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Appendix A Stability analysis of the equilibria of Macdonald model

The asymptotic stability of the disease-free equilibrium (DFE) of Macdonald’s (1965) model can be studied

by looking at the eigenvalues of the Jacobian matrix

J0 =

−γ βN

χH −µ

 ,
of system (1) in the main text evaluated at the DFE. Specifically, the DFE is stable if the dominant5

eigenvalue of J0 is negative (note that J0 is a Metzler matrix, therefore its dominant eigenvalue is real;

see e.g. Horn and Johnson, 1990). A switch in the sign of the dominant eigenvalue of H0 from negative to

positive corresponds to a switch in the sign of det(J0) = γµ− βNχH from positive to negative, because

J0 is of even order. We can thus conclude that the DFE of model (1) in the main text is stable if

r0 = (βNχH)/(γµ) < 1, unstable otherwise.10

Similarly, the asymptotic stability of the endemic equilibrium (EE) of model (1) in the main text can

be determined based on the eigenvalues of the Jacobian matrix

Je =

−γ βN

γµ
βN −βNχH

γ

 ,
evaluated at the EE. Like J0, Je is a Metzler matrix of even order, hence the EE switches from stable to

unstable if det(Je) = βNχH − γµ switches from positive to negative. Therefore, the EE is positive and15

stable if r0 > 1, unfeasible and unstable otherwhise.

The condition r0 = 1 thus marks an exchange of stability between the DFE and the EE: for r0 < 1 the

DFE is stable, while the EE is unfeasible and unstable; at r0 = 1 the two equilibria collide; and for r0 > 1

the DFE is unstable, while the EE is positive and stable (transcritical bifurcation; see e.g. Kuznetsov,

1995).20

Appendix B Stability analysis of the DFE of the multi-group/multi-

source model

The asymptotic stability of the DFE of model (2) in the main text can be analyzed by studying the sign

of the dominant eigenvalue of the (G+ S)× (G+ S) Jacobian matrix

J0 =

 −γIG βNEn

χHCTh −µIS

 ,25
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where IG and IS are the identity matrices of size G and S, respectively. The dominant eigenvalue of

J0 is real, because J0 is a Metzler matrix. Also, if E and C are irreducible matrices (which is in turn

equivalent to requiring that the graph associated with ω = [ωgs] be strongly connected; see Horn and

Johnson, 1990), by Perron-Frobenius theorem we can conclude that the dominant eigenvalue of J0 is a

simple real root of the characteristic polynomial det(λIG+S − J0) = 0 (see again Horn and Johnson,30

1990). A change in the stability of the DFE is thus marked by a switch of the dominant eigenvalue of J0

from negative to positive. As the dominant eigenvalue of J0 changes sign, the determinant of the matrix

switches sign as well. By noting the block structure of the Jacobian

J0 =

A B

C D


and that matrix A = −γIG is invertible by construction (γ > 0), with standard matrix manipulation35

techniques we get

det(J0) = det(A) det
(
D − CA−1B

)
.

Both A and D are scalar matrices, thus they commute with any other matrix. Therefore, the determinant

of J0 can be written as

det(J0) = (−γ)G(−µ)S det

(
IS −

βNχH

γµ
CThEn

)
.40

If G + S is an even [odd] number, det(J0) switches from positive to negative [from negative to positive]

as the dominant eigenvalue of J0 switches from negative to positive (and the DFE switches from stable

to unstable). Either way, close to the transcritical bifurcation the instability condition for the DFE is

det

(
IS −

βNχH

γµ
CThEn

)
< 0 ,

which is equivalent to requiring that the dominant eigenvalue RGS0 of matrix R = r0C
ThEn be larger45

than one.
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Appendix C The multi-group/single-source case

In the case of a heterogeneous human population subdivided into G > 1 groups, all of which share one

common water source, model (2) in the main text simplifies to

dPg
dt

= βεEg NY − γPg

dY

dt
= χH

G∑
g=1

hgε
C
g Pg(1− Y )− µY ,

(A1)50

where the subscript pertaining to the (unique) water source has been dropped for the sake of clarity, and

φEs = φCs = 1 for all s’s as assumed the main text. Note that the system reduces to the homogeneous case

if all groups have the same transmission risk (εEg = εCg = 1 for all g’s), or if there is a single group (i.e. if

there exists a group g such that hg = 1).

