ten-fold serially diluted and spotted onto minimal medium containing 1 mM isoleucine as the sole nitrogen source. The gene encoding vAmt did not
complement the growth defect of the gap1∆ agp1∆ mutant.
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Fig. S9. Respiration curves from the OmniLog® Phenotype MicroArray (PM) system. Ammonium-uptake deficient yeast strain (31019b) cultures, in triplicates, transformed with
either pAG416 GPD (empty vector) or pAG416 GPD vAmt were grown on various nitrogen sources from a PM3B MicroPlate™ and have their curves colored in blue and red,
respectively. PM curves were generated using the R package opm [12]. Yellow shaded plots represent nitrogen sources for which significant AUC (area under curve; see [12])
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triplicates. No isoleucine phenotype was found for vAmt-transformed yeast mutant (strain 30633c, gap1∆ agp1∆; see Fig. S8F).
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Fig. S11. Amt/Mep/Rh superfamily phylogenetic tree. This large-scale approximate maximum-likelihood phylogenetic tree was reconstructed under WAG+G model using
FastTree v2.1 [13], based on a multiple alignment of 19,493 protein sequences totaling 374 sites. This phylogenetic tree is identical to the one displayed as Fig. 6A. Local
support values were based on the Shimodaira-Hasegawa test [14]; support value of the vAmt subtree is indicated in red. The different Amt/Mep/Rh clades are outlined as
in McDonald et al. [15], with the Mep clade encompassing the Mepα , Mepβ and Mepγ groups. Each sequence is represented by a circle, or with a diamond in the case
of sequences from the MMETSP project [16], and the color-code corresponds to the taxonomic information: purple, blue and yellow correspond to archaeal, bacterial and
eukaryotic sequences, respectively. Grey circles correspond to environmental sequences with no available taxonomic information. The red star shows the phylogenetic
position of the vAmt within the superfamily tree, and sequences grouping with the vAmt are highlighted in pink (all of which are eukaryotic), and were used to compute
the maximum-likelihood phylogeny displayed as Fig. 6B and Fig. S11 (vAmt subtree). Orange stars represent SwissProt reviewed protein entries, and are listed with their
corresponding sequence identifiers. The scale bar represents the number of estimated substitutions per site.
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CAMPEP_0183795018 Crustomastix stigmata CCMP3273

CAMPEP_0198204640 Pyramimonas sp. CCMP2087
CAMPEP_0196571684 Pyramimonas amylifera CCMP720

CAMPEP_0198210566 Pyramimonas sp. CCMP2087
CAMPEP_0118930094 Pyramimonas obovata CCMP722
CAMPEP_0118924982 Pyramimonas obovata CCMP722
CAMPEP_0198216168 Pyramimonas sp. CCMP2087

CAMPEP_0196571754 Pyramimonas amylifera CCMP720
CAMPEP_0191499796 Pyramimonas parkeae CCMP726

CAMPEP_0196598246 Pyramimonas amylifera CCMP720
CAMPEP_0196585648 Pyramimonas amylifera CCMP720

CAMPEP_0196594460 Pyramimonas amylifera CCMP720

K8FCX2 Bathycoccus prasinos
CAMPEP_0179639450 Bathycoccus prasinos BCC99000

JGI-60909 Ostreococcus sp. RCC809

CAMPEP_0179700822 Ostreococcus mediterraneus RCC2593

CAMPEP_0179717148 Ostreococcus mediterraneus RCC1107
CAMPEP_0179605098 Ostreococcus mediterraneus RCC1621

CAMPEP_0179687388 Ostreococcus mediterraneus RCC2573

H8ZJB2 Ostreococcus tauri virus 6
ABMF01208431 Saltern viral metagenome sequence 1

A4SAD9 Ostreococcus lucimarinus CCE9901
A0A096PA30 Ostreococcus tauri OTH95

CAMPEP_0198705844 Mantoniella sp. CCMP1436
CAMPEP_0181374270 Mantoniella antarctica SL−175

CAMPEP_0202984404 Micromonas sp. RCC451
CAMPEP_0203051782 Micromonas pusilla CCMP1723

CAMPEP_0190228662 Micromonas sp. RCC472
C1FI64 Micromonas sp. RCC299 
CAMPEP_0202930750 Micromonas sp. CS−222
CAMPEP_0190215818 Micromonas sp. NEPCC29

CAMPEP_0203076492 Micromonas pusilla CCMP494

CAMPEP_0203012716 Micromonas pusilla CCAC1681
CAMPEP_0181143804 Micromonas sp. CCMP1646

C1N5A7 Micromonas pusilla CCMP1545
CAMPEP_0203026752 Micromonas pusilla RCC1614

CAMPEP_0203021942 Micromonas pusilla RCC1614

CAMPEP_0182860548 Nephroselmis pyriformis CCMP717

ABMF01077810 Saltern viral metagenome sequence 2

Tetraselmis spp. (A0A061S4M6 Tetraselmis sp. GSL018)

Chlamydomonales (A8HSA2 Chlamydomonas reinhardtii)

Embryophyta (P54144 Arabidopsis thaliana)
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Fig. S12. vAmt evolutionary relationships with Amt-Euk homologs. This maximum-likelihood phylogenetic tree is identical to the one displayed as Fig. 5B but without collapsed
branches within the prasinophytes, and was inferred under LG+I+G+F model using RAxML v8.2 [4], based on a multiple alignment comprised of 364 proteins totaling 429 sites.
The vAmt is highlighted in red with a star, and branched within the prasinophyte lineage of green algae. Within the prasinophytes, Mamiellophyceae sequences are marked with
a blue circle. Branches leading to Chlamydomonales, Embryophyta, Trebouxiophyceae and Rhodophyta were collapsed and the numbers indicated in parentheses are the total
number of sequences present in the corresponding collapsed clade, listed with a representative sequence with corresponding UniProtKB identifier (or MMETSP [16] identifier in
the case of non-Cyanidiales Rhodophyta). Code numbers in front of species names represent sequence identifiers from either the MMETSP transcriptomes (O. mediterraneus,
N. pyriformis and C. stigmata), UniProtKB (O. lucimarinus and O. tauri) and the Ostreococcus sp. RCC809 genome project available at the DoE-Joint Genome Institute. Branch
node supports were computed from 1000 non-parametric bootstrap replicates. The scale bar represents the number of estimated substitutions per site. The dashed branches
show the phylogenetic placements of two short environmental sequences, which were placed onto the tree using pplacer v1.1 [17] with placement posterior probabilities
indicated in red on their corresponding branch; both sequences originate from saltern viral metagenomes [18], and their GenBank sequence identifiers are provided (NCBI
BioProject: PRJNA28353).
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