
S3 Text: Analysis of purifying selection with a set of
redefined wPGP scores

Main idea

The hybrid model of expression described in the main text was fitted to the wild-type gap gene
expression data and validated as described by Kozlov et al. (2014). The wild-type solution
of the model equations approximates the wild-type data with some error ε(x, t, a), which in
some spatiotemporal domains (for some x and t) and for some genes a exceeds the expression
variation predicted by the model for the population genotypes (see, for example, the data and
the model solutions in Figure 2 of the main text). Therefore, a question arises whether the
model has the power to study the effects of SNPs.

As a possible way to tackle this problem, we suggest the following analysis which should
demonstrate the robustness of the conclusions made in the main text with respect to variation
of the approximation error shown by the model. This analysis is based on a redefined wPGP
score, which is a measure of the perturbation in the modelled expression exerted by genetic
variation and, thus, a measure underlying fitness of an individual genotype in the population.
The wPGP score used in the main text sums up the perturbations of the spatial profiles
of expression for all times t and gap genes a, even though different (t, a) are related with
different approximation errors ε. The main idea of the suggested analysis is to arrange these
(t, a)-dependent perturbations according to decreasing values of the error ε and define a new
wPGP score by subtraction of those (t, a)-dependent perturbations which are associated with
the largest error ε. Therefore, the new score will be the measure of perturbation taking into
account only those (t, a) pairs which correspond to a small error ε. If we were able to reproduce
the results from the main text for this new score, this would demonstrate the robustness of
the conclusions in regard to the variable approximation error and, thus, increase the general
reliability of these conclusions. We do this for the analysis of purifying selection in more details
in what follows.

Redefined wPGP scores

The wPGP score w is defined by eqs. (5)–(6) of the main text:

w =
∑
t,a

fa(t), fa = 0.5 − 0.5 ∗ (reward − penalty), (1)

where, for given gene a and time t, the ‘reward’ and ‘penalty’ terms are calculated from the
spatial expression pattern as follows:
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where vai = vai (t) is the protein concentration in the model solution for the mutated genotype
(for nucleus i, gene a, and time t), V a

i is the same for the reference genotype (the wild-type
solution), and V a

max = V a
max(t) is the maximum value of the spatial expression pattern V a

i for a
given time. For the reference genotype, i.e. when there are no mutations, we have w = 0, and
w > 0 when mutations are introduced in the sequence.

fa(t) represent the (t, a)-dependent scores of the perturbed spatial expression profiles vai (t).
We can map these scores to the values of the approximation error ε introduced above. This
error quantifies the difference between the gap gene expression patterns in the model for the
reference genome and the wild-type expression data via the wPGP measure as follows:

ε =
∑
t,a

εa(t), (3)

where εa(t) = fa(t) from eqs. (1)–(2) in which vai is replaced with the model solution for the
reference genome and V a

i is replaced with the wild-type expression data. The values of εa(t)
are shown in Fig. 1 together with the wild-type expression patterns. We wish to sort these
patterns according to the data approximation quality of the model. These patterns are indexed
by the pairs (t, a), so we arrange these pairs in the order of increasing values of error εa(t); for
this purpose, we introduce the index 1 ≤ j ≤ 36 and the dependences a = a(j), t = t(j), so
that

εa(j) (t(j)) ≤ εa(j+1) (t(j + 1)) , j = 1, . . . , 35. (4)

The arranged errors εa(j) (t(j)) are shown in Fig. 2. Therefore, we classified the pairs (t, a)
according to the data approximation quality of the model.

We wish to use this classification in the score w from (1). We define new scores wnew(k)
by summing not all fa(t), but only those which correspond to pairs (t, a) with smaller ap-
proximation error εa(t), starting with the smallest error and adding more and more terms as k
increases:

wnew(k) =
k∑

j=1

fa(j) (t(j)) , k = 1, . . . , 36. (5)

The meaning of the new scores can be explained as follows. Given a mutated genotype, the
score wnew(k) quantifies the resulted total perturbation in the model solution for this genotype
accounted only for those times t and genes a which correspond to k smallest errors εa(t). In
other words, when we use the scores wnew(k) with small values of index k, we concentrate on
selected spatiotemporal states of the gene network which are described by the model with high
accuracy, in contrast to the full state that may be approximated by the model with large errors.
However, the cost of this refinement is the loss in statistical power of any analysis with the new
scores and small values of k due to less information about the network states encoded in such
scores.

As we aim at describing a state of the network consisting of four genes, we further take only
those values of k for which at least one fa for each of the four genes (a = 1, . . . , 4) is present in
the sum in eq. (5). The calculations show that this condition holds for k ≥ 13, so we consider
in total 24 scores wnew(k), k = 13, . . . , 36. By construction, wnew(36) = w, which is the full
score used in the main text. In the next section, we repeat one of the analysis from the main
text using the new scores.

We should note that we characterise the data approximation error of the model by breaking
the ‘full gene network state’ into the spatial expression profiles (like in Fig. 1), indexed by
the pairs (t, a). As the approximation error may also vary within the spatial domain, i.e. for
any fixed (t, a), it would also be informative to break the spatial domain into parts related
with different values of the approximation error. However, it is not feasible for the wPGP
measure, since the essence of this measure is in its ability to more properly assess the spatial
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features of expression (Kazemian et al., 2010; He et al., 2012; Samee and Sinha, 2013). It
would be appropriate for the RMS score, but, as discussed in the cited papers, this score is less
accurate than wPGP and, as we showed in the main text, it even leads to different predictions.
Therefore, we do not consider this score.

Figure 1: Wild-type expression patterns and the data approximation errors εa(t).
The spatial profiles of protein concentrations in the expression data (red) and the model solution
for the reference genome (blue) are shown for the gap genes hb, Kr, gt, and kni (columns from
left to right, respectively), for nine time points (mid cleavage cycle 13 and eight time classes
T1–T8 in cycle 14A; the time classification is according to Surkova et al. (2008)). The value
of εa(t) from (3) is given for each gene a and time t. There are in total 36 (4 genes × 9 time
points) spatial expression profiles and corresponding errors.
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Figure 2: Arranged values of the data approximation errors εa(t).

Analysis of purifying selection with the new scores

We repeated the analysis of purifying selection from the main text using the new scores and
for the case of comparison between the population genotypes and genotypes randomly mutated
under the neutral site frequency spectrum. For each k, we calculated the p-value for the null
hypothesis that the population genotypes and the randomly mutated genotypes provide the
same variation in gap gene expression under the assumption that we quantify this variation by
the score wnew(k). Just as it was done for the full wPGP score in the main text, this p-value
was computed by comparing the median score for the population with the distribution of such
median scores for 100 families of randomly mutated genotypes. The results show statistically
significant evidence for action of purifying selection in the population for all new scores (Fig. 3).
Even more, Fig. 3 demonstrates that the domain of small values of k, corresponding to higher
precision of the model as described above, is associated with the same p-value as for the full
score (k = 36). This result indicates the robustness of our predictions.

Figure 3: p-values of the test on purifying selection using 24 new scores.
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