The DFE of model (A1) is the null column vector of size (G + 1). To ascertain its (in)stability55

properties, we observe that matrix R becomes a scalar in the case at hand. Therefore, the threshold

parameter for stability is

RG1
0 = r0

G∑
g=1

hgε
E
g ε

C
g .

If RG1
0 > 1, the DFE of system (A1) is unstable, and the EE is characterized by strictly positive compo-

nents, namely60

P̄G1
g = εEg

βNχH
∑

g hgε
E
g ε

C
g − γµ

γχH
∑

g hgε
E
g ε

C
g

and Ȳ G1 =
βNχH

∑
g hgε

E
g ε

C
g − γµ

βNχH
∑

g hgε
E
g ε

C
g

,

and stable.

Both the threshold parameter RG1
0 and the coordinates of the EE depend on the quantity

U(hg, ε
E
g , ε

C
g ) =

G∑
g=1

hgε
E
g ε

C
g .

More specifically, the dynamics of system (A1) is heavily influenced by whether U > 1. To search for the65

extrema of this function subject to the equality constraints

∑
g

hg =
∑
g

hgε
E
g =

∑
g

hgε
C
g = 1
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one can apply the method of Lagrange multipliers (see e.g. Bertsekas, 1982) and define the Lagrangian

L =
∑
g

hgε
E
g ε

C
g + l1

(∑
g

hg − 1

)
+ l2

(∑
g

hgε
E
g − 1

)
+ l3

(∑
g

hgε
C
g − 1

)
,

where l1, l2 and l3 are so-called Lagrange multipliers. By setting ∇L = 0, we get the following system of

3(G+ 1) equations

∂L
∂hg

= εEg ε
C
g + l1 + l2ε

E
g + l3ε

C
g = 0

∂L
∂εEg

= hgε
C
g + l2hg = 0

∂L
∂εCg

= hgε
E
g + l3hg = 0

∂L
∂l1

=
∑
g

hg − 1 = 0

∂L
∂l2

=
∑
g

hgε
E
g − 1 = 0

∂L
∂l3

=
∑
g

hgε
C
g − 1 = 0 ,

the last three of which are simply the original constraints. The system admits a unique solution, namely70

εEg = εCg = 1 (g = 1, · · · , G), with l1 = 1 and l2 = l3 = −1, for all feasible hg combinations (in this case, in

fact, the distribution of the human host population among the different sub-groups is immaterial, since

they are all characterized by the same exposure and contamination risks). This homogeneous solution

yields U = 1.

If εEg = εCg = εg, it is straightforward to verify that any feasible heterogeneous solution yields U > 1,75

i.e. that the homogeneous solution (εg = 1 for all g’s) represents a minimum for the constrained problem.

This can also be easily seen through Jensen’s inequality (Jensen, 1906), by which

∑
g

hgε
2
g ≥

(∑
g

hgεg

)2

= 1 ,

with the first inequality being strict unless all εg = ε, or a single hg = 1. Therefore, a heterogeneous

multi-group community sharing one water source is typically more prone to long-term parasite establish-80

ment than a homogeneous one, because RG1
0 = r0U ≥ r0. Similarly, it is immediate to show that the

prevalence of infected snails at the EE in a homogeneous community cannot be larger than the infected

snail prevalence in a heterogeneous multi-group community sharing one water source, i.e. that Ȳ G1 ≥ Ȳ .

With simple algebraic manipulations, in fact, this inequality reduces again to U ≥ 1. Along the same

5



lines, one could ask what human sub-groups in a heterogeneous community are characterized by a parasite85

burden higher than the one expected in a homogeneous community, i.e. under what conditions P̄G1
g ≥ P̄ .

This inequality reduces to

εg ≥
(βNχH − γµ)U

βNχHU − γµ
=

(r0 − 1)U

r0U − 1
= ε? .

Clearly, ε? = 1 in a homogeneous community (for which U = 1), ε? < 1 otherwise. Therefore, in a hetero-

geneous multi-group community with one water source, even some groups whose exposure/contamination90

risk is below average (or, equivalently, lower than that of an equivalent homogeneous community) may

have a parasite load larger than P̄ . It is also possible to prove that the average parasite burden cannot be

smaller in a heterogeneous multi-group community than in a homogeneous one, i.e. that
∑

g hgP̄
G1
g ≥ P̄g.

With straightforward manipulations, this inequality becomes

∑
g

hgεg ≥
(βNχH − γµ)U

βNχHU − γµ
= ε? .95

By construction,
∑

g hgεg = 1, therefore the above condition in always verified in a multi-group heteroge-

neous community, for which ε? < 1.

On the other hand, U(hg, ε
E
g , ε

C
g ) is not always larger than one if εEg and εCg are left free to vary

independently of each other. To show this, and to complement the results obtained with the 2-group case

analyzed in the main text, here we also study scenarios in which G > 2 groups (for which εEg 6= εCg ) can100

be distinguished within a human community. This requires the definition of a joint frequency distribution

for hg(ε
E
g , ε

C
g ), i.e. for the distribution of the human host population among classes characterized by

different exposure and contamination risk.

Fig. A1A illustrates an example of a discrete bivariate distribution for community composition. The

discrete distribution has been generated starting from a continuous bivariate distribution h(εE , εC) ob-105

tained through a Gaussian copula (Nelsen, 1990) of the marginal distributions over exposure hE(εE) =∫
h(εE , εC)dεC and contamination risk hC(εC) =

∫
h(εE , εC)dεE , both assumed to be exponential. The

continuous distribution h(εE , εC) has been discretized into G = 100 groups, each of which is endowed

with specific exposure/contamination risk. We observe (Fig. A1B), coherently with results by Woolhouse

et al. (1998), that if exposure and contamination risk are uncorrelated (correlation coefficient ρ = 0)110

the endemicity thresholds of the heterogeneous and homogeneous communities coincide (RG1
0 = r0 = 1);

conversely if they are positively [negatively] correlated (ρ > 0) [(ρ < 0)], sub-threshold parasite endemism

(RG1
0 > 1 with r0 < 1) [super-threshold parasite extinction (RG1

0 < 1 with r0 > 1)] can occur in the

heterogeneous community.

Fig. A1C shows instead a multi-group community in which the marginal distributions over exposure115
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Figure A1: Analysis of multi-group communities with access to a single water source. Groups differ for
their relative abundance (hg, with

∑
g hg = 1), and for their intrinsic risk of exposure and contamination

(εEg and εCg , respectively). A) Example of subdivision of the human host population into G = 100 sub-
groups with differential exposure and contamination risk. The marginal frequency distributions over
exposure (hE(εE)) and contamination (hC(εC)) risk are assumed to be exponential with mean equal to 1,
while the joint frequency distribution (h(εE , εC)) is obtained through a Gaussian copula with a correlation
coefficient ρ = 0.5. B) Endemicity boundary in the heterogeneous community (black line, RG1

0 = 1). The
DFE is stable if RG1

0 < 1 (gray-shaded parameter combinations), while the EE is feasible and stable if
RG1

0 > 1. C) As in panel A, for a multi-group community in which the marginal frequency distributions
over exposure and contamination risk are Gaussian with mean equal to 1 and standard deviation σ = 0.4;
the joint frequency distribution is again obtained through a Gaussian copula (ρ = 0 in this example). D)
Endemicity boundaries in the heterogeneous community. Parasite establishment is possible (RG1

0 > 1)
above the bifurcation curves, which correspond to RG1

0 = 1 and are obtained for different values of the
basic reproduction number in an equivalent homogeneous community (labels).
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and contamination risk are assumed to be Gaussian (with the joint frequency distribution for h(εE , εC)

being obtained, again, through a Gaussian copula). Similarly to the previous example, the higher the

correlation between exposure and contamination risk, the higher the RG1
0 -to-r0 ratio – hence the higher

the likelihood of parasite endemicity. In this case, it is also possible to explore the effect of the dispersion

of the two marginal distributions around their mean, as measured by their standard deviation σ (assumed120

to be the same for the two distributions). Interestingly, in the presence of positive [negative] correlation,

sub-threshold endemic transmission [super-threshold parasite extinction] in a heterogeneous community

can be found for intermediate values of σ. Because a (possibly strong) positive correlation between

exposure and contamination risk is to be expected for a disease like schistosomiasis (see main text), we

can conclude that the establishment of endemic pathogen transmission can be remarkably favored in125

heterogeneous multi-group communities.

Appendix D The single-group/multi-source case

In the case of a well-mixed human population with access to S > 1 common water sources, model (2) in

the main text (with φEs = φCs = 1 for all s’s) becomes

dP

dt
= βN

S∑
s=1

nsωsYs − γP

dYs
dt

= χωsHP (1− Ys)− µYs .

(A2)130

Note that the subscript pertaining to the (unique) human group has been dropped for clarity, and that

the system reduces to the homogeneous case if there exists a water point where all snails and human water

contacts are concentrated (i.e. if there exists s such that ωs = ns = 1). Besides the DFE, a null column

vector of size (1 + S), model (A2) also has a nontrivial EE solution. In this case, however, a compact

analytic expression for the EE is not available.135

To determine conditions under which the DFE loses stability, we note that in the single-group/multiple-

source case the generalized reproduction matrix becomes R = r0u
Tun, which corresponds to the outer

product of the column vectors r0u
T and (un)T (i.e. R = r0u

T ⊗ (un)T ). As such, R is a rank-one matrix

with only one non-zero eigenvalue, i.e. a matrix with a unique non-zero eigenvalue, R1S
0 . The non-zero

eigenvalue corresponds to the trace of the matrix, which can be readily evaluated as140

R1S
0 = tr(R) = r0

S∑
s=1

nsω
2
s .

If RG1
0 > 1, the DFE of system (A1) is unstable, and the EE is stable and characterized by strictly

8



positive components, as it can be readily ascertained via numerical simulation of model (A2).

The stability of the DFE depends in this case on the quantity

V (ns, ωs) =
S∑
s=1

nsω
2
s ,145

subject to the equality constraints ∑
s

ns =
∑
s

ωs = 1 .

More specifically, the stability of the DFE depends on whether V > 1. We note that V = 0 if there exists

a source s such that ns = 0 and ωs = 1, i.e. if all water contacts occur at a snail-free source. Conversely,

V = 1 if there exists a source s such that ns = ωs = 1, i.e. if all water contacts occur at the only site150

where snails can be found. This is indeed the case of a homogeneous community with access to a single

water source, which represents a configuration for which V is maximized. In fact, if there exists a value

of 0 < ωs < 1 corresponding to 0 < ns < 1, then

∑
s

nsω
2
s <

∑
s

ns = 1

by construction. To show that there are no other extrema for the function V (ns, ωs), one can define the155

Lagrangian

L =
∑
s

nsω
2
s + l1

(∑
s

ns − 1

)
+ l2

(∑
s

ωs − 1

)
,

where l1 and l2 are Lagrange multipliers (see Bertsekas, 1982). By setting ∇L = 0, we get the following

system of 2(S + 1) equations

∂L
∂ns

= ω2
s + l1 = 0

∂L
∂ωs

= 2nsωs + l2 = 0

∂L
∂l1

=
∑
s

ns − 1 = 0

∂L
∂l2

=
∑
s

ωs − 1 = 0 .

The system admits a unique solution, namely ns = ωs = 1/S (s = 1, · · · , S), with l1 = −1/S2 and

l2 = −2/S2, yielding V = 1/S2 (≤ 1). Therefore, this unique stationary point of the Lagrangian is not

an extremum for the general constrained problem.160

To complement the results obtained with the 2-source case analyzed in the main text, here we also

9



analyze scenarios in which well-mixed human communities have access to S > 2 water sources. In general,

the analysis of a multi-source case requires a suitable definition of the water contact matrix ω, whose

structure is contingent on several nontrivial factors including, for instance, individual preferences and the

spatial arrangement of the water sources, in addition to a detailed knowledge of the snail distribution165

pattern. We start from some prototypical cases – which were the subjects of early investigations on the

topic (Barbour, 1978; Woolhouse et al., 1991) – in which snail abundance and/or water contacts are evenly

distributed among the available water sources.

In the case of a uniform water contact pattern (ωs = 1/S for all s’s) and any generic feasible distri-

bution of snail abundance, we have R1S
0 = r0/S

2. Therefore, in this case, the risk of disease endemicity170

(R1S
0 > 1) rapidly decreases for increasing values of S (dilution effect, as noted by Woolhouse et al., 1991).

In the opposite case of evenly distributed snail abundance (ns = 1/S for all s’s), instead, a uniform water

contact pattern (ωs = 1/S for all s’s) corresponds to a local minimum for R1S
0 compared to any other

feasible distribution of water contacts, as argued by Barbour (1978). In fact, it is possible to show that

the bordered Hessian175

HB =



0 1 1 . . . 1

1 1 0 . . . 0

1 0 1 . . . 0

. . . . . . . . . . . . . . .

1 0 0 . . . 1


of the Lagrangian

L =
1

S

∑
s

ω2
s + l

(∑
s

ωs − 1

)
,

where l is a Lagrange multiplier, is positive definite – which represents a sufficient condition for the

stationary point of the constrained problem to be a local minimum (see Bertsekas, 1982).180

Numerical simulations for these special cases are shown in Fig. A2A, where they are also contrasted

against the scenario in which both snail abundance and water contacts are unevenly distributed among

the available water sources. It turns out that cases in which both water contacts and snail abundance are

randomly distributed are, on average, less prone to the establishment of endemic schistosomiasis trans-

mission than cases of even snail/random contact distributions; conversely, they are more prone to endemic185

transmission than cases in which both water contacts and snail abundance are evenly distributed. Wide

fluctuations do exist, though. Such fluctuations are well explained by the degree of correlation between

the distributions of snail abundance and water contacts (Fig. A2B): not unexpectedly (see Woolhouse

et al., 1998), the higher the correlation, the higher the likelihood of disease endemicity.
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Figure A2: Analysis of single-group communities with access to multiple water sources. Sources differ for
the relative abundance of snails they host (ns, with

∑
s ns = 1) and the frequency of human-water contacts

(ωs, with
∑

s ωs = 1). A) Basic reproduction number r0 in an equivalent homogeneous community that is
required for the establishment of endemic schistosomiasis transmission in a single-group community with
S available water sources. White is for an even distribution of water contacts and any distribution of snail
abundance, gray is for an even distribution of snail abundance and water contact patterns drawn from
a uniform random distribution, black is for both distributions being assigned from a uniform random
distribution; dots and vertical lines represent, respectively, average values and 95th percentile ranges
evaluated over sets of 1,000 independent realizations. B) Relationship between the value of r0 required
for the establishment of endemic schistosomiasis transmission in a single-group community with S = 5
water sources and the correlation between the snail abundance and the water contact patterns, both of
which are drawn from a uniform random distribution.

11



Appendix E The spatially explicit case190

The simplest spatially-explicit version of model (2) in the main text can be written as

dPi
dt

= βNεi

2∑
j=1

ωijnjYj − γPi

dYi
dt

= χH

2∑
j=1

ωjiεjhjPj(1− Yi)− µYi ,

(A3)

with i = 1, 2. In model (A3), all the hypotheses described in the main text have been introduced, namely:

• the human population size (H) is the same as in the homogeneous case (h1 + h2 = 1),

• the snail population size (N) is the same as in the homogeneous case (n1 + n2 = 1),195

• for each group, the overall human-water contact rate is the same as in the homogeneous case

(ω11 + ω12 = ω21 + ω22 = 1),

• for each group, the intrinsic exposure risk is the same as the intrinsic contamination risk (εE1 = εC1 =

ε1, ε
E
2 = εC2 = ε2),

• the group-averaged exposure/contamination risk is the same as in the homogeneous case (h1ε1 +200

h2ε2 = 1),

• for each source, the intrinsic exposure risk is the same as the intrinsic contamination risk (φE1 =

φC1 = φ1, φ
E
2 = φC2 = φ2),

• the source-related exposure/contamination risk is the same across all water points (φ1 = φ2 = 1),

and205

• the fraction of water contacts made at the farthest source is the same for each groups (ω12 = ω21 =

m).

Fig. 4 in the main text reports the analysis of parasite establishment conditions for four selected

settings of the spatially-explicit, two-site model. Many interesting results pertain to the more complex

case (panel D), in which heterogeneity is allowed in the spatial distributions of both intrinsic transmission210

risk and snail abundance. A similar analysis is repeated in Fig. A3 for different levels of heterogeneity in

the transmission rates.
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Figure A3: Endemicity boundaries in a spatially heterogeneous metacommunity with two human groups
(each corresponding to a separate location) and two water sources. The groups differ for their relative
abundance (h1 and h2, with h1 +h2 = 1) and intrinsic transmission risk (ε1 and ε2), while the two sources
differ for the relative abundance of snails they host (n1 and n2, with n1 = h1 and n2 = h2) and the
frequency of human-water contacts (for each community, the fraction of contacts at the farthest water
point is m, while 1 −m is the fraction of contacts at the home site). Parasite establishment is possible
(R22

0 > 1) on the right of the bifurcation curves, which correspond to R22
0 = 1 and are obtained for

different spatial distributions of the human host population (legend). Results are shown for increasing
values of transmission risk heterogeneity: A) ε1/ε2 = 1.5; B) ε1/ε2 = 2; C) ε1/ε2 = 3; D) ε1/ε2 = 5.
Results obtained with ε1/ε2 = 10 are shown in Fig. 4D in the main text.
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Appendix F The periodically forced case

After introducing all of the simplyfing hypotheses described in the main text, namely

• fluctuations of the exposure/contamination rates are associated with seasonal variations of the215

human-water contact rate (αβ = αχ = αω, ψβ = ψχ = ψω),

• fluctuations of the mortality rates of adult parasites and infected snails are neglected (αγ = αµ = 0),

• the period of oscillations is one year for all the time-varying parameters (τω = τN = τH = τ = 365

[d]), and

• phase shifts between the exposure/contamination rates and the abundances of the host populations220

are studied with reference to the phase of the former (ψω = 0, 0 ≤ ψN , ψH ≤ τ),

the periodically forced model (3) in the main text becomes

dP

dt
= β̃(t)Ñ(t)Y − γP

dY

dt
= χ̃(t)H̃(t)P (1− Y )− µY .

(A4)

In model (A4),

β̃(t) = β

[
1 + αω sin

(
2π

τ
t

)]
and χ̃(t) = χ

[
1 + αω sin

(
2π

τ
t

)]
225

are the seasonally varying snail-to-human and human-to-snail transmission rates, while

Ñ(t) = N

[
1 + αN sin

(
2π

τ
(t+ ψN )

)]
and H̃(t) = H

[
1 + αH sin

(
2π

τ
(t+ ψH)

)]

are the seasonally varying population abundances of snails and humans.
